Browse > Article
http://dx.doi.org/10.12989/scs.2021.39.5.599

Critical buckling moment of functionally graded tapered mono-symmetric I-beam  

Rezaiee-Pajand, Mohammad (Department of Civil Engineering, Ferdowsi University of Mashhad)
Masoodi, Amir R. (Department of Civil Engineering, Ferdowsi University of Mashhad)
Alepaighambar, Ali (Department of Civil Engineering, Ferdowsi University of Mashhad)
Publication Information
Steel and Composite Structures / v.39, no.5, 2021 , pp. 599-614 More about this Journal
Abstract
This study deals with the Lateral-Torsional Buckling (LTB) of a mono-symmetric tapered I-beam, in which the cross-section is varying longitudinally. To obtain the buckling moment, two concentrated bending moments should be applied at the two ends of the structure. This structure is made of Functionally Graded Material (FGM). The Young's and shear modules change linearly along the longitudinal direction of the beam. It is considered that this tapered beam is laterally restrained continuously, by using torsional springs. Furthermore, two rotational bending springs are employed at the two structural ends. To achieve the buckling moment, Ritz solution method is utilized. The response of critical buckling moment of the beam is obtained by minimizing the total potential energy relation. The lateral and torsional displacement fields of the beam are interpolated by harmonic functions. These functions satisfy the boundary conditions. Two different support conditions are considered in this study. The obtained formulation is validated by solving benchmark problems. Moreover, some numerical studies are implemented to show the accuracy, efficiency and high performance of the proposed formulation.
Keywords
Lateral-torsional buckling; tapered member; mono-symmetric I-beam; FGM; Ritz solution;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Rezaiee-Pajand, M., Rajabzadeh-Safaei, N. and Masoodi, A.R. (2020a), "An efficient curved beam element for thermomechanical nonlinear analysis of functionally graded porous beams", Structures, 1035-1049. https://doi.org/10.1016/j.istruc.2020.08.038.   DOI
2 Bandula Heva, Y. and Mahendran, M. (2012), "Flexural-torsional buckling tests of cold-formed steel compression members at elevated temperatures", Steel Compos. Struct., 14(3), 205-227. https://doi.org/10.12989/scs.2012.14.3.205.   DOI
3 Bas, S. (2019), "Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection", Steel Compos. Struct., 30(5), 483-492. https://doi.org/10.12989/scs.2019.30.5.483.   DOI
4 Dibley, J. (1969), "Lateral-torsional buckling of I-sections in grade 55 steel", Proceedings of the Institution of Civil Engineers, 43(4), 599-627. https://doi.org/10.1680/iicep.1969.7315.   DOI
5 Usami, T. and Koh, S. (1980), "Large displacement theory of thin-walled curved members and its application to lateral-torsional buckling analysis of circular arches", Int. J. Solid. Struct., 16(1): 71-95. https://doi.org/10.1016/0020-7683(80)90096-7.   DOI
6 Tokarz, F.J. (1968), Lateral-torsional buckling of arches, The Ohio State University.
7 Trahair, N.S. (2017), Flexural-torsional buckling of structures, Routledge.
8 Trahair, N.S. and Papangelis, J.P. (1987), "Flexural-torsional buckling of monosymmetric arches", J. Struct. Eng., 113(10), 2271-2288.   DOI
9 Boissonnade, N. and Muzeau, J. (2001), "A new beam finite element for tapered members", Proceedings of the eighth international conference on The application of artificial intelligence to civil and structural engineering computing, 73-74.
10 Benyamina, A.B., Meftah, S.A. and Mohri, F. (2013), "Analytical solutions attempt for lateral torsional buckling of doubly symmetric web-tapered I-beams", Eng. Struct., 56, 1207-1219. https://doi.org/10.1016/j.engstruct.2013.06.036.   DOI
11 Brown, T.G. (1981), "Lateral-torsional buckling of tapered I-beams", J. Struct. Division, 107(4), 689-697.   DOI
12 Yuan, W.B., Kim, B. and Chen, C.Y. (2013), "Lateral-torsional buckling of steel web tapered tee-section cantilevers", J. Constr. Steel Res., 87, 31-37. https://doi.org/10.1016/j.jcsr.2013.03.026.   DOI
13 Wang, S.T., Yost, M.I. and Tien, Y.L. (1977), "Lateral buckling of locally buckled beams using finite element techniques", Comput. Struct., 7(3), 469-475. https://doi.org/10.1016/0045-7949(77)90084-0.   DOI
14 Xu, Y.L., et al. (2018), "Experimental and numerical study on lateral-torsional buckling behavior of high performance steel beams", Int. J. Struct. Stab. Dynam., 18(7), 1850090. https://doi.org/10.1142/S0219455418500906.   DOI
