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SYMMETRIC BI-(f, g)-DERIVATIONS IN LATTICES

Kyung Ho Kim* and Yong Hoon Lee**

Abstract. In this paper, as a generalization of symmetric bi-
derivations and symmetric bi-f -derivations of a lattice, we introduce
the notion of symmetric bi-(f, g)-derivations of a lattice. Also, we
define the isotone symmetric bi-(f, g)-derivation and obtain some
interesting results about isotone. Using the notion of Fixa(L)
and KerD, we give some characterization of symmetric bi-(f, g)-
derivations in a lattice.

1. Introduction

Lattices play an important role in many fields such as information
theory, information retrieval, information access controls and cryptanal-
ysis ([2], [6], [20]). Recently the properties of lattices were widely re-
searched ([1], [2], [5], [10], [12], [20], [22]). In the theory of rings and
near rings, the properties of derivations are an important topic to study
([3], [4], [19]). In [21], G. Szász introduced the notion of derivation on
a lattice and discussed some related properties.Y. B. Jun and X. L. Xin
[13] applied the notion of derivation in ring, near ring and lattice theory
to BCI-algebras. In [24], J. Zhan and Y. L. Liu introduced the notion of
left-right (or right-left) f -derivation of a BCI algebra and investigated
some properties.

Recently, the notion of f -derivation, symmetric bi-derivations and
permuting tri-derivations in lattices are introduced and proved some
results([8], [9] and [18]). In this paper, as a generalization of symmetric
bi-derivations and symmetric bi-f -derivations of a lattice, we introduce
the notion of symmetric bi-(f, g)-derivations of a lattice. Also, we define
the isotone symmetric bi-(f, g)-derivation and obtain some interesting
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results about isotone. Using the notion of Fixa(L) and KerD, we give
some characterization of symmetric bi-(f, g)-derivations in a lattice.

2. Preliminaries

Definition 2.1. Let L be a nonempty set endowed with operations ∧
and ∨ . By a lattice (L,∧,∨), we mean a set L satisfying the following
conditions:

(1) x ∧ x = x, x ∨ x = x,
(2) x ∧ y = y ∧ x, x ∨ y = y ∨ x,
(3) (x ∧ y) ∧ z = x ∧ (y ∧ z), (x ∨ y) ∨ z = x ∨ (y ∨ z),
(4) (x ∧ y) ∨ x = x, (x ∨ y) ∧ x = x, for all x, y, z ∈ L.

Definition 2.2. Let (L,∧,∨) be a lattice. A binary relation ≤ is
defined by x ≤ y if and only if x ∧ y = x and x ∨ y = y.

Lemma 2.1. Let (L,∧,∨) be a lattice. Define the binary relation ≤
as the Definition 2.2. Then (L,≤) is a poset and for any x, y ∈ L, x ∧ y
is the greatest lower bound of {x, y} and x∨ y is the least upper bound
of {x, y}.

Definition 2.3. A lattice L is distributive if the identity (1) or (2)
holds:

(1) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),
(2) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z) .

In any lattice, the conditions (1) and (2) are equivalent.

Definition 2.4. A lattice L is modular if the following identity holds:
If x ≤ z, then x ∨ (y ∧ z) = (x ∨ y) ∧ z.

Definition 2.5. A non-empty subset I of L is called an ideal if the
following conditions hold:

(1) If x ≤ y and y ∈ I, then x ∈ I for all x, y ∈ L.
(2) If x, y ∈ I then x ∨ y ∈ I.

Definition 2.6. Let (L,∧,∨) be a lattice. Let f : L → M be a
function from a lattice L to a lattice M.

(1) f is called a meet-homomorphism if f(x ∧ y) = f(x) ∧ f(y) for all
x, y ∈ L.

(2) f is called a join-homomorphism if f(x ∨ y) = f(x) ∨ f(y) for all
x, y ∈ L.
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(3) f is called a lattice-homomorphism if f is both a join-homomorphism
and a meet-homomorphism.

Definition 2.7. Let L be a lattice. A mapping D(., .) : L× L → L
is said to be symmetric if D(x, y) = D(y, x) holds for all x, y ∈ L.

