SYMMETRIC BI- (f, g)-DERIVATIONS IN LATTICES

Kyung Ho Kim* and Yong Hoon Lee**

Abstract

In this paper, as a generalization of symmetric biderivations and symmetric bi- f-derivations of a lattice, we introduce the notion of symmetric bi- (f, g)-derivations of a lattice. Also, we define the isotone symmetric bi- (f, g)-derivation and obtain some interesting results about isotone. Using the notion of $\operatorname{Fix}_{a}(L)$ and $\operatorname{Ker} D$, we give some characterization of symmetric bi- (f, g) derivations in a lattice.

1. Introduction

Lattices play an important role in many fields such as information theory, information retrieval, information access controls and cryptanalysis ([2], [6], [20]). Recently the properties of lattices were widely researched ([1], [2], [5], [10], [12], [20], [22]). In the theory of rings and near rings, the properties of derivations are an important topic to study ([3], [4], [19]). In [21], G. Szász introduced the notion of derivation on a lattice and discussed some related properties.Y. B. Jun and X. L. Xin [13] applied the notion of derivation in ring, near ring and lattice theory to BCI-algebras. In [24], J. Zhan and Y. L. Liu introduced the notion of left-right (or right-left) f-derivation of a BCI algebra and investigated some properties.

Recently, the notion of f-derivation, symmetric bi-derivations and permuting tri-derivations in lattices are introduced and proved some results([8], [9] and [18]). In this paper, as a generalization of symmetric bi-derivations and symmetric bi- f-derivations of a lattice, we introduce the notion of symmetric bi- (f, g)-derivations of a lattice. Also, we define the isotone symmetric bi- (f, g)-derivation and obtain some interesting

[^0]results about isotone. Using the notion of $F i x_{a}(L)$ and KerD, we give some characterization of symmetric bi- (f, g)-derivations in a lattice.

2. Preliminaries

DEFINITION 2.1. Let L be a nonempty set endowed with operations \wedge and \vee. By a lattice (L, \wedge, \vee), we mean a set L satisfying the following conditions:
(1) $x \wedge x=x, x \vee x=x$,
(2) $x \wedge y=y \wedge x, x \vee y=y \vee x$,
(3) $(x \wedge y) \wedge z=x \wedge(y \wedge z),(x \vee y) \vee z=x \vee(y \vee z)$,
(4) $(x \wedge y) \vee x=x,(x \vee y) \wedge x=x$, for all $x, y, z \in L$.

DEfinition 2.2. Let (L, \wedge, \vee) be a lattice. A binary relation \leq is defined by $x \leq y$ if and only if $x \wedge y=x$ and $x \vee y=y$.

Lemma 2.1. Let (L, \wedge, \vee) be a lattice. Define the binary relation \leq as the Definition 2.2. Then (L, \leq) is a poset and for any $x, y \in L, x \wedge y$ is the greatest lower bound of $\{x, y\}$ and $x \vee y$ is the least upper bound of $\{x, y\}$.

Definition 2.3. A lattice L is distributive if the identity (1) or (2) holds:
(1) $x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z)$,
(2) $x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z)$.

In any lattice, the conditions (1) and (2) are equivalent.
Definition 2.4. A lattice L is modular if the following identity holds: If $x \leq z$, then $x \vee(y \wedge z)=(x \vee y) \wedge z$.

Definition 2.5. A non-empty subset I of L is called an ideal if the following conditions hold:
(1) If $x \leq y$ and $y \in I$, then $x \in I$ for all $x, y \in L$.
(2) If $x, y \in I$ then $x \vee y \in I$.

Definition 2.6. Let (L, \wedge, \vee) be a lattice. Let $f: L \rightarrow M$ be a function from a lattice L to a lattice M.
(1) f is called a meet-homomorphism if $f(x \wedge y)=f(x) \wedge f(y)$ for all $x, y \in L$.
(2) f is called a join-homomorphism if $f(x \vee y)=f(x) \vee f(y)$ for all $x, y \in L$.
(3) f is called a lattice-homomorphism if f is both a join-homomorphism and a meet-homomorphism.