15 Yoo, C.H. and Lee, S. (2011), Stability of structures: principles and applications.
16 Ziane, N., et al. (2015), "Investigation of the Instability of FGM box beams", Struct. Eng. Mech., 54(3), 579-595. http://dx.doi.org/10.12989/sem.2015.54.3.579.   DOI
17 Mohammadi, E., Hosseini, S.S. and Rohanimanesh, M.S. (2016), "Elastic lateral-torsional buckling strength and torsional bracing stiffness requirement for monosymmetric I-beams", Thin-Wall. Struct., 104, 116-125. https://doi.org/10.1016/j.tws.2016.03.003.   DOI
18 Mohri, F., Damil, N. and Potier-Ferry, M. (2010), "Linear and nonlinear stability analyses of thin-walled beams with monosymmetric I sections", Thin-Wall. Struct., 48(4-5), 299-315.   DOI
19 Nguyen, T.T., Thang, P.T. and Lee, J. (2017), "Lateral buckling analysis of thin-walled functionally graded open-section beams", Compos. Struct., 160, 952-963. https://doi.org/10.1016/j.compstruct.2016.10.017.   DOI
20 Atai, A., Nikranjbar, A. and Kasiri, R. (2012), "Buckling and post-buckling behaviour of semicircular functionally graded material arches: a theoretical study", Proceedings of the Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci., 226(3), 607-614. https://doi.org/10.1177/0954406211416179.   DOI
21 Dias, J.V.F., et al. (2019), "Elastic critical moment of lateral-distortional buckling of steel-concrete composite beams under uniform hogging moment", Int. J. Struct. Stab. Dynam., 19(7): 1950079. https://doi.org/10.1142/S0219455419500792.   DOI
22 Holubowski, R. and Jarczewska, K. (2016), "Lateral-torsional buckling of nonuniformly loaded beam using differential transformation method", Int. J. Struct. Stab. Dynam., 16(7): 1550034. https://doi.org/10.1142/S0219455415500340.   DOI
23 Challamel, N., Andrade, A. and Camotim, D. (2007), "An analytical study on the lateral-torsional buckling of linearly tapered cantilever strip beams", Int. J. Struct. Stab. Dynam., 7(3), 441-456. https://doi.org/10.1142/S0219455410003865.   DOI
24 Chen, W. and Ye, J. (2010), "Elastic lateral and restrained distorsional buckling of doubly symmetric I-beams", Int. J. Struct. Stab. Dynam., 10(5), 983-1016. https://doi.org/10.1142/S0219455410003865.   DOI
25 Osmani, A. and Meftah, S.A. (2018), "Lateral buckling of tapered thin walled bi-symmetric beams under combined axial and bending loads with shear deformations allowed", Eng. Struct., 165, 76-87. https://doi.org/10.1016/j.engstruct.2018.03.009.   DOI
26 Ozbasaran, H., Aydin, R. and Dogan, M. (2015), "An alternative design procedure for lateral-torsional buckling of cantilever I-beams", Thin-Wall. Struct., 90, 235-242. https://doi.org/10.1016/j.tws.2015.01.021.   DOI
27 Pandey, M.D., Kabir, M.Z. and Sherbourne, A.N. (1995), "Flexural-torsional stability of thin-walled composite I-section beams", Compos. Eng., 5(3), 321-342. https://doi.org/10.1016/0961-9526(94)00101-E.   DOI
28 Rezaiee-Pajand, M. and Masoodi, A.R. (2018), "Exact natural frequencies and buckling load of functionally graded material tapered beam-columns considering semi-rigid connections", J. Vib. Control, 24(9), 1787-1808. https://doi.org/10.1177/1077546316668932.   DOI
29 de Oliveira, J.P.S., et al. (2016), "Elastic critical moment of continuous composite beams with a sinusoidal-web steel profile for lateral-torsional buckling", Eng. Struct., 113, 121-132. https://doi.org/10.1016/j.engstruct.2016.01.021   DOI
30 Guo, Y., et al. (2002), "Elastic torsional-flexural buckling of tapered I beam-columns", Advances in Steel Structures (ICASS'02),155-162. https://doi.org/10.1016/B978-008044017-0/50017-2.   DOI
31 Hu, Y., Mohareb, M. and Doudak, G. (2018), "Effect of eccentric lateral bracing stiffness on lateral torsional buckling resistance of wooden beams", Int. J. Struct. Stab. Dynam., 18(2), 1850027. https://doi.org/10.1142/S021945541850027X.   DOI
32 Shooshtari, A., Moghaddam, S.H. and Masoodi, A.R. (2015), "Pushover analysis of gabled frames with semi-rigid connections", Steel Compos.Struct., 18(6), 1557-1568. https://doi.org/10.12989/scs.2015.18.6.1557.   DOI
33 Rezaiee-Pajand, M., Arabi, E. and Masoodi, A.R. (2019a), "Nonlinear analysis of FG-sandwich plates and shells", Aerosp. Sci. Technol., 87, 178-189. https://doi.org/10.1016/j.ast.2019.02.017.   DOI