Definition 2.8. Let L be a lattice. A mapping d(x) = D(x, x)
is called a trace of D(., .), where D(., .) : L × L → L is a symmetric
mapping.

Definition 2.9. Let L be a lattice and let D(., .) : L × L → L be
a symmetric mapping. We call D a symmetric bi-derivation on L if it
satisfies the following condition

D(x ∧ y, z) = (D(x, z) ∧ y) ∨ (x ∧D(y, z))

for all x, y, z ∈ L.

Obviously, a symmetric bi-derivation D on L satisfies the relation

D(x, y ∧ z) = (D(x, y) ∧ z) ∨ (y ∧D(x, z))

for all x, y, z ∈ L.

Definition 2.10. Let L be a lattice and let D(., .) : L × L → L be
a symmetric mapping. D is called a symmetric bi-f -derivation on L if
there exists a function f : L→ L such that

D(x ∧ y, z) = (D(x, z) ∧ f(y)) ∨ (f(x) ∧D(y, z))

for all x, y, z ∈ L.

3. Symmetric bi-(f, g)-derivations

Definition 3.1. Let L be a lattice and let D(., .) : L× L → L be a
symmetric mapping. D is called a symmetric bi-(f, g)-derivation on L
if there exist two functions f, g : L→ L such that

D(x ∧ y, z) = (D(x, z) ∧ f(y)) ∨ (g(x) ∧D(y, z))

for all x, y, z ∈ L.

Obviously, a symmetric bi-(f, g)-derivation D on L satisfies the rela-
tion

D(x, y ∧ z) = (D(x, y) ∧ f(z)) ∨ (g(y) ∧D(x, z))

for all x, y, z ∈ L.
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Example 3.1. Let L = {0, 1, 2} be a lattice of following Figure 1 and
define mappings D and f, g on L by

D(x, y) =



1 if (x, y) = (0, 0)

1 if (x, y) = (0, 1)

1 if (x, y) = (1, 0)

0 if (x, y) = (0, 2)

0 if (x, y) = (2, 0)

0 if (x, y) = (1, 1)

0 if (x, y) = (2, 2)

0 if (x, y) = (1, 2)

0 if (x, y) = (2, 1)

and

f(x) =


1 if x = 0

2 if x = 1

2 if x = 2,

g(x) =


0 if x = 0

1 if x = 1

1 if x = 2

r 2r 1r 0

Figure 1

Then it is easily checked that D is a symmetric bi-(f, g)-derivation of
a lattice L. But D is not a symmetric bi-derivation since

1 = D(0 ∧ 0, 0) 6= (D(0, 0) ∧ 0) ∨ (0 ∧D(0, 0)) = (1 ∧ 0) ∨ (0 ∧ 1) = 0.

Proposition 3.1. Let L be a lattice and d a trace of a symmetric
bi-(f, g)-derivation D. Then

d(x) ≤ f(x) ∨ g(x)

for all x ∈ L.

Proof. Since x ∧ x = x for all x ∈ L, we have

d(x) = D(x, x) = D(x ∧ x, x) = (D(x, x) ∧ f(x)) ∨ (g(x) ∧D(x, x)).

Since D(x, x) ∧ f(x) ≤ f(x) and D(x, x) ∧ g(x) ≤ g(x), we get d(x) ≤
f(x) ∨ g(x).



Symmetric bi-(f, g)-derivations in lattices 495

Proposition 3.2. Let L be a lattice and let D be a symmetric bi-
(f, g)-derivation on L. Then D(x, y) ≤ f(x)∨ g(x) and D(x, y) ≤ f(y)∨
g(y) for all x, y ∈ L.

Proof. Since x ∧ x = x for all x ∈ L, we have for all y ∈ L,

D(x, y) = D(x ∧ x, y) = (D(x, y) ∧ f(x)) ∨ (g(x) ∧D(x, y).

Since D(x, y)∧f(x) ≤ f(x) and D(x, y)∧g(x) ≤ g(x), we have D(x, y) ≤
f(x) ∨ g(x). Similarly, D(x, y) ≤ f(y) ∨ g(y) for all x, y ∈ L.