Definition 2.7. Let L be a lattice. A mapping $D(.,):. L \times L \rightarrow L$ is said to be symmetric if $D(x, y)=D(y, x)$ holds for all $x, y \in L$.

Definition 2.8. Let L be a lattice. A mapping $d(x)=D(x, x)$ is called a trace of $D(.,$.$) , where D(.,):. L \times L \rightarrow L$ is a symmetric mapping.

Definition 2.9. Let L be a lattice and let $D(.,):. L \times L \rightarrow L$ be a symmetric mapping. We call D a symmetric bi-derivation on L if it satisfies the following condition

$$
D(x \wedge y, z)=(D(x, z) \wedge y) \vee(x \wedge D(y, z))
$$

for all $x, y, z \in L$.
Obviously, a symmetric bi-derivation D on L satisfies the relation

$$
D(x, y \wedge z)=(D(x, y) \wedge z) \vee(y \wedge D(x, z))
$$

for all $x, y, z \in L$.
Definition 2.10. Let L be a lattice and let $D(.,):. L \times L \rightarrow L$ be a symmetric mapping. D is called a symmetric bi-f-derivation on L if there exists a function $f: L \rightarrow L$ such that

$$
D(x \wedge y, z)=(D(x, z) \wedge f(y)) \vee(f(x) \wedge D(y, z))
$$

for all $x, y, z \in L$.

3. Symmetric bi- (f, g)-derivations

DEfinition 3.1. Let L be a lattice and let $D(.,):. L \times L \rightarrow L$ be a symmetric mapping. D is called a symmetric bi- (f, g)-derivation on L if there exist two functions $f, g: L \rightarrow L$ such that

$$
D(x \wedge y, z)=(D(x, z) \wedge f(y)) \vee(g(x) \wedge D(y, z))
$$

for all $x, y, z \in L$.
Obviously, a symmetric bi- (f, g)-derivation D on L satisfies the relation

$$
D(x, y \wedge z)=(D(x, y) \wedge f(z)) \vee(g(y) \wedge D(x, z))
$$

for all $x, y, z \in L$.

Example 3.1. Let $L=\{0,1,2\}$ be a lattice of following Figure 1 and define mappings D and f, g on L by

$$
D(x, y)= \begin{cases}1 & \text { if }(x, y)=(0,0) \\ 1 & \text { if }(x, y)=(0,1) \\ 1 & \text { if }(x, y)=(1,0) \\ 0 & \text { if }(x, y)=(0,2) \\ 0 & \text { if }(x, y)=(2,0) \\ 0 & \text { if }(x, y)=(1,1) \\ 0 & \text { if }(x, y)=(2,2) \\ 0 & \text { if }(x, y)=(1,2) \\ 0 & \text { if }(x, y)=(2,1)\end{cases}
$$

and

$$
f(x)=\left\{\begin{array}{ll}
1 & \text { if } x=0 \\
2 & \text { if } x=1 \\
2 & \text { if } x=2,
\end{array} \quad g(x)= \begin{cases}0 & \text { if } x=0 \\
1 & \text { if } x=1 \\
1 & \text { if } x=2\end{cases}\right.
$$

Figure 1

Then it is easily checked that D is a symmetric bi- (f, g)-derivation of a lattice L. But D is not a symmetric bi-derivation since

$$
1=D(0 \wedge 0,0) \neq(D(0,0) \wedge 0) \vee(0 \wedge D(0,0))=(1 \wedge 0) \vee(0 \wedge 1)=0
$$

Proposition 3.1. Let L be a lattice and d a trace of a symmetric bi- (f, g)-derivation D. Then

$$
d(x) \leq f(x) \vee g(x)
$$

for all $x \in L$.
Proof. Since $x \wedge x=x$ for all $x \in L$, we have

$$
d(x)=D(x, x)=D(x \wedge x, x)=(D(x, x) \wedge f(x)) \vee(g(x) \wedge D(x, x))
$$

Since $D(x, x) \wedge f(x) \leq f(x)$ and $D(x, x) \wedge g(x) \leq g(x)$, we get $d(x) \leq$ $f(x) \vee g(x)$.