34 Powell, G. and Klingner, R. (1970), "Elastic lateral buckling of steel beams, J. Struct.Division.
35 Kim, N.I. and Shin, D.K. (2009), "Dynamic stiffness matrix for flexural-torsional, lateral buckling and free vibration analysis of mono-symmetric thin-walled composite beams", Int. J. Struct. Stab. Dynam., 9(3), 411-436. https://doi.org/10.1142/S0219455409003107.   DOI
36 Machado, S.P. (2008), "Non-linear buckling and post-buckling behavior of thin-walled beams considering shear deformation", Int. J. Nonlinear Mech., 43(5), 345-365. https://doi.org/10.1016/j.ijnonlinmec.2007.12.019.   DOI
37 Jiao, P., et al. (2017), "Lateral-torsional buckling analysis of wood composite I-beams with sinusoidal corrugated web", Thin-Wall. Struct., 119, 72-82. https://doi.org/10.1016/j.tws.2017.05.025.   DOI
38 Kim, B., Li, L.Y. and Edmonds, A. (2016), "Analytical solutions of lateral-torsional buckling of castellated beams", Int. J. Struct. Stab. Dynam., 16(8), 1550044. https://doi.org/10.1142/S0219455415500443.   DOI
39 Kim, N.I. and Lee, J. (2016), "Theory of thin-walled functionally graded sandwich beams with single and double-cell sections", Compos. Struct., 157, 141-154. https://doi.org/10.1016/j.compstruct.2016.07.024.   DOI
40 van der Merwe, P., Van Wyk, M. and van den Berg, G. (1990), "Lateral torsional buckling strength of doubly symmetric stainless steel beams".
41 Kitipornchai, S. and Trahair, N.S. (1980), "Buckling properties of monosymmetric I-beams", J. Struct. Division, 106(ASCE 15406 Proceeding).
42 Rezaiee-Pajand, M. and Masoodi, A.R. (2019), "Stability analysis of frame having FG tapered beam-column", Int. J. Steel Struct., 19(2), 446-468. https://doi.org/10.1007/s13296-018-0133-8.   DOI
43 Rezaiee-Pajand, M. and Masoodi, A.R. (2020), "Hygro-thermoelastic nonlinear analysis of functionally graded porous composite thin and moderately thick shallow panels", Mech. Adv. Mater. Struct., 1-19. https://doi.org/10.1080/15376494.2020.1780524.   DOI
44 Rezaiee-Pajand, M., Masoodi, A.R. and Alepaighambar, A. (2018a), "Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing", Steel Compos. Struct., 28(4), 403-414. https://doi.org/10.12989/scs.2018.28.4.403.   DOI
45 Rezaiee-Pajand, M., Masoodi, A.R. and Arabi, E. (2018b), "Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element", Steel Compos. Struct., 28(3), 389-401. https://doi.org/10.12989/scs.2018.28.3.389.   DOI
46 Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018c), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Design, 3(2), 165-190.   DOI
47 Rezaiee-Pajand, M., Masoodi, A.R. and Rajabzadeh-Safaei, N. (2019b), "Nonlinear vibration analysis of carbon nanotube reinforced composite plane structures", Steel Compos. Struct., 30(6), 493-516. https://doi.org/10.12989/scs.2019.30.6.493.   DOI
48 Rezaiee-Pajand, M., Mokhtari, M. and Masoodi, A.R. (2018d), "Stability and free vibration analysis of tapered sandwich columns with functionally graded core and flexible connections", CEAS Aeronaut. J., 9(4), 629-648. https://doi.org/10.1007/s13272-018-0311-6.   DOI
49 Rezaiee-Pajand, M., Sobhani, E. and Masoodi, A.R. (2020b), "Free vibration analysis of functionally graded hybrid matrix/fiber nanocomposite conical shells using multiscale method", Aerosp. Sci. Technol., 105, 105998. https://doi.org/10.1016/j.ast.2020.105998.   DOI
50 Sapkas, A. and Kollar, L.P. (2002), "Lateral-torsional buckling of composite beams", Int. J. Solid. Struct., 39(11), 2939-2963. https://doi.org/10.1016/S0020-7683(02)00236-6.   DOI
51 Seah, L. and Khong, P. (1990), "Lateral-torsional buckling of channel beams", J. Constr. Steel Res., 17(4), 265-282. https://doi.org/10.1016/0143-974X(90)90076-S.   DOI