Corollary 3.1. Let L be a lattice and let D be a symmetric bi-
(f, g)-derivation on L. If g(x) ≤ f(x) for all x ∈ L, then D(x, y) ≤ f(x)
and D(x, y) ≤ f(y) for all x, y ∈ L.

Proposition 3.3. Let L be a lattice and let D be a symmetric bi-
(f, g)-derivation on L. If L has a least element 0 such that f(0) = 0 and
g(0) = 0, we have D(0, y) = 0.

Proof. For all x, y ∈ L, we have D(x, y) ≤ f(x) ∨ g(x) from Proposi-
tion 3.4 Since 0 is the least element of a lattice L, we get

0 ≤ D(0, y) ≤ f(0) ∨ g(0) = 0,

which implies D(0, y) = 0.

Proposition 3.4. Let L be a lattice and let D be a symmetric bi-
(f, g)-derivation on L where g(x) ≤ f(x) for all x ∈ L. Then the follow-
ing identities hold for all x, y, w ∈ L :

(1) D(x, y) ∧D(w, y) ≤ D(x ∧ w, y) ≤ D(x, y) ∨D(w, y).
(2) D(x ∧ w, y) ≤ f(x) ∨ f(w).

Proof. (1) For all x, y, w ∈ L, we have

D(x ∧ w, y) = (D(x, y) ∧ f(w)) ∨ (g(x) ∧D(w, y)),

which implies D(x, y) ∧ f(w) ≤ D(x ∧ w, y). Since D(w, y) ≤ f(w) for
all y ∈ L, we have D(x, y) ∧ D(w, y) ≤ D(x, y) ∧ f(w). Hence we get
D(x, y) ∧ D(w, y) ≤ D(x ∧ w, y). Since D(x, y) ∧ f(w) ≤ D(x, y) and
g(x) ∧ D(w, y) ≤ D(w, y), we have D(x ∧ w, y) ≤ D(x, y) ∨ D(w, y),
which implies D(x, y) ∧D(w, y) ≤ D(x ∧ w, y) ≤ D(x, y) ∨D(w, y).

(2) Since D(x, y)∧f(w) ≤ f(w) and g(x)∧D(w, y) ≤ f(x)∧D(w, y) ≤
f(x), we get

(D(x, y) ∧ f(w)) ∨ (g(x) ∧D(y, w)) ≤ f(x) ∨ f(w).
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Proposition 3.5. Let L be a lattice with a greatest element 1 and let
D be a symmetric bi-(f, g)-derivation on L such that f(1) = g(1) = 1.
Then the following properties hold for all x, y ∈ L :

(1) If f(x) ≤ D(1, y) and g(x) ≤ D(1, y), then D(x, y) = f(x) ∨ g(x).
(2) If g(x) ≥ D(1, y), then D(x, y) ≥ D(1, y).

Proof. (1) For all x, y ∈ L, we have

D(x, y) = D(x ∧ 1, y)

= (D(x, y) ∧ f(1)) ∨ (g(x) ∧D(1, y))

= D(x, y) ∨ g(x).

Hence we have g(x) ≤ D(x, y).

Similarly, since x ∧ 1 = x, we obtain

D(x, y) = D(1 ∧ x, y)

= (D(1, y) ∧ f(x)) ∨ (g(1) ∧D(x, y))

= D(x, y) ∨ f(x).

Thus we get f(x) ≤ D(x, y).

From (1) and (2), we have

f(x) ∨ g(x) ≤ D(x, y).

From Proposition 3.4, we have D(x, y) ≤ f(x) ∨ g(x). Finally, we have

f(x) ∨ g(x) ≤ D(x, y) ≤ f(x) ∨ g(x),

which implies D(x, y) = f(x) ∨ g(x).

(2) For all x, y ∈ L,

D(x, y) = D(x ∧ 1, y)

= (D(x, y) ∧ f(1)) ∨ (g(x) ∧D(1, y))

= D(x, y) ∨D(1, y).

Hence we have D(x, y) ≥ D(1, y).

