• 제목/요약/키워드: symmetric

검색결과 4,014건 처리시간 0.03초

ON RADICALLY-SYMMETRIC IDEALS

  • Hashemi, Ebrahim
    • 대한수학회논문집
    • /
    • 제26권3호
    • /
    • pp.339-348
    • /
    • 2011
  • A ring R is called symmetric, if abc = 0 implies acb = 0 for a, b, c ${\in}$ R. An ideal I of a ring R is called symmetric (resp. radically-symmetric) if R=I (resp. R/$\sqrt{I}$) is a symmetric ring. We first show that symmetric ideals and ideals which have the insertion of factors property are radically-symmetric. We next show that if R is a semicommutative ring, then $T_n$(R) and R[x]=($x^n$) are radically-symmetric, where ($x^n$) is the ideal of R[x] generated by $x^n$. Also we give some examples of radically-symmetric ideals which are not symmetric. Connections between symmetric ideals of R and related ideals of some ring extensions are also shown. In particular we show that if R is a symmetric (or semicommutative) (${\alpha}$, ${\delta}$)-compatible ring, then R[x; ${\alpha}$, ${\delta}$] is a radically-symmetric ring. As a corollary we obtain a generalization of [13].

A GENERALIZATION OF THE SYMMETRY PROPERTY OF A RING VIA ITS ENDOMORPHISM

  • Fatma Kaynarca;Halise Melis Tekin Akcin
    • 대한수학회논문집
    • /
    • 제39권2호
    • /
    • pp.373-397
    • /
    • 2024
  • Lambek introduced the concept of symmetric rings to expand the commutative ideal theory to noncommutative rings. In this study, we propose an extension of symmetric rings called strongly α-symmetric rings, which serves as both a generalization of strongly symmetric rings and an extension of symmetric rings. We define a ring R as strongly α-symmetric if the skew polynomial ring R[x; α] is symmetric. Consequently, we provide proofs for previously established outcomes regarding symmetric and strongly symmetric rings, directly derived from the results we have obtained. Furthermore, we explore various properties and extensions of strongly α-symmetric rings.

On Almost Pseudo Conharmonically Symmetric Manifolds

  • Pal, Prajjwal
    • Kyungpook Mathematical Journal
    • /
    • 제54권4호
    • /
    • pp.699-714
    • /
    • 2014
  • The object of the present paper is to study almost pseudo conharmonically symmetric manifolds. Some geometric properties of almost pseudo conharmonically symmetric manifolds have been studied under certain curvature conditions. Finally, we give three examples of almost pseudo conharmonically symmetric manifolds.

ON SOME CLASSES OF WEAKLY Z-SYMMETRIC MANIFOLDS

  • Lalnunsiami, Kingbawl;Singh, Jay Prakash
    • 대한수학회논문집
    • /
    • 제35권3호
    • /
    • pp.935-951
    • /
    • 2020
  • The aim of the paper is to study some geometric properties of weakly Z-symmetric manifolds. Weakly Z-symmetric manifolds with Codazzi type and cyclic parallel Z tensor are studied. We consider Einstein weakly Z-symmetric manifolds and conformally flat weakly Z-symmetric manifolds. Next, it is shown that a totally umbilical hypersurface of a conformally flat weakly Z-symmetric manifolds is of quasi constant curvature. Also, decomposable weakly Z-symmetric manifolds are studied and some examples are constructed to support the existence of such manifolds.

Symmetric Paths: Their Structures and Relations

  • Nam, Seungho
    • 한국언어정보학회지:언어와정보
    • /
    • 제17권1호
    • /
    • pp.1-16
    • /
    • 2013
  • The goal of this paper is two-fold: (i) the paper aims to characterize unique semantics of so called "symmetric" locatives like across the street - this will provide a guiding semantics for annotating a variety of paths; and (ii) the paper claims that we need "symmetric" paths to give a unified account of the various semantic effects of symmetric locatives. The paper illustrates several semantic effects induced by symmetric locatives: (i) symmetric underspecification, (ii) path-/event-quantification, (iii) static symmetric relations, and (iv) the symmetric inference by the adverb back. The paper defines the semantic class of symmetric locatives, and accounts for the symmetry effects in terms of properties and relations of Path Structure proposed by Nam (1995).

  • PDF

ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES

  • ZHU, SEN
    • 대한수학회지
    • /
    • 제52권6호
    • /
    • pp.1271-1286
    • /
    • 2015
  • An operator T on a complex Hilbert space H is called skew symmetric if T can be represented as a skew symmetric matrix relative to some orthonormal basis for H. In this paper, we study skew symmetric operators with eigenvalues. First, we provide an upper-triangular operator matrix representation for skew symmetric operators with nonzero eigenvalues. On the other hand, we give a description of certain skew symmetric triangular operators, which is based on the geometric relationship between eigenvectors.

SYMMETRIC BI-(f, g)-DERIVATIONS IN LATTICES

  • Kim, Kyung Ho;Lee, Yong Hoon
    • 충청수학회지
    • /
    • 제29권3호
    • /
    • pp.491-502
    • /
    • 2016
  • In this paper, as a generalization of symmetric bi-derivations and symmetric bi-f-derivations of a lattice, we introduce the notion of symmetric bi-(f, g)-derivations of a lattice. Also, we define the isotone symmetric bi-(f, g)-derivation and obtain some interesting results about isotone. Using the notion of $Fix_a(L)$ and KerD, we give some characterization of symmetric bi-(f, g)-derivations in a lattice.

SYMMETRIC AND PSEUDO-SYMMETRIC NUMERICAL SEMIGROUPS VIA YOUNG DIAGRAMS AND THEIR SEMIGROUP RINGS

  • Suer, Meral;Yesil, Mehmet
    • 대한수학회지
    • /
    • 제58권6호
    • /
    • pp.1367-1383
    • /
    • 2021
  • This paper studies Young diagrams of symmetric and pseudo-symmetric numerical semigroups and describes new operations on Young diagrams as well as numerical semigroups. These provide new decompositions of symmetric and pseudo-symmetric semigroups into a numerical semigroup and its dual. It is also given exactly for what kind of numerical semigroup S, the semigroup ring 𝕜⟦S⟧ has at least one Gorenstein subring and has at least one Kunz subring.

RINGS WITH IDEAL-SYMMETRIC IDEALS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • 대한수학회보
    • /
    • 제54권6호
    • /
    • pp.1913-1925
    • /
    • 2017
  • Let R be a ring with identity. An ideal N of R is called ideal-symmetric (resp., ideal-reversible) if $ABC{\subseteq}N$ implies $ACB{\subseteq}N$ (resp., $AB{\subseteq}N$ implies $BA{\subseteq}N$) for any ideals A, B, C in R. A ring R is called ideal-symmetric if zero ideal of R is ideal-symmetric. Let S(R) (called the ideal-symmetric radical of R) be the intersection of all ideal-symmetric ideals of R. In this paper, the following are investigated: (1) Some equivalent conditions on an ideal-symmetric ideal of a ring are obtained; (2) Ideal-symmetric property is Morita invariant; (3) For any ring R, we have $S(M_n(R))=M_n(S(R))$ where $M_n(R)$ is the ring of all n by n matrices over R; (4) For a quasi-Baer ring R, R is semiprime if and only if R is ideal-symmetric if and only if R is ideal-reversible.