Proposition 3.2. Let L be a lattice and let D be a symmetric bi(f, g)-derivation on L. Then $D(x, y) \leq f(x) \vee g(x)$ and $D(x, y) \leq f(y) \vee$ $g(y)$ for all $x, y \in L$.

Proof. Since $x \wedge x=x$ for all $x \in L$, we have for all $y \in L$,

$$
D(x, y)=D(x \wedge x, y)=(D(x, y) \wedge f(x)) \vee(g(x) \wedge D(x, y)
$$

Since $D(x, y) \wedge f(x) \leq f(x)$ and $D(x, y) \wedge g(x) \leq g(x)$, we have $D(x, y) \leq$ $f(x) \vee g(x)$. Similarly, $D(x, y) \leq f(y) \vee g(y)$ for all $x, y \in L$.

Corollary 3.1. Let L be a lattice and let D be a symmetric bi(f, g)-derivation on L. If $g(x) \leq f(x)$ for all $x \in L$, then $D(x, y) \leq f(x)$ and $D(x, y) \leq f(y)$ for all $x, y \in L$.

Proposition 3.3. Let L be a lattice and let D be a symmetric bi(f, g)-derivation on L. If L has a least element 0 such that $f(0)=0$ and $g(0)=0$, we have $D(0, y)=0$.

Proof. For all $x, y \in L$, we have $D(x, y) \leq f(x) \vee g(x)$ from Proposition 3.4 Since 0 is the least element of a lattice L, we get

$$
0 \leq D(0, y) \leq f(0) \vee g(0)=0
$$

which implies $D(0, y)=0$.
Proposition 3.4. Let L be a lattice and let D be a symmetric bi(f, g)-derivation on L where $g(x) \leq f(x)$ for all $x \in L$. Then the following identities hold for all $x, y, w \in L$:
(1) $D(x, y) \wedge D(w, y) \leq D(x \wedge w, y) \leq D(x, y) \vee D(w, y)$.
(2) $D(x \wedge w, y) \leq f(x) \vee f(w)$.

Proof. (1) For all $x, y, w \in L$, we have

$$
D(x \wedge w, y)=(D(x, y) \wedge f(w)) \vee(g(x) \wedge D(w, y))
$$

which implies $D(x, y) \wedge f(w) \leq D(x \wedge w, y)$. Since $D(w, y) \leq f(w)$ for all $y \in L$, we have $D(x, y) \wedge D(w, y) \leq D(x, y) \wedge f(w)$. Hence we get $D(x, y) \wedge D(w, y) \leq D(x \wedge w, y)$. Since $D(x, y) \wedge f(w) \leq D(x, y)$ and $g(x) \wedge D(w, y) \leq D(w, y)$, we have $D(x \wedge w, y) \leq D(x, y) \vee D(w, y)$, which implies $D(x, y) \wedge D(w, y) \leq D(x \wedge w, y) \leq D(x, y) \vee D(w, y)$.
(2) Since $D(x, y) \wedge f(w) \leq f(w)$ and $g(x) \wedge D(w, y) \leq f(x) \wedge D(w, y) \leq$ $f(x)$, we get

$$
(D(x, y) \wedge f(w)) \vee(g(x) \wedge D(y, w)) \leq f(x) \vee f(w)
$$

Proposition 3.5. Let L be a lattice with a greatest element 1 and let D be a symmetric bi- (f, g)-derivation on L such that $f(1)=g(1)=1$. Then the following properties hold for all $x, y \in L$:
(1) If $f(x) \leq D(1, y)$ and $g(x) \leq D(1, y)$, then $D(x, y)=f(x) \vee g(x)$.
(2) If $g(x) \geq D(1, y)$, then $D(x, y) \geq D(1, y)$.