Theorem 3.1. Let L be a distribute lattice and let D be a symmetric
bi-(f, g)-derivation on L with the trace d. Then

d(x ∧ y) = (d(x) ∧ (f(y)) ∨ (g(x) ∧ d(y)) ∨ ((g(x) ∧ f(y)) ∧D(x, y))

for all x, y ∈ L.
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Proof. For all x, y ∈ L, we have

d(x ∧ y) = D(x ∧ y, x ∧ y)

= (D(x, x ∧ y) ∧ f(y)) ∨ (g(x) ∧D(y, x ∧ y))

= (D(x ∧ y, x) ∧ f(y)) ∨ (g(x) ∧ (D(x ∧ y, y)))

= {[(D(x, x) ∧ f(y)) ∨ (g(x) ∧D(x, y))] ∧ f(y)}
∨ {g(x) ∧ [(D(x, y) ∧ f(y)) ∨ (g(x) ∧D(y, y))]}
= {((d(x) ∧ f(y)) ∧ f(y)) ∨ ((g(x) ∧ f(y)) ∧D(x, y))}
∨ {((g(x) ∧ f(y)) ∧D(x, y)) ∨ ((g(x) ∧ (g(x) ∧ d(y))))}
= (d(x) ∧ f(y)) ∨ (g(x) ∧ d(y)) ∨ ((f(y) ∧ g(x)) ∧D(x, y)).

Corollary 3.2. Let L be a distribute lattice and let D be a sym-
metric bi-(f, g)-derivation with the trace d. Then for all x, y ∈ L,

(1) (g(x) ∧ f(y)) ∧D(x, y) ≤ d(x ∧ y).
(2) g(x) ∧ d(y) ≤ d(x ∧ y).
(3) d(x) ∧ f(y) ≤ d(x ∧ y).

Proof. (1), (2) and (3) are easily seen from the above theorem respec-
tively.

Corollary 3.3. Let L be a distribute lattice and let D be a sym-
metric bi-(f, g)-derivation with the trace d. If 1 is the greatest element
of L, we have (g(x)∧ f(1))∧D(x, 1) ≤ d(x∧ 1) = d(x) for all x ∈ L and
g(x) ∧ d(1) ≤ d(x ∧ 1) = d(x) for all x ∈ L.

Definition 3.2. Let L be a lattice and let D be a symmetric bi-
(f, g)-derivation on L.

(1) If x ≤ w implies D(x, y) ≤ D(w, y), then D is called an isotone
symmetric bi-(f, g)-derivation.

(2) If D is one-to-one, then D is called a monomorfic symmetric bi-
(f, g)-derivation.

(3) If D is onto, then D is called an epic symmetric bi-(f, g)-derivation.

Theorem 3.2. Let L be a lattice and let D be a symmetric bi-(f, g)-
derivation on L. The following conditions are equivalent.

(1) D is an isotone symmetric bi-(f, g)-derivation.
(2) D(x, y) ∨D(w, y) ≤ D(x ∨ w, y) for all x, y, w ∈ L.

Proof. (1) ⇒ (2). Suppose that D is an isotone symmetric bi-(f, g)-
derivation on L. Since x ≤ x ∨ w and w ≤ x ∨ w, we obtain D(x, y) ≤
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D(x ∨ w, y) and D(w, y) ≤ D(x ∨ w, y). Therefore, D(x, y) ∨D(w, y) ≤
D(x ∨ w, y).

(2) ⇒ (1). Suppose that D(x, y)∨D(w, y) ≤ D(x∨w, y) and x ≤ w.
Then we have

D(x, y) ≤ D(x, y) ∨D(w, y) ≤ D(x ∨ w, y)

= D(w, y).

Hence D is an isotone symmetric bi-(f, g)-derivation on L.

Let L be a lattice and let D be a symmetric bi-(f, g)-derivation on L.
For each a ∈ L and define a set Fixa(L) by

Fixa(L) = {x ∈ L | D(x, a) = f(x)}.

Proposition 3.6. Let L be a lattice and let D an isotone symmetric
bi-(f, g)-derivation on L. If f : L → L is a lattice homomorphism and
g(x) ≤ f(x) for all x ∈ L, then Fixa(L) is a sublattice of L.

