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THE SYMMETRY OF spinC DIRAC SPECTRUMS ON

RIEMANNIAN PRODUCT MANIFOLDS

Kyusik Hong and Chanyoung Sung

Abstract. It is well-known that the spectrum of a spinC Dirac operator
on a closed Riemannian spinC manifold M2k of dimension 2k for k ∈ N

is symmetric. In this article, we prove that over an odd-dimensional

Riemannian product M
2p
1 × M

2q+1
2 with a product spinC structure for

p ≥ 1, q ≥ 0, the spectrum of a spinC Dirac operator given by a product
connection is symmetric if and only if either the spinC Dirac spectrum

of M
2q+1
2 is symmetric or (e

1
2
c1(L1)Â(M1))[M1] = 0, where L1 is the

associated line bundle for the given spinC structure of M1.

1. Introduction

This article is a generalization of the paper [7] to a spinC Dirac operator

on a spinC manifold. Let (Mn, g) be an n-dimensional closed Riemannian

manifold with a spinC structure given by an associated complex line bundle L
with c1(L) ≡ w2(M

n) mod 2. Here c1 is the first Chern class and w2 is the 2-nd
Stiefel-Whitney class. Let A be a U(1)-connection on the line bundle L. This
combined with the Levi-Civita connection of g induces a covariant derivative

∇A : Γ(Σ(M,L)) → Γ(T ∗M ⊗ Σ(M,L))

in the associated spinor bundle Σ(M,L). The associated spinC Dirac operator
DA is the composition of the covariant derivative ∇A and Clifford multiplica-
tion γ

DA = γ ◦ ∇A : Γ(Σ(M,L)) → Γ(T ∗M ⊗ Σ(M,L)) → Γ(Σ(M,L)).

ThenDA is a self-adjoint elliptic operator of first-order. Therefore the spectrum
Spec(DA) of DA is discrete and real. The behavior of Spec(DA) generally

depends on the U(1)-connection A, the metric, and the spinC structure. For
general properties of Dirac operators we refer to [4, 8].

Definition 1.1. The Spec(DA) is called symmetric, if the following conditions
hold:
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(1) There exits −λ ∈ Spec(DA) whenever λ ∈ Spec(DA).
(2) The multiplicity of −λ is equal to that of λ.

If n is even, then the volume form µ of (Mn, g) anti-commutes with the

spinC Dirac operator DA

DA ◦ µ = −µ ◦DA.

Thus, in this case Spec(DA) is symmetric.
Since DA is elliptic, each eigenspace is finite-dimensional. The asymmetry of

Spec(DA) on an odd-dimensional manifold was investigated by Atiyah, Patodi
and Singer [1] via the eta funtion defined as

ηDA(s) :=
∑

λ6=0

sign(λ)

|λ|s , s ∈ C,

where λ runs through the eigenvalues according to their multiplicities. The
series ηDA(s) converges for sufficiently large Re(s) and has the meromorphic
continuation to the whole C with ηDA(0) finite. They showed that the value
ηDA(0), called the eta invariant of DA, appears as a global correction term for
the index theorem for compact manifolds with boundary. Note that ηDA(s) ≡ 0
is a necessary condition for the symmetry of Spec(DA).

In this paper, we prove a necessary and sufficient condition for the symmetry
of Spec(DA) on odd-dimensional Riemannian spinC product manifolds using
the ideas mainly adapted from that of E. C. Kim [7]. We will take a convention
that a superscript on a manifold denotes its dimension.

Theorem 1.2. Let (Qn :=M
2p
1 ×M2q+1

2 , h := g1+g2) be a Riemannian product

of two closed Riemannian spinC manifolds (M2p
1 , g1), p ≥ 1, and (M2q+1

2 , g2),

q ≥ 0. Let π1 : Qn →M
2p
1 and π2 : Qn → M

2q+1
2 be the natural projections.

Suppose that M1 (resp. M2) is equipped with a spinC structure given by a

complex line bundle L1 (resp. L2) with c1(L1) ≡ w2(M
2p
1 ) mod 2 (resp. c1(L2)

≡ w2(M
2q+1
2 ) mod 2), andM1×M2 is equipped with the product spinC structure

given by the complex line bundle L = π∗
1(L1)⊗ π∗

2(L2).
Let A1 (resp. A2) be a U(1)-connection on L1 (resp. L2), and A = π∗

1(A1)+

π∗
2(A2) be a connection of L. Let DA1

M1
, DA2

M2
, and DA be the associated spinC

Dirac operators of (M2p
1 , g1), (M

2q+1
2 , g2), and (Qn, h), respectively. Then we

have the following:
Spec(DA) is symmetric if and only if either Spec(DA2

M2
) is symmetric or

(e
1
2
c1(L1)Â(M1))[M1] = 0, where Â(M1) denotes the Â-class of TM1.