Proof. (1) For all $x, y \in L$, we have

$$
\begin{aligned}
D(x, y) & =D(x \wedge 1, y) \\
& =(D(x, y) \wedge f(1)) \vee(g(x) \wedge D(1, y)) \\
& =D(x, y) \vee g(x)
\end{aligned}
$$

Hence we have $g(x) \leq D(x, y)$.
Similarly, since $x \wedge 1=x$, we obtain

$$
\begin{aligned}
D(x, y) & =D(1 \wedge x, y) \\
& =(D(1, y) \wedge f(x)) \vee(g(1) \wedge D(x, y)) \\
& =D(x, y) \vee f(x)
\end{aligned}
$$

Thus we get $f(x) \leq D(x, y)$.
From (1) and (2), we have

$$
f(x) \vee g(x) \leq D(x, y)
$$

From Proposition 3.4, we have $D(x, y) \leq f(x) \vee g(x)$. Finally, we have

$$
f(x) \vee g(x) \leq D(x, y) \leq f(x) \vee g(x)
$$

which implies $D(x, y)=f(x) \vee g(x)$.
(2) For all $x, y \in L$,

$$
\begin{aligned}
D(x, y) & =D(x \wedge 1, y) \\
& =(D(x, y) \wedge f(1)) \vee(g(x) \wedge D(1, y)) \\
& =D(x, y) \vee D(1, y)
\end{aligned}
$$

Hence we have $D(x, y) \geq D(1, y)$.
THEOREM 3.1. Let L be a distribute lattice and let D be a symmetric bi-($f, g)$-derivation on L with the trace d. Then

$$
d(x \wedge y)=(d(x) \wedge(f(y)) \vee(g(x) \wedge d(y)) \vee((g(x) \wedge f(y)) \wedge D(x, y))
$$

for all $x, y \in L$.

Proof. For all $x, y \in L$, we have

$$
\begin{aligned}
d(x \wedge y) & =D(x \wedge y, x \wedge y) \\
& =(D(x, x \wedge y) \wedge f(y)) \vee(g(x) \wedge D(y, x \wedge y)) \\
& =(D(x \wedge y, x) \wedge f(y)) \vee(g(x) \wedge(D(x \wedge y, y))) \\
& =\{[(D(x, x) \wedge f(y)) \vee(g(x) \wedge D(x, y))] \wedge f(y)\} \\
& \vee\{g(x) \wedge[(D(x, y) \wedge f(y)) \vee(g(x) \wedge D(y, y))]\} \\
& =\{((d(x) \wedge f(y)) \wedge f(y)) \vee((g(x) \wedge f(y)) \wedge D(x, y))\} \\
& \vee\{((g(x) \wedge f(y)) \wedge D(x, y)) \vee((g(x) \wedge(g(x) \wedge d(y))))\} \\
& =(d(x) \wedge f(y)) \vee(g(x) \wedge d(y)) \vee((f(y) \wedge g(x)) \wedge D(x, y))
\end{aligned}
$$

Corollary 3.2. Let L be a distribute lattice and let D be a symmetric bi- (f, g)-derivation with the trace d. Then for all $x, y \in L$,
(1) $(g(x) \wedge f(y)) \wedge D(x, y) \leq d(x \wedge y)$.
(2) $g(x) \wedge d(y) \leq d(x \wedge y)$.
(3) $d(x) \wedge f(y) \leq d(x \wedge y)$.

Proof. (1), (2) and (3) are easily seen from the above theorem respectively.

Corollary 3.3. Let L be a distribute lattice and let D be a symmetric bi- (f, g)-derivation with the trace d. If 1 is the greatest element of L, we have $(g(x) \wedge f(1)) \wedge D(x, 1) \leq d(x \wedge 1)=d(x)$ for all $x \in L$ and $g(x) \wedge d(1) \leq d(x \wedge 1)=d(x)$ for all $x \in L$.