Proof. Let x, y ∈ Fixa(L). Then D(x, a) = f(x) and D(y, a) = f(y).
Then f(x ∧ y) = f(x) ∧ f(y) = D(x, a) ∧D(y, a) ≤ D(x ∧ y, a). Hence
D(x ∧ y, a) = f(x ∧ y), that is, x ∧ y ∈ Fixa(L). Moreover, we have
f(x ∨ y) = f(x) ∨ f(y) = D(x, a) ∨ D(y, a) ≤ D(x ∨ y, a) by Theorem
3.2. Thus D(x ∨ y, a) = f(x ∨ y), which implies x ∨ y ∈ Fixa(L).

Proposition 3.7. Let L be a lattice and let D be a symmetric bi-
(f, g)-derivation on L where g(x) ≤ f(x) for all x ∈ L. If f is an increas-
ing function, x ≤ y and y ∈ Fixa(L) imply D(x, a) = D(x, a) ∨ g(x).

Proof. Let x ≤ y and y ∈ Fixa(L). Then we have D(x, a) ≤ f(x) ≤
f(y) and g(x) ≤ f(x) ≤ f(y). Hence we obtain

D(x, a) = D(x ∧ y, a)

= (D(x, a) ∧ f(y)) ∨ (g(x) ∧D(y, a))

= (D(x, a) ∧ f(y)) ∨ (g(x) ∧ f(y))

= D(x, a) ∨ g(x).

This completes the proof.

Proposition 3.8. Let L be a distributive lattice and let D be a
symmetric bi-(f, g)-derivation of L where g(x) ≤ f(x) for all x, y ∈ L. If
f is a meet-homomorphism and x, y ∈ Fixa(L), we have x∧y ∈ Fixa(L)
for all x, y ∈ L.
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Proof. Let x, y ∈ Fixa(L). Then f(x) = D(x, a) and f(y) = D(y, a).
Hence we have

D(x ∧ y, a) = (D(x, a) ∧ f(y)) ∨ (g(x) ∧D(y, a))

= (f(x) ∧ f(y)) ∨ (g(x) ∧ f(y))

= (f(x) ∨ g(x)) ∧ f(y)

= f(x) ∧ f(y)

= f(x ∧ y),

which implies x ∧ y ∈ Fixa(L).

Proposition 3.9. Let L be a lattice and let D be an isotone sym-
metric bi-(f, g)-derivation on L where g(x) ≤ f(x) for all x ∈ L. If
x, y ∈ Fixa(L) and f is a increasing function, then x ∨ y ∈ Fixa(L).

Proof. Since x ≤ x ∨ y and y ≤ x ∨ y, we have f(x ∨ y) ≤ f(x) and
f(x∨ y) ≤ f(y) respectively. Hence we obtain f(x∨ y) ≤ f(x)∨ f(y) =
D(x, a)∨D(y, a) ≤ D(x∨y, a) since D is an isotone symmetric bi-(f, g)-
derivation. From Proposition 3.4 (2), we have D(x ∨ y, a) ≤ f(x ∨ y),
which implies D(x ∨ y, a) = f(x ∨ y). Hence x ∨ y ∈ Fixa(L).

Proposition 3.10. Let L be a lattice, D a symmetric bi-(f, g)-
derivation on L where f(x) ≤ g(x) and 1 the greatest element of L.
Then the following identities hold.

(1) If g(x) ≤ D(1, y) and f(1) = 1, then D(x, y) = g(x).
(2) If g(x) ≥ D(1, y) and f(1) = 1, then D(x, y) ≥ D(1, y).

Proof. (1) Let g(x) ≤ D(1, y). Then we have D(x, y) ≤ f(x)∨ g(x) =
g(x), and so

D(x, y) = D(x ∧ 1, y)

= (D(x, y) ∧ f(1)) ∨ (g(x) ∧D(1, y)

= D(x, y) ∨ g(x)

= g(x).

(2) Let g(x) ≥ D(1, y). Then we have

D(x, y) = D(x ∧ 1, y)

= (D(x, y) ∧ f(1)) ∨ (g(x) ∧D(1, y)

= D(x, y) ∨D(1, y).