As a result auxiliary, we generalize real and quaternionic structures of spinor
bundles on spin manifolds to complex anti-linear mappings between Σ(M,L)

and Σ(M,−L) on spinC manifolds, and study several variations on product

spinC manifolds. These may be used as tools for studying the spectrum of a
spinC Dirac operator on a product spinC manifold.
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2. Preliminaries

This section is divided into two parts. In the first part, we explain that the
spinor bundle of a Riemannian spinC product manifold has a natural tensor-
product splitting. In the second part, we prove the decomposition property
of L2-sections of a vector bundle given by the tensor product of two vector
bundles.

Consider the following commutative diagram:

SpinC(k1 + k2) oo ?
_

π

��

SpinC(k1)⊗S1 SpinC(k2) ∋ (±a1 ⊗Z2
±e iθ1

2 )⊗S1 (±a2 ⊗Z2
±e iθ2

2 )

��

SO(k1 + k2)⊕ S1 oo ?
_

SO(k1)⊕ SO(k2)⊕ S1 ∋ (a1, a2, e
i(θ1+θ2)),

where π is a 2-fold covering map.
Let PM1

, PM2
, and PQ be the SO(k1)-, SO(k2)-, and SO(k1 + k2)-principal

bundles of positively oriented orthonormal frames of (Mk1

1 , g1), (M
k2

2 , g2), and

(Qn :=Mk1

1 ×Mk2

2 , h := g1+ g2), respectively. Let L1 (resp. L2) be a complex

line bundle with c1(L1) ≡ w2(M
k1

1 ) mod 2 (resp. c1(L2) ≡ w2(M
k2

2 ) mod 2),
and let L = π∗

1L1⊗π∗
2L2, where π1 : Q→M1 and π2 : Q→ M2 are the natural

projections. To denote the double cover of a principal bundle, we will put .̃
Then the above pointwise diagram globalizes over the whole manifold to give
the following commutative diagram:

P̃Q ⊕ L oo ?
_

π

��

π∗
1( ˜PM1

⊕ L1)⊗S1 π∗
2( ˜PM2

⊕ L2)

��

PQ ⊕ (π∗
1L1 ⊗ π∗

2L2) oo ?
_ (π∗

1PM1
⊕ π∗

2PM2
)⊕ (π∗

1L1 ⊗ π∗
2L2).

Thus, the SpinC(k1 + k2)-principle bundle P̃Q ⊕ L over (Qn, h) reduces to the

SpinC(k1) ⊗S1 SpinC(k2)-principal bundle π
∗
1( ˜PM1

⊕ L1) ⊗ π∗
2( ˜PM2

⊕ L2) in a
π-equivariant way.

Let (E1, . . . , Ek1
) and (F1, . . . , Fk2

) be local orthonormal frames on (Mk1

1 ,

g1) and (Mk2

2 , g2), respectively. We identify (E1, . . . , Ek1
) and (F1, . . . , Fk2

)
with their lifts to (Qn, h). We may then regard (E1, . . . , Ek1

, F1, . . . , Fk2
) as a

local orthonormal frame on (Qn, h). Let µ1 = E1 ∧ · · · ∧ Ek1 , Et := g1(Et, ·),
and µ2 = F 1 ∧ · · · ∧F k2 , F l := g2(Fl, ·), be the volume forms of (Mk1

1 , g1) and

(Mk2

2 , g2), respectively, as well as their lifts to (Qn, h).
Now let’s assume that at least one of k1 and k2 is even. Say, k1 = 2p for

p ∈ N. Using the following Clifford action on the tensor product vector space
[7, Section 2], one can extend the SpinC(k1)⊗S1 SpinC(k2)-action on △k1

⊗ △k2

to the SpinC(k1 + k2)-action:

(2.1) Et · (ϕ1 ⊗ ϕ2) = (Et · ϕ1)⊗ ϕ2, t = 1, . . . , 2p,

(2.2) Fl · (ϕ1 ⊗ ϕ2) = (
√
−1)p(µ1 · ϕ1)⊗ (Fl · ϕ2), l = 1, . . . , k2,
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where ϕ1 ∈△k1
and ϕ2 ∈△k2

. If k2 = 2p, the Clifford actions are defined as:

Et · (ϕ1 ⊗ ϕ2) = (Et · ϕ1)⊗ (
√
−1)p(µ2 · ϕ2), t = 1, . . . , k1,

Fl · (ϕ1 ⊗ ϕ2) = ϕ1 ⊗ (Fl · ϕ2), l = 1, . . . , 2p.