Definition 3.2. Let L be a lattice and let D be a symmetric bi(f, g)-derivation on L.
(1) If $x \leq w$ implies $D(x, y) \leq D(w, y)$, then D is called an isotone symmetric bi- (f, g)-derivation.
(2) If D is one-to-one, then D is called a monomorfic symmetric bi(f, g)-derivation.
(3) If D is onto, then D is called an epic symmetric bi- (f, g)-derivation.

Theorem 3.2. Let L be a lattice and let D be a symmetric bi- (f, g) derivation on L. The following conditions are equivalent.
(1) D is an isotone symmetric bi- (f, g)-derivation.
(2) $D(x, y) \vee D(w, y) \leq D(x \vee w, y)$ for all $x, y, w \in L$.

Proof. (1) $\Rightarrow(2)$. Suppose that D is an isotone symmetric bi- (f, g) derivation on L. Since $x \leq x \vee w$ and $w \leq x \vee w$, we obtain $D(x, y) \leq$
$D(x \vee w, y)$ and $D(w, y) \leq D(x \vee w, y)$. Therefore, $D(x, y) \vee D(w, y) \leq$ $D(x \vee w, y)$.
$(2) \Rightarrow(1)$. Suppose that $D(x, y) \vee D(w, y) \leq D(x \vee w, y)$ and $x \leq w$. Then we have

$$
\begin{aligned}
D(x, y) & \leq D(x, y) \vee D(w, y) \leq D(x \vee w, y) \\
& =D(w, y) .
\end{aligned}
$$

Hence D is an isotone symmetric bi- (f, g)-derivation on L.

Let L be a lattice and let D be a symmetric bi- (f, g)-derivation on L. For each $a \in L$ and define a set Fix $_{a}(L)$ by

$$
\operatorname{Fix}_{a}(L)=\{x \in L \mid D(x, a)=f(x)\} .
$$

Proposition 3.6. Let L be a lattice and let D an isotone symmetric bi- (f, g)-derivation on L. If $f: L \rightarrow L$ is a lattice homomorphism and $g(x) \leq f(x)$ for all $x \in L$, then $\operatorname{Fix}_{a}(L)$ is a sublattice of L.

Proof. Let $x, y \in \operatorname{Fix}_{a}(L)$. Then $D(x, a)=f(x)$ and $D(y, a)=f(y)$. Then $f(x \wedge y)=f(x) \wedge f(y)=D(x, a) \wedge D(y, a) \leq D(x \wedge y, a)$. Hence $D(x \wedge y, a)=f(x \wedge y)$, that is, $x \wedge y \in \operatorname{Fix}_{a}(L)$. Moreover, we have $f(x \vee y)=f(x) \vee f(y)=D(x, a) \vee D(y, a) \leq D(x \vee y, a)$ by Theorem 3.2. Thus $D(x \vee y, a)=f(x \vee y)$, which implies $x \vee y \in \operatorname{Fix}_{a}(L)$.

Proposition 3.7. Let L be a lattice and let D be a symmetric bi(f, g)-derivation on L where $g(x) \leq f(x)$ for all $x \in L$. If f is an increasing function, $x \leq y$ and $y \in$ Fix $_{a}(L)$ imply $D(x, a)=D(x, a) \vee g(x)$.

Proof. Let $x \leq y$ and $y \in$ Fix $_{a}(L)$. Then we have $D(x, a) \leq f(x) \leq$ $f(y)$ and $g(x) \leq f(x) \leq f(y)$. Hence we obtain

$$
\begin{aligned}
D(x, a) & =D(x \wedge y, a) \\
& =(D(x, a) \wedge f(y)) \vee(g(x) \wedge D(y, a)) \\
& =(D(x, a) \wedge f(y)) \vee(g(x) \wedge f(y)) \\
& =D(x, a) \vee g(x) .
\end{aligned}
$$

This completes the proof.
Proposition 3.8. Let L be a distributive lattice and let D be a symmetric bi-(f, g)-derivation of L where $g(x) \leq f(x)$ for all $x, y \in L$. If f is a meet-homomorphism and $x, y \in \operatorname{Fix}_{a}(L)$, we have $x \wedge y \in \operatorname{Fix}_{a}(L)$ for all $x, y \in L$.