52 Masoodi, A.R. (2019), "Analytical solution for optimum location of belt truss based on stability analysis", Proceedings of the Institution of Civil Engineers-Structures and Buildings, 172(5), 382-388. https://doi.org/10.1680/jstbu.17.00187.   DOI
53 Soltani, M., Asgarian, B. and Mohri, F. (2019), "Improved finite element model for lateral stability analysis of axially functionally graded nonprismatic I-beams", Int. J. Struct. Stab. Dynam., 19(9), 1950108. https://doi.org/10.1142/S0219455419501086.   DOI
54 Thai, H.T., Kim, S.E. and Kim, J. (2017), "Improved refined plastic hinge analysis accounting for local buckling and lateral-torsional buckling", Steel Compos. Struct., 24(3), 339-349. https://doi.org/10.12989/scs.2017.24.3.339.   DOI
55 Tokarz, F. and Sandhu, R.S. (1972), "Lateral-torsion buckling of parabolic arches", J. Struct. Division, 98(5), 1161-1179.   DOI
56 Kubo, M. and Fukumoto, Y. (1988), "Lateral-torsional buckling of thin-walled I-beams", J. Struct. Eng., 114(4), 841-855.   DOI
57 Kus, J. (2015), "Lateral-torsional buckling of steel beams with simultaneously tapered flanges and web", Steel Compos. Struct., 19(4), 897-916. http://dx.doi.org/10.12989/scs.2015.19.4.897.   DOI
58 Larue, B., Khelil, A. and Gueury, M. (2007), "Elastic flexural-torsional buckling of steel beams with rigid and continuous lateral restraints", J. Constr. Steel Res., 63(5), 692-708. https://doi.org/10.1016/j.jcsr.2006.07.004.   DOI
59 Lee, J. and Kim, S.E. (2002), "Lateral buckling analysis of thin-walled laminated channel-section beams", Compos. Struct., 56(4), 391-399. https://doi.org/10.1016/S0263-8223(02)00022-3.   DOI
60 Lee, J. and Kim, S.E. (2001), "Flexural-torsional buckling of thin-walled I-section composites", Comput. Struct., 79(10), 987-995. https://doi.org/10.1016/S0045-7949(00)00195-4.   DOI
61 Masoodi, A.R. and Moghaddam, S.H. (2015), "Nonlinear dynamic analysis and natural frequencies of gabled frame having flexible restraints and connections", KSCE J. Civil Eng., 19(6), 1819-1824. https://doi.org/10.1007/s12205-015-0285-4.   DOI
62 Miranda, C. and Ojalvo, M. (1965), "Inelastic lateral-torsional buckling of beam-columns", J. Eng. Mech. Division, 91(6), 21-38.   DOI
63 Andrade, A., Providencia, P. and Camotim, D. (2010), "Elastic lateral-torsional buckling of restrained web-tapered I-beams", Comput. Struct., 88(21-22), 1179-1196. https://doi.org/10.1016/j.compstruc.2010.06.005.   DOI
64 Akbas, S.D. (2015), "Post-buckling analysis of axially functionally graded three-dimensional beams", Int. J. Appl. Mech., 7(3), 1550047. https://doi.org/10.1142/S1758825115500477.   DOI
65 Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm.Stresses, 36(12), 1233-1254. ttps://doi.org/10.1080/01495739.2013.788397.   DOI
66 Alwis, W. and Usam, T. (1979), "Elastic lateral torsional buckling of unbraced and braced planar frames", Comput. Struct., 10(3), 517-529. https://doi.org/10.1016/0045-7949(79)90027-0.   DOI
67 Andrade, A. and Camotim, D. (2004), "Lateral-torsional buckling of prismatic and tapered thin-walled open beams: assessing the influence of pre-buckling deflections", Steel Compos.Struct., 4(4), 281-301. https://doi.org/10.12989/scs.2004.4.4.281.   DOI
68 Andrade, A, Camotim, D and Dinis, PB (2007), "Lateral-torsional buckling of singly symmetric web-tapered thin-walled I-beams: 1D model vs. shell FEA", Comput. Struct., 85(17-18), 1343-1359. https://doi.org/10.1016/j.compstruc.2006.08.079.   DOI
69 Asgarian, B., Soltani, M. and Mohri, F. (2013), "Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections", Thin-Wall. Struct., 62, 96-108. https://doi.org/10.1016/j.tws.2012.06.007.   DOI