Hence we can conclude that the associated vector bundle π∗
1(Σ(M1, L1)) ⊗

π∗
2(Σ(M2, L2)) for the principal bundle π

∗
1( ˜PM1

⊕ L1)⊗S1 π∗
2( ˜PM2

⊕ L2) is also

an associated vector bundle for P̃Q ⊕ L.
Recall that there is a unique spinor bundle Σ(M1 ×M2, L) on M1 ×M2, if

k1 + k2 is even, and there exist two of them, if k1 + k2 is odd. Suppose that
dimM1 = 2p and dimM2 = 2q + 1 for p ≥ 1 and q ≥ 0. Then we have two
non-isomorphic spinor bundles

Σ(M1, L1)⊗ Σ′(M2, L2) and Σ(M1, L1)⊗ Σ′′(M2, L2)

onM1×M2, where Σ(M1, L1) is a unique spinor bundle onM1, and Σ′(M2, L2),
Σ′′(M2, L2) denote two non-isomorphic spinor bundles corresponding to Σ(M2,
L2) on M2 (more precisely, they are the eigenbundles of +(

√
−1)q+1 and

−(
√
−1)q+1 under the action of µ2, respectively). One can easily check that

Σ(M1, L1) ⊗ Σ′(M2, L2) and Σ(M1, L1) ⊗ Σ′′(M2, L2) are the eigenbundles of
+(

√
−1)p+q+1 and −(

√
−1)p+q+1 under the action of the volume form µ1 ∧ µ2

on M1 ×M2, respectively.
Since the tensor product bundle π∗

1(Σ(M1, L1)) ⊗ π∗
2(Σ(M2, L2)) and the

spinor bundle Σ(M1 ×M2, L = π∗
1L1 ⊗ π∗

2L2) have the same dimension, we
have proved the first part of the following:

Lemma 2.3. If at least one of k1 and k2 is even, then

Σ(M1 ×M2, L = π∗
1L1 ⊗ π∗

2L2) = π∗
1(Σ(M1, L1))⊗ π∗

2(Σ(M2, L2)).

If both k1 and k2 are odd, then

Σ(M1 ×M2, L = π∗
1L1 ⊗ π∗

2L2)

= (π∗
1(Σ

′(M1, L1))⊕ π∗
1(Σ

′′(M1, L1)))⊗ π∗
2(Σ(M2, L2)).

The proof of the second part can be done in the same as the spin case, whose
details can be found in [7, Section 4].

Moreover the connections on the LHS of the previous diagram are induced
ones from the RHS, which are subbundles. A spinC connection on

π∗
1( ˜PM1

⊕ L1)⊗S1 π∗
2( ˜PM2

⊕ L2),

which is lifted from downstairs is given by the tensor-product. Therefore,
letting Ai for i = 1, 2 and A = π∗

1(A1) + π∗
2(A2) be connections on Li and L

respectively, and ∇A1 ,∇A2 , and ∇A be the spinor derivatives of Σ(M1, L1),
Σ(M2, L2), and Σ(M1 ×M2, L) respectively, we have

(2.4) ∇A
X(ϕ1 ⊗ ϕ2) = (∇A1

π1∗(X)ϕ1)⊗ ϕ2 + ϕ1 ⊗ (∇A2

π2∗(X)ϕ2)

for ϕi ∈ Γ(π∗
i (Σ(Mi, Li))) and X ∈ T (M1 ×M2).
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Now we prove some analysis lemmas on general vector bundles.

Lemma 2.5. Let E and F be hermitian vector bundles over M1, M2, respec-

tively, and π∗
1E ⊗ π∗

2F be the induced bundle over M1 ×M2, where each πl :
M1×M2 →Ml for l = 1, 2 is the natural projection. Let L2(π∗

1E⊗π∗
2F ), L

2(E),
L2(F ) be the completion, with respect to the L2-norm, of C0(π∗

1E ⊗ π∗
2F ),

C0(E), C0(F ), respectively. Then we have

L2(π∗
1E ⊗ π∗

2F ) = π∗
1(L

2(E))⊗ π∗
2(L

2(F )),

where the over-line denotes the L2-completion.

Proof. Let {ϕα(x)} and {ψβ(y)} be orthonormal bases for π∗
1(L

2(E)) and
π∗
2(L

2(F )) respectively. Then {ϕα(x) ⊗ ψβ(y)} forms an orthonormal set in
L2(π∗

1E ⊗ π∗
2F ), and hence

L2(π∗
1E ⊗ π∗

2F ) ⊇ π∗
1(L

2(E))⊗ π∗
2(L

2(F )).