Proof. Let $x, y \in \operatorname{Fix}_{a}(L)$. Then $f(x)=D(x, a)$ and $f(y)=D(y, a)$. Hence we have

$$
\begin{aligned}
D(x \wedge y, a) & =(D(x, a) \wedge f(y)) \vee(g(x) \wedge D(y, a)) \\
& =(f(x) \wedge f(y)) \vee(g(x) \wedge f(y)) \\
& =(f(x) \vee g(x)) \wedge f(y) \\
& =f(x) \wedge f(y) \\
& =f(x \wedge y)
\end{aligned}
$$

which implies $x \wedge y \in F i x_{a}(L)$.
Proposition 3.9. Let L be a lattice and let D be an isotone symmetric bi- (f, g)-derivation on L where $g(x) \leq f(x)$ for all $x \in L$. If $x, y \in F i x_{a}(L)$ and f is a increasing function, then $x \vee y \in F i x_{a}(L)$.

Proof. Since $x \leq x \vee y$ and $y \leq x \vee y$, we have $f(x \vee y) \leq f(x)$ and $f(x \vee y) \leq f(y)$ respectively. Hence we obtain $f(x \vee y) \leq f(x) \vee f(y)=$ $D(x, a) \vee D(y, a) \leq D(x \vee y, a)$ since D is an isotone symmetric bi- (f, g) derivation. From Proposition 3.4 (2), we have $D(x \vee y, a) \leq f(x \vee y)$, which implies $D(x \vee y, a)=f(x \vee y)$. Hence $x \vee y \in$ Fix $_{a}(L)$.

Proposition 3.10. Let L be a lattice, D a symmetric bi- (f, g) derivation on L where $f(x) \leq g(x)$ and 1 the greatest element of L. Then the following identities hold.
(1) If $g(x) \leq D(1, y)$ and $f(1)=1$, then $D(x, y)=g(x)$.
(2) If $g(x) \geq D(1, y)$ and $f(1)=1$, then $D(x, y) \geq D(1, y)$.

Proof. (1) Let $g(x) \leq D(1, y)$. Then we have $D(x, y) \leq f(x) \vee g(x)=$ $g(x)$, and so

$$
\begin{aligned}
D(x, y) & =D(x \wedge 1, y) \\
& =(D(x, y) \wedge f(1)) \vee(g(x) \wedge D(1, y) \\
& =D(x, y) \vee g(x) \\
& =g(x)
\end{aligned}
$$

(2) Let $g(x) \geq D(1, y)$. Then we have

$$
\begin{aligned}
D(x, y) & =D(x \wedge 1, y) \\
& =(D(x, y) \wedge f(1)) \vee(g(x) \wedge D(1, y) \\
& =D(x, y) \vee D(1, y)
\end{aligned}
$$

Hence we obtain $D(1, y) \leq D(x, y)$ for all $x, y \in L$.

Theorem 3.3. Let L be a lattice with the greatest element 1 and let D be an isotone symmetric bi-($f, g)$-derivation on L. Let $f(1)=g(1)=1$ and either $f(x) \geq g(x)$ or $f(x) \leq g(x)$ for all $x \in L$. Then

$$
D(x, y)=(f(x) \vee g(x)) \wedge D(1, y)
$$

for all $x, y, z \in L$.
Proof. Suppose that D is an isotone symmetric bi- (f, g)-derivation on L. Then $D(x, y) \leq D(1, y)$ for all $x, y \in L$. Now let $g(x) \leq f(x)$ for $x \in L$. Then we have $D(x, y) \leq g(x) \vee f(x)=f(x)$. From this, we get $D(x, y) \leq f(x) \wedge D(1, y)$. Also, we obtain

$$
\begin{aligned}
D(x, y) & =D((x \vee 1) \wedge x, y) \\
& =[(D(x \vee 1), y) \wedge f(x)] \vee[g(x \vee 1) \wedge D(x, y)] \\
& =[D(1, y) \wedge f(x)] \vee[g(1) \wedge D(x, y)] \\
& =[D(D(1, y) \wedge f(x)] \vee[1 \wedge D(x, y)] \\
& =[D(1, y) \wedge f(x)] \vee D(x, y) \\
& =D(1, y) \wedge f(x) .
\end{aligned}
$$