Hence we obtain D(1, y) ≤ D(x, y) for all x, y ∈ L.
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Theorem 3.3. Let L be a lattice with the greatest element 1 and let
D be an isotone symmetric bi-(f, g)-derivation on L. Let f(1) = g(1) = 1
and either f(x) ≥ g(x) or f(x) ≤ g(x) for all x ∈ L. Then

D(x, y) = (f(x) ∨ g(x)) ∧D(1, y)

for all x, y, z ∈ L.

Proof. Suppose that D is an isotone symmetric bi-(f, g)-derivation
on L. Then D(x, y) ≤ D(1, y) for all x, y ∈ L. Now let g(x) ≤ f(x) for
x ∈ L. Then we have D(x, y) ≤ g(x) ∨ f(x) = f(x). From this, we get
D(x, y) ≤ f(x) ∧D(1, y). Also, we obtain

D(x, y) = D((x ∨ 1) ∧ x, y)

= [(D(x ∨ 1), y) ∧ f(x)] ∨ [g(x ∨ 1) ∧D(x, y)]

= [D(1, y) ∧ f(x)] ∨ [g(1) ∧D(x, y)]

= [D(D(1, y) ∧ f(x)] ∨ [1 ∧D(x, y)]

= [D(1, y) ∧ f(x)] ∨D(x, y)

= D(1, y) ∧ f(x).

Since f(x) ∨ g(x) = f(x), we have

D(x, y) = (f(x) ∨ g(x)) ∧D(1, y).

Now suppose that f(x) ≤ g(x) for x ∈ L. Similarly, we have D(x, y) ≤
f(x) ∨ g(x) = g(x). From this, we have D(x, y) ≤ g(x) ∧D(1, y). Also,
we obtain

D(x, y) = D(x ∧ (x ∨ 1), y)

= [(D(x, y) ∧ f(x ∨ 1)] ∨ [g(x) ∧D((x ∨ 1), y)]

= [D(x, y) ∧ f(1)] ∨ [g(x) ∧D(1, y)]

= [D(D(x, y) ∧ 1)] ∨ [g(x) ∧D(1, y)]

= D(x, y) ∨ [g(x) ∧D(1, y)]

= g(x) ∧D(1, y).

Since f(x) ∨ g(x) = g(x), we have

D(x, y) = (f(x) ∨ g(x)) ∧D(1, y).

This completes the proof.

Let D be a symmetric bi-(f, g)-derivation of L and let 0 be a least
element of L. Define a set KerD by

KerD = {x ∈ L | D(x, 0) = 0}.
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Proposition 3.11. Let L be a lattice with a least element 0 and
let D be a symmetric bi-(f, g)-derivation on L. If x, y ∈ KerD, then
x ∧ y ∈ KerD.

Proof. Let x, y ∈ KerD. Then D(x, 0) = D(y, 0) = 0. Hence we have

D(x ∧ y, 0) = (D(x, 0) ∧ f(y)) ∨ (g(x) ∧D(y, 0))

= (0 ∧ f(x)) ∨ (g(x) ∧ 0)

= 0 ∨ 0 = 0,

which implies x ∧ y ∈ KerD.

Proposition 3.12. Let L be a lattice with a least element 0 and
let D be an isotone symmetric bi-(f, g)-derivation on L. If x ≤ y and
y ∈ KerD, then x ∈ KerD.

Proof. Let y ∈ KerD. Then D(y, 0) = 0 and D(x, 0) ≤ D(y, 0) = 0
since D is isotone. Hence we have D(x, 0) = 0, and so

D(x, 0) = D(x ∧ y, 0) = (D(x, 0) ∧ f(y)) ∨ (g(x) ∧D(y, 0))

= (0 ∧ f(x)) ∨ (g(x) ∧ 0))

= 0 ∨ 0 = 0,

which implies x ∈ KerD.
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[7] Y. Çeven and M. A. Öztürk, On the trace of a permuting tri-additive mapping
in left s-unital rings, International Journal of Pure and Applied Mathematics
23 (2005), no. 4, 465-474.
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