To prove the reverse direction, we will prove that {ϕα(x)⊗ψβ(y)} is actually
a maximal orthonormal set, i.e., basis. Let rank(E) = m and f ∈ C0(π∗

1E ⊗
π∗
2F ). Take U ×M2 ⊂ M1 ×M2, where U is a small open neighborhood of a

point in M1. Since f |x×{M2} for each x ∈ U is continuous and hence in L2(F ),
the section f on U ×M2 is expressed as

f(x, y) = (f1(x, y), . . . , fm(x, y)) =
∑

β

aβ(x)ψβ(y)

= (
∑

β

aβ,1(x)ψβ(y), . . . ,
∑

β

aβ,m(x)ψβ(y)).

Since f is continuous, we have the continuity of

aβ,k(x) = 〈fk(x, y), ψβ(y)〉L2(F ) =

∫

M2

〈fk(x, y), ψβ(y)〉F dy,

where 〈·, ·〉F is the hermitian inner product on F . Applying the Hölder’s in-
equality, we obtain

∫

U

|aβ,k(x)|2dx ≤
∫

U

(

∫

M2

|fk(x, y)|F |ψβ(y)|F dy)2dx

≤
∫

U

(

∫

M2

|fk(x, y)|2F dy
∫

M2

|ψβ(y)|2Fdy) dx

=

∫

U

(

∫

M2

|fk(x, y)|2F dy) dx <∞,

where the finiteness is due to the fact that f ∈ L2(π∗
1E ⊗ π∗

2F ) and hence
fk ∈ L2(π∗

1E|U(p) ⊗ π∗
2F ). This implies that aβ,k and hence aβ are locally in

L2. Moreover, since f ∈ Γ(π∗
1E ⊗ π∗

2F ) and ψβ ∈ Γ(π∗
2F ), we have

aβ(x) =

∫

M2

〈f(x, y), ψβ(y)〉F dy ∈ Γ(π∗
1E).
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Therefore, we can write

aβ(x) =
∑

α

cαβϕα(x)

for cαβ ∈ C, and hence f can be expressed as

f(x, y) =
∑

β

∑

α

cαβϕα(x) ⊗ ψβ(y).

Because the subset of continuous sections is dense in the space of L2-sections,
the proof is completed. �

Remark 2.6. Lemma 2.5 remains valid when E and F are real vector bundles
with Riemannian metrics over M1 and M2, respectively.

Corollary 2.7. Let DM1
: E → E (resp. DM2

: F → F ) denote a linear self-

adjoint elliptic differential operator on a complex vector bundle over a closed

manifold M1 (resp. M2) and let Γρ(DMj
), for j ∈ {1, 2}, denote the space of

all eigenvectors of DMj
with eigenvalue ρ ∈ R. If DM1

⊗ Id + Id ⊗ DM2
:

π∗
1E ⊗ π∗

2F → π∗
1E ⊗ π∗

2F as an operator on M1 ×M2 is elliptic, then we have

Γγ(DM1
⊗ Id+ Id⊗DM2

) =
⊕

γ=χ+ν

(π∗
1(Γχ(DM1

))⊗ π∗
2(Γν(DM2

))).

Proof. “ ⊇ ” part is obvious, and we will show the other direction. Note that
DM1

⊗ Id+ Id⊗DM2
is also self-adjoint. Since the unit norm eigenvectors of

DM1
, DM2

, and DM1
⊗Id+Id⊗DM2

form orthonormal bases of L2(E), L2(F ),
and L2(π∗

1E ⊗ π∗
2F ), respectively, the proof follows from Lemma 2.5. �

Lemma 2.8. Let D : E → E be a linear self-adjoint elliptic operator, where E

is a complex vector bundle over a closed manifold M . Then all the eigenvectors

of D2 come from the eigenvectors of D, and the squares of the eigenvalues of

D are exactly the eigenvalues of D2.

Proof. Obviously, the eigenvector of D is the eigenvector of D2. Since the unit
norm eigenvectors of D form an orthonormal basis of L2(E), and the same is
true for the unit norm eigenvectors of D2, the conclusion follows. �

3. Real and quaternionic structures

Let’s first review some basic properties of real or quaternionic structures j0
and j1 of the spinor representation. For more details, the readers are referred
to [3, 4, 6, 7, 9].

The real Clifford algebra Cl(Rn) is multiplicatively generated by the stan-
dard basis {e1, . . . , en} of the Euclidean space Rn subject to the relations
e2i = −1 for all i ≤ n and eiej = −ejei for all i 6= j. Note that the di-
mension of Cl(Rn) is 2n. The complexification Cl(Rn;C) := Cl(Rn) ⊗R C is
isomorphic to the matrix algebra M(2m;C) for n = 2m and to the matrix al-
gebra M(2m;C)⊕M(2m;C) for n = 2m+1. For an explicit isomorphism map
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for n ≥ 2, we refer to [5, Section 1] (or [7, Section 2]). Following them, let us
denote by u(ǫ) ∈ C2 the vector

(3.1) u(ǫ) :=
1√
2

(
1

−ǫ
√
−1

)
, ǫ = ±1.