Since $f(x) \vee g(x)=f(x)$, we have

$$
D(x, y)=(f(x) \vee g(x)) \wedge D(1, y) .
$$

Now suppose that $f(x) \leq g(x)$ for $x \in L$. Similarly, we have $D(x, y) \leq$ $f(x) \vee g(x)=g(x)$. From this, we have $D(x, y) \leq g(x) \wedge D(1, y)$. Also, we obtain

$$
\begin{aligned}
D(x, y) & =D(x \wedge(x \vee 1), y) \\
& =[(D(x, y) \wedge f(x \vee 1)] \vee[g(x) \wedge D((x \vee 1), y)] \\
& =[D(x, y) \wedge f(1)] \vee[g(x) \wedge D(1, y)] \\
& =[D(D(x, y) \wedge 1)] \vee[g(x) \wedge D(1, y)] \\
& =D(x, y) \vee[g(x) \wedge D(1, y)] \\
& =g(x) \wedge D(1, y) .
\end{aligned}
$$

Since $f(x) \vee g(x)=g(x)$, we have

$$
D(x, y)=(f(x) \vee g(x)) \wedge D(1, y) .
$$

This completes the proof.
Let D be a symmetric bi- (f, g)-derivation of L and let 0 be a least element of L. Define a set $\operatorname{Ker} D$ by

$$
\operatorname{Ker} D=\{x \in L \mid D(x, 0)=0\} .
$$

Proposition 3.11. Let L be a lattice with a least element 0 and let D be a symmetric bi- (f, g)-derivation on L. If $x, y \in \operatorname{Ker} D$, then $x \wedge y \in \operatorname{Ker} D$.

Proof. Let $x, y \in \operatorname{Ker} D$. Then $D(x, 0)=D(y, 0)=0$. Hence we have

$$
\begin{aligned}
D(x \wedge y, 0) & =(D(x, 0) \wedge f(y)) \vee(g(x) \wedge D(y, 0)) \\
& =(0 \wedge f(x)) \vee(g(x) \wedge 0) \\
& =0 \vee 0=0
\end{aligned}
$$

which implies $x \wedge y \in \operatorname{Ker} D$.
Proposition 3.12. Let L be a lattice with a least element 0 and let D be an isotone symmetric bi- (f, g)-derivation on L. If $x \leq y$ and $y \in \operatorname{KerD}$, then $x \in \operatorname{KerD}$.

Proof. Let $y \in \operatorname{Ker} D$. Then $D(y, 0)=0$ and $D(x, 0) \leq D(y, 0)=0$ since D is isotone. Hence we have $D(x, 0)=0$, and so

$$
\begin{aligned}
D(x, 0) & =D(x \wedge y, 0)=(D(x, 0) \wedge f(y)) \vee(g(x) \wedge D(y, 0)) \\
& =(0 \wedge f(x)) \vee(g(x) \wedge 0)) \\
& =0 \vee 0=0
\end{aligned}
$$

which implies $x \in \operatorname{KerD}$.