Then

(3.2) u(ǫ1, . . . , ǫm) := u(ǫ1)⊗ . . . ,⊗u(ǫm), m = [
n

2
] ≥ 1,

form an orthonormal basis for the spinor space △n:= C2m , m = [n2 ] ≥ 1, with
respect to the standard hermitian inner product.

Definition 3.3. The complex-antilinear mappings j0, j1 :△n→△n defined, in
the notations of (3.1) and (3.2), by

j0u(ǫ1, . . . , ǫm) = (
√
−1)

∑m
α=1

αǫαu(−ǫ1, . . . ,−ǫm),

j1u(ǫ1, . . . , ǫm) = (
√
−1)

∑m
α=1

(m−α+1)ǫαu(−ǫ1, . . . ,−ǫm), m = [
n

2
],

are called the j0-structure and j1-structure, respectively.

The following facts are well-known [3, 7]. Fix m = [n2 ].

(A) j0 ◦ ek = ek ◦ j0 for all k = 1, . . . , 2m and j0 ◦ e2m+1 = (−1)m+1e2m+1 ◦
j0. Thus, the mapping j0 :△n→△n is Spin(n)-equivariant for n, n 6≡
1 mod 4.

(B) j1 ◦ el = (−1)m+1el ◦ j1 for all l = 1, . . . , n. Thus, the mapping
j1 :△n→△n is Spin(n)-equivariant for all n ≥ 2.

(C) j0 ◦ j0 = j1 ◦ j1 = (−1)m(m+1)/2 and j0 ◦ j1 = j1 ◦ j0.
(D) 〈j0(ψ), j0(ϕ)〉 = 〈j1(ψ), j1(ϕ)〉 = 〈ϕ, ψ〉, ϕ, ψ ∈△n, where 〈·, ·〉 is the

standard hermitian inner product on △n.

Thus, j0 (for n 6≡ 1 mod 4) and j1 give real (resp. quaternionic) structures on
△n as Spin(n)-representations, if m ≡ 0, 3 mod 4 (resp. m ≡ 1, 2 mod 4).

Let us now fix a local trivialization of Σ(M,L) on a spinC manifold Mn.
Namely, let ∪αUα be an open covering of M for which there exits a system of
transition functions {gα1α2

: Uα1
∩Uα2

→ SpinC(n) = Spin(n)⊗Z2
S1}. Define

gα1α2
: Uα1

∩ Uα2
→ SpinC(n) by

x 7→ f(x)⊗Z2
h(x),

where f(x) ⊗Z2
h(x) = gα1α2

(x) for x ∈ Uα1
∩ Uα2

, f(x) ∈ Spin(n) and h(x) ∈
S1. Then gα1α2

is the transition function of a local trivialization for Σ(M,−L).
By the property (A), j0◦(f(x)⊗Z2

h(x)) = (f(x)⊗Z2
h(x))◦j0 for n 6≡ 1 mod 4.

Also, by the property (B), j1 ◦ (f(x)⊗Z2
h(x)) = (f(x)⊗Z2

h(x))◦ j1 for n ≥ 2.
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We then have the following commutative diagram:

Uα1
× △n

gα1α2 //

jr

��

Uα2
× △n

��

jr

��

Uα1
× △n

gα1α2 // Uα2
× △n,

where r = 0 with n 6≡ 1 mod 4, or r = 1 with n ≥ 2. Thus, the mapping
jr is compatible with the transition functions of Σ(M,L) and Σ(M,−L) so
that the j0- and j1-structure can be globalized to mappings j0, j1 : Σ(M,L) →
Σ(M,−L), and we can carry all the properties (A)–(D) over to Σ(M,L). Be
aware that the mapping j0 is well-defined for n 6≡ 1 mod 4, and j1 is well-defined
for all n ≥ 2.

Lemma 3.4.

D−A ◦ j0 = j0 ◦DA for n 6≡ 1 mod 4,

and

D−A ◦ j1 = (−1)m+1j1 ◦DA.

Proof. Let (ωi,j) be the so(n)-valued 1-form on Uα coming from the Levi-
Civita connection of (Mn, g). The spinor derivative ∇A with respect to a
U(1)-connection A in the bundle L is locally expressed as

jk(∇A
Xs) = jk(X(s) +

1

2
(
√
−1A(X) +

∑

i<j

ωj,i(X)ei · ej) · s)

= X(jk(s)) +
1

2
(−

√
−1A(X) +

∑

i<j

ωj,i(X)ei · ej) · jk(s)

= ∇−A
X jk(s),

where s ∈ Γ(Σ(M,L)), X ∈ Γ(TM), and k = 1, 2. Thus, we have

(3.5) ∇−A ◦ j0 = j0 ◦ ∇A and ∇−A ◦ j1 = j1 ◦ ∇A.