References

[1] R. Balbes and P. Dwinger, Distributive Lattices, University of Missouri Press, Columbia, United States, 1974.
[2] A. J. Bell, The co-information lattice, in: 4th International Symposium on Independent Component Analysis and Blind Signal Separation (ICA2003), Nara, Japan, 2003, 921-926.
[3] H. E. Bell and L. C. Kappe, Rings in wich derivations satisfy certain algebraic conditions, Acta Math. Hungar. 53 (1989), no. 3-4, 339-346.
[4] H. E. Bell and G. Mason, On derivations in near-rings and near-fields, NorthHolland Math. Studies 137 (1987), 31-35.
[5] G. Birkhoof, Lattice Theory, American Mathematical Society Colloquium, 1940.
[6] C. Carpineto and G. Romano, Information retrieval through hybrid navigation of lattice representations, Int. J. Human-Computers Studies 45 (1996), 553-558.
[7] Y. Çeven and M. A. Öztürk, On the trace of a permuting tri-additive mapping in left s-unital rings, International Journal of Pure and Applied Mathematics 23 (2005), no. 4, 465-474.
[8] Y. Çeven and M. A. Öztürk, On f-derivations of lattices, Bull. Korean Math. Soc. 45 (2008), no. 4, 701-707.
[9] Y. Çeven, Symmetric bi-derivations of Lattices, Quaestiones Mathematicae 32 (2009), no. 2, 1-5.
[10] C. Degang, Z. Wenxiu, D. Yeung, and E. C. C. Tsang, Rough approximations on a complete distributive lattice with applications to generalized rough sets, Informat. Sci. 176 (2006), 1829-1848.
[11] L. Ferrari, On derivations of lattices, Pure Math. Appl. 12 (2001), no. 4, 365382.
[12] A. Honda and M. Grabish, Entropy of capacities on lattices and set systems, Inform. Sci. 176 (2006), 3472-3489.
[13] Y. B. Jun and X. L. Xin, On derivations of BCI-algebras, Inform. Sci. 159 (2004), 167-176.
[14] F. Karacal, On the direct decomposability of strong negations and S-implication operators on product lattices, Informat. Sci. 176 (2006), 3011-3025
[15] D. Özden and M. A. Öztürk, Permuting tri-derivations in prime and semiprime gamma rings, Kyungpook Math. J. 46 (2006), 153-167.
[16] M. A. Öztürk, Permuting Tri-derivations in Prime and Semi-prime Rings, East Asian Math. J. 15 (1999), no. 2, 177-190.
[17] M. A. Öztürk, Y. Çeven, and Y. B. Jun, Generalized derivations of BCIalgebras, Honam Math. J. 31 (2009), no. 4, 601-609.
[18] M. A. Öztürk, H. Yazarlı and K. H. Kim, Permuting tri-derivations in lattices, Quaestiones Mathematicae 32 (2009), no. 3, 415-425.
[19] E. Posner, Derivations in prime rings, Proc. Am. Math. Soc. 8 (1957), 10931100.
[20] R. S. Sandhu, Role hierarchies and constraints for lattice-based access controls in: Proceedings of the 4th European Symposium on Research in Computer Security, Rome, Italy, 1996, 65-79.
[21] G. Szász, Derivations of lattices, Acta Sci. Math. (Szeged) 37 (1975), 149-154.
[22] X. L. Xin, T. Y. Li, and J. H. Lu, On derivations of lattices, Information Sciences 178 (2008), no. 2, 307-316.
[23] H. Yazarl, M. A. Öztürk, and Y. B. Jun, Tri-additive maps and permuting tri-derivations, Commun. Fac. Sci. Univ. Ank. Series A1 54 (2005), no. 1, 1-8.
[24] J. Zhan and Y. L. Liu, On f-derivations of BCI-algebras, Int. J. of Mathematics and Mathematical Sciences, 2005, 1675-1684.
*
Department of Mathematics
Korea National University of transportation
Chungju 380-702, Republic of Korea
E-mail: ghkim@ut.ac.kr
**
Department of Mathematics
Dankook University
Cheonan 330-714, Republic of Korea
E-mail: yonghoon@dankook.ac.kr

[^0]: Received June 15, 2016; Accepted July 15, 2016.
 2010 Mathematics Subject Classification: Primary 06F35, 03G25.
 Key words and phrases: (semi)lattice, symmetric bi-derivation, symmetric bi(f, g)-derivation, isotone, $\operatorname{Fix}_{a}(L), \operatorname{KerD}$.

 Correspondence should be addressed to Yong Hoon Lee, yonghoon@dankook.ac. kr.