Now the conclusion immediately follows from the properties (A) and (B). �

As a corollary, we have proved that ifm is odd (resp. even), then Spec(DA) =
Spec(D−A) (resp. −Spec(D−A)) with the same multiplicities.

Now we take up the case of Theorem 1.2. Using (2.1), (2.2), and (2.4), one
can easily verify the following formulas:

(3.6) DA(ϕ1 ⊗ ϕ2) = (DA1

M1
ϕ1)⊗ ϕ2 + (

√
−1)p(µ1 · ϕ1)⊗ (DA2

M2
ϕ2),

(3.7) (DA)2(ϕ1 ⊗ ϕ2) = ((DA1

M1
)2ϕ1)⊗ ϕ2 + ϕ1 ⊗ ((DA2

M2
)2ϕ2)

for ϕi ∈ Γ(π∗
i (Σ(Mi, Li))).
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Consider the partial spinC Dirac operators DA1

+ , DA2

− acting on sections
ψ ∈ Γ(Σ(Q,L)) of the spinor bundle over (Qn, h):

DA1

+ ψ =

2p∑

k=1

Ek · ∇A1

Ek
ψ, DA2

− ψ =

2q+1∑

l=1

Fl · ∇A2

Fl
ψ.

Define the twist D̃A of the spinC Dirac operator DA = DA1

+ +DA2

− by

D̃A = DA1

+ −DA2

− .

By (2.1) and (2.2), for i = 1, 2

DA1

+ ◦ µi = −µi ◦DA1

+ , DA2

− ◦ µi = µi ◦DA2

− ,

and

(3.8) DA ◦ µi = −µi ◦ D̃A, D̃A ◦ µi = −µi ◦DA.

Since the SpinC(2p+ 2q + 1)-principle bundle P̃Q ⊕ L over

(Qn :=M
2p
1 ×M

2q+1
2 , h)

reduces to the SpinC(2p) ⊗S1 SpinC(2q + 1)-principal bundle π∗
1( ˜PM1

⊕ L1) ⊗
π∗
2( ˜PM2

⊕ L2), the complex-antilinear mapping j∗ :△2p+2q+1→△2p+2q+1 de-
fined by

j∗u(ǫ1, . . . , ǫp, ǫp+1, . . . , ǫp+q) = {j0u(ǫ1, . . . , ǫp)} ⊗ {j1u(ǫp+1, . . . , ǫp+q)},
combining the j0- and j1-structure in Definition 3.3, globalizes to mapping j∗ :
Σ(Q,L) → Σ(Q,−L). Then the mapping j∗ is well-defined for all p ≥ 1, q ≥ 1.
Using the properties (A) and (B) below Definition 3.3, the formulas (2.1) and
(2.2), we have the following:

j∗ ◦Ek = Ek ◦ j∗, k = 1, . . . , 2p, j∗ ◦Fl = (−1)p+q+1Fl ◦ j∗, l = 1, . . . , 2q+1.

From the formulas (2.4) and (3.5), it follows that

∇−A ◦ j∗ = j∗ ◦ ∇A,

and hence

(3.9) D−A1

+ ◦ j∗ = j∗ ◦DA1

+ , D−A2

− ◦ j∗ = (−1)p+q+1j∗ ◦DA2

− .

Similarly we also define complex-antilinear mappings ĵ∗, j∗0 , j
∗
1 : Σ(Q,L) →

Σ(Q,−L) as
ĵ∗u(ǫ1, . . . , ǫp, ǫp+1, · · · , ǫp+q) = {j1u(ǫ1, . . . , ǫp)} ⊗ {j0u(ǫp+1, . . . , ǫp+q)},
j∗0u(ǫ1, . . . , ǫp, ǫp+1, . . . , ǫp+q) = {j0u(ǫ1, . . . , ǫp)} ⊗ {j0u(ǫp+1, . . . , ǫp+q)},
j∗1u(ǫ1, . . . , ǫp, ǫp+1, . . . , ǫp+q) = {j1u(ǫ1, . . . , ǫp)} ⊗ {j1u(ǫp+1, . . . , ǫp+q)}.

The mappings ĵ∗ and j∗0 are well-defined when q is odd, and j∗1 is well-defined
for all p ≥ 1, q ≥ 1. One can easily check that

D−A1

+ ◦ ĵ∗ = (−1)p+1 ĵ∗ ◦DA1

+ , D−A2

− ◦ ĵ∗ = (−1)p ĵ∗ ◦DA2

− ,(3.10)
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D−A1

+ ◦ j∗0 = j∗0 ◦DA1

+ , D−A2

− ◦ j∗0 = (−1)pj∗0 ◦DA2

− ,(3.11)

D−A1

+ ◦ j∗1 = (−1)p+1j∗1 ◦DA1

+ , D−A2

− ◦ j∗1 = (−1)p+q+1j∗1 ◦DA2

− .(3.12)

Putting these together, we can produce various operators which anti-commute
with spinC Dirac operators:

Proposition 3.13. Under the assumptions of Theorem 1.2 and with the above

notations, for i = 1, 2:

(1) For p ≥ 1 and q ≥ 0, DA ◦ (µi ◦DA1

+ ) = −(µi ◦DA1

+ ) ◦DA.

(2) Let p ≥ 1 and q ≥ 1. If p and q are either both even or both odd, then

D−A ◦ (µi ◦ j∗) = −(µi ◦ j∗) ◦DA.

(3) Let p ≥ 1 and q ≥ 1. If p and q are odd, then D−A ◦ (µi ◦ ĵ∗) =

−(µi ◦ ĵ∗) ◦DA and D−A ◦ (µi ◦ j∗0 ) = −(µi ◦ j∗0 ) ◦DA.

(4) Let p ≥ 1 and q ≥ 1. If p and q are even, then D−A ◦ j∗1 = −j∗1 ◦DA.

Proof. Since the Riemann curvatures R(Ek, Fl, ·, ·) = 0 vanish and the Clifford
multiplication anti-commutes, we have

(3.14) DA2

− DA1

+ +DA1

+ DA2

− = 0.

Using (3.8) and (3.14), we obtain

DA ◦ (µi ◦DA1

+ ) = −µi ◦ D̃A ◦DA1

+

= −µi ◦ ((DA1

+ )2 −DA2

− ◦DA1

+ )

= −µi ◦ ((DA1

+ )2 +DA1

+ ◦DA2

− )

= −µi ◦DA1

+ ◦DA.

Suppose that p and q are either both even or both odd. By (3.8) and (3.9), we
have

D−A ◦ (µi ◦ j∗) = −(µi ◦ D̃−A) ◦ j∗ = −µi ◦ (D−A1

+ −D−A2

− ) ◦ j∗

= −µi ◦ j∗ ◦ (DA1

+ +DA2

− ) = −(µi ◦ j∗) ◦DA.

For the statement (3), we assume that p and q are odd. By (3.8), (3.10) and
(3.11), we see that

D−A ◦ (µi ◦ ĵ∗) = −(µi ◦ D̃−A) ◦ ĵ∗ = −(µi ◦ ĵ∗) ◦DA and

D−A ◦ (µi ◦ j∗0 ) = −(µi ◦ D̃−A) ◦ j∗0 = −(µi ◦ j∗0 ) ◦DA.

The statement (4) follows from (3.12). �

4. Proof of Theorem 1.2

By Corollary 2.7 and (3.7), we see that the eigenvalues of (DA)2 are all

possible sums of one eigenvalue of (DA1

M1
)2 and one of (DA2

M2
)2.
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From now on, we omit the projections and rewrite the formula of Corollary
2.7 as

(4.1) Γγ((D
A)2) =

⊕

γ=χ+ν

(Γχ((D
A1

M1
)2)⊗ Γν((D

A2

M2
)2)).

Using the decomposition

Σ(M,L) = Σ+(M,L)⊕ Σ−(M,L),

where

Σ±(M1, L1) := {ϕ ∈ Σ(M1, L1) | µ1 · ϕ = ±(
√
−1)pϕ},

we have a decomposition Σ(Q,L) = Σ+(Q,L)⊕Σ−(Q,L) due to the action of
the volume form µ1 = E1 ∧ · · · ∧ E2p,

Σ±(Q,L) := Σ±(M1, L1)⊗ Σ(M2, L2).

The positive part ψ+ (resp. negative part ψ−) of ψ ∈ Γ(Σ(Q,L)) is in fact
equal to

ψ± =
1

2
ψ ± 1

2
(−

√
−1)pµ1 · ψ.

Lemma 4.2. Let Γ±
0 (D

A1

M1
) be the space of all positive (resp. negative) har-

monic spinors of DA1

M1
. For any λ 6= 0 ∈ Spec(DA), define a complex vector

space

Hλ := {ψ ∈ Γλ(D
A) | DA1

+ ψ = 0, DA2

− ψ = λψ}.
Then, in the notation (4.1), we have

Hλ = {Γ+
0 (D

A1

M1
)⊗ Γ(−1)pλ(D

A2

M2
)} ⊕ {Γ−

0 (D
A1

M1
)⊗ Γ−(−1)pλ(D

A2

M2
)}.

Proof. By (3.6), it is enough to show that

Hλ ⊂ {Γ+
0 (D

A1

M1
)⊗ Γ(−1)pλ(D

A2

M2
)} ⊕ {Γ−

0 (D
A1

M1
)⊗ Γ−(−1)pλ(D

A2

M2
)}.

Suppose that ψ ∈ Hλ. Then ψ ∈ Γλ2((DA)2) and (4.1) implies that

(4.3) ψ =
∑

k,l

ck,lϕ0,k ⊗ ϕλ2,l, ck,l 6= 0 ∈ C,

is a finite linear combination of tensor products of some ϕ0,k ∈ Γ0((D
A1

M1
)2) and

some ϕλ2,l ∈ Γλ2((DA2

M2
)2). By the decomposition of Σ(Q,L), we can rewrite

(4.3) as

ψ =
∑

k,l

ck,lϕ
+
0,k ⊗ ϕλ2,l +

∑

k,l

ck,lϕ
−
0,k ⊗ ϕλ2,l,

where ϕ±
0,k ∈ Γ±

0 ((D
A1

M1
)2). By Lemma 2.8, the eigenvalue λ2 of (DA2

M2
)2 comes

from the eigenvalue λ or −λ of DA2

M2
. Since DA2

− ψ = λψ, one can easily see

from (3.6)

ψ ∈ {Γ+
0 (D

A1

M1
)⊗ Γ(−1)pλ(D

A2

M2
)} ⊕ {Γ−

0 (D
A1

M1
)⊗ Γ−(−1)pλ(D

A2

M2
)}. �
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Proof of Theorem 1.2. At first, using Proposition 3.13(1), one can define a
map:

f : Γλ(D
A) ∩H⊥

λ −→ Γ−λ(D
A) ∩H⊥

−λ defined by ψ 7→ µ1 ·DA1

+ ψ,

where H⊥
λ is the orthogonal complement of Hλ. Note that f is bijective via

the inverse map
f−1 := (−1)p(DA1

+ )−1 · µ1.

By Lemma 4.2,

(4.4) H−λ = {Γ+
0 (D

A1

M1
)⊗ Γ−(−1)pλ(D

A2

M2
)} ⊕ {Γ−

0 (D
A1

M1
)⊗ Γ(−1)pλ(D

A2

M2
)}.

The symmetry of Spec(DA) holds if and only if dimCHλ = dimCH−λ for any

λ 6= 0 ∈ Spec(DA). Letting dimC(Γ
+
0 (D

A1

M1
)) = a1, dimC(Γ

−
0 (D

A1

M1
)) = a2,

dimC(Γ(−1)pλ(D
A2

M2
)) = b1,λ, and dimC(Γ−(−1)pλ(D

A2

M2
)) = b2,λ, Lemma 4.2

and (4.4) give

dimCHλ − dimCH−λ = (a1 − a2)(b1,λ − b2,λ)

= (ind (DA1

M1
|Σ+(M1,L1)))(b1,λ − b2,λ)

= (e
1
2
c1(L1)Â(M1))[M1](b1,λ − b2,λ),

where the last equality is due to the Atiyah-Singer index theorem [8]. Now the
desired conclusion follows immediately. �

5. Examples

In this section, applying Theorem 1.2, we present an important example.
Let D0 := i∂θ be the Dirac operator of (S1, g2 = dθ2). Then the eigenvectors
of unit L2-norm are

einθ√
2π

for n ∈ Z

with multiplicity 1, and hence Spec(D0) = Z. Thus Spec(D0) is symmetric,
and since ∑

n∈Z\{0}

sign(n)

|n|s = 0 for Re(s) ≫ 1,

ηD0(s) = 0 for all s ∈ C. In [7], it is shown that the Dirac spectrum of

(M2p
1 × S1, g1 + g2) for a spin manifold M2p

1 is symmetric. We can generalize

this to the spinC case:

Example 5.1. Note that D−iadθ = D0+ a for a ∈ R is a spinC Dirac operator
of (S1, g2 = dθ2). Thus

Spec(D−iadθ) = {n+ a | n ∈ Z},
and hence Spec(D−iadθ) is symmetric if and only if a ∈ Z ∪ 1

2Z. In this

case, by Theorem 1.2, the spinC Dirac spectrum of (M2p
1 × S1, g1 + g2) for

any product spinC structure is symmetric, and hence the corresponding eta
invariant vanishes.
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The eta invariant of a spinC Dirac operator on a product spinC manifold
M2

1×S1 appears when computing the dimension of the moduli space of Seiberg-
Witten equations on a cylindrical-ended 4-manifold with asymptotic boundary
equal to M2

1 × S1. For details, the readers are referred to [10].
For general a, it is known that the eta invariant of D−iadθ is 1 − 2a. (See

[10, Example 4.1.7] or [2].)
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