• Title/Summary/Keyword: switching sequence

Search Result 146, Processing Time 0.027 seconds

PWM Variable Carrier Generating Method for OEW PMSM with Dual Inverter and Current Ripple Analysis according to Zero Vector Position (듀얼 인버터 개방 권선형 영구자석 동기 전동기 제어를 위한 PWM 가변 캐리어 생성법 및 영벡터 위치에 따른 전류 리플 분석)

  • Shim, Jae-Hoon;Choi, Hyeon-Gyu;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.279-285
    • /
    • 2020
  • An open-end winding (OEW) permanent magnet synchronous motor with dual inverters can synthesize large voltages for a motor with the same DC link voltage. This ability has the advantage of reducing the use of DC/DC boost converters or high voltage batteries. However, zero-sequence voltage (ZSV), which is caused by the difference in the combined voltage between the primary and secondary inverters, can generate a zero-sequence current (ZSC) that increases system losses. Among the methods for eliminating this phenomenon, combining voltage vector eliminated ZSV cannot be accomplished by the conventional Pulse Width Modulation(PWM) method. In this study, a PWM carrier generation method using functionalization to generate a switching pattern to suppress ZSC is proposed and applied to analyze the control influence of the center-zero vector in the switching sequence about the current ripple.

Comparison of Efficiency for Different Switching Tables in Six-Phase Induction Motor DTC Drive

  • Taheri, Asghar;Rahmati, Abdolreza;Kaboli, Shahriyar
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.128-135
    • /
    • 2012
  • In this paper, different switching tables proposed for the Direct Torque Controlled (DTC) of a six-phase induction machine are simulated and implemented. A six-phase induction motor has 64 space voltage vectors which result in increased complexity in the selecting of inverters switching. The unsuitable selection of a switching table leads to large harmonics especially at low speed and it also reduces drive efficiency. A six-phase induction machine has large zero sequence harmonic currents of the order $6{\kappa}{\pm}1$. These harmonic currents are varied in various techniques. Decreasing this loss is essential in a six-phase induction machine. The main purpose of this paper is to improve the ST-DTC of six-phase induction machines to reduce the voltage and current harmonics and the torque pulsation. Selecting a suitable method for minimizing these harmonics is very important.

SHIFTED TABLEAU SWITCHINGS AND SHIFTED LITTLEWOOD-RICHARDSON COEFFICIENTS

  • Choi, Seung-Il;Nam, Sun-Young;Oh, Young-Tak
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.947-984
    • /
    • 2019
  • We provide two shifted analogues of the tableau switching process due to Benkart, Sottile, and Stroomer; the shifted tableau switching process and the modified shifted tableau switching process. They are performed by applying a sequence of elementary transformations called switches and shares many nice properties with the tableau switching process. For instance, the maps induced from these algorithms are involutive and behave very nicely with respect to the lattice property. We also introduce shifted generalized evacuation which exactly agrees with the shifted J-operation due to Worley when applied to shifted Young tableaux of normal shape. Finally, as an application, we give combinatorial interpretations of Schur P- and Schur Q-function related identities.

A Study on a Current Control Based on Model Prediction for AC Electric Railway Inbalance Compensation Device (교류전력 불평형 보상장치용 모델예측기반 전류제어 연구)

  • Lee, Jeonghyeon;Jo, Jongmin;Shin, Changhoon;Lee, Taehoon;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.490-495
    • /
    • 2020
  • The power loss of large-capacity systems using single-phase inverters has attracted considerable attention. In this study, optimal switching sequence model prediction control at a low switching frequency is proposed to reduce the power loss in a high-power inverter system, and a compensation method that can be utilized for model prediction control is developed to reduce errors in accordance with sampling values. When a three-level, single-phase inverter using a switching frequency of 600 Hz and a sampling frequency of 12 kHz is adopted, the power factor is improved from 0.95 to 0.99 through 3 kW active power control. The performance of the controller is also verified.

Current Limit Strategy of Voltage Controller of Delta-Connected H-Bridge STATCOM under Unbalanced Voltage Drop

  • Son, Gum Tae;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.550-558
    • /
    • 2018
  • This paper presents the current limit strategy of voltage controller of delta-connected H-bridge static synchronous compensator (STATCOM) under an unbalanced voltage fault event. When phase to ground fault happens, the feasibility to heighten the magnitude of sagging phase voltage is considered by using symmetric transformation method in delta-structure STATCOM. And the efficiency to cover the maximum physical current limit of switching device is considered by using vector analysis method that calculate the zero sequence current for balancing the cluster energy in delta connected H-bridge STATCOM. The result is simple and obvious. Only positive sequence current has to be used to support the unbalanced voltage sag. Although the relationship between combination of the negative sequence voltage with current and zero sequence current is nonlinear, the more negative sequence current is supplying, the larger zero sequence current is required. From the full-model STATCOM system simulation, zero sequence current demand is identified according to a ratio of positive and negative sequence compensating current. When only positive sequence current support voltage sag, the least zero sequence current is needed.

One-Cycle Control Strategy for Dual-Converter Three-Phase PWM Rectifier under Unbalanced Grid Voltage Conditions

  • Xu, You;Zhang, Qingjie;Deng, Kai
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.268-277
    • /
    • 2015
  • In this paper, a dual-converter three-phase pulse width modulation (PWM) rectifier based on unbalanced one-cycle control (OCC) strategy is proposed. The proposed rectifier is used to eliminate the second harmonic waves of DC voltage and distortion of line currents under unbalanced input grid voltage conditions. The dual-converter PWM rectifier employs two converters, which are called positive-sequence converter and negative-sequence converter. The unbalanced OCC system compensates feedback currents of positive-sequence converter via grid negative-sequence voltages, as well as compensates feedback currents of negative-sequence converter via grid positive-sequence voltages. The AC currents of positive- and negative-sequence converter are controlled to be symmetrical. Thus, the workload of every switching device of converter is balanced. Only one conventional PI controller is adopted to achieve invariant power control. Then, the parameter tuning is simplified, and the extraction for positive- and negative-sequence currents is not needed anymore. The effectiveness and the viability of the control strategy are demonstrated through detailed experimental verification.

Design of A Sequence Switch Coding Circuit Without Using Auxiliary Lines (보조선을 사용하지 않은 Sequence Switch Coding 회로의 설계)

  • Yoon, Myung-Chul
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.11
    • /
    • pp.24-33
    • /
    • 2009
  • The transition of auxiliary lines for transmitting coding information has been one of the major obstacles to restricting the scalability of Sequence Switch Coding (SSC) algorithms. A new design of SSC which does not use auxiliary lines is presented in this paper. The new design makes overhead transitions far less than the previous designs that use auxiliary lines. By applying the new technique, more than 50% of overhead transitions have been reduced, leading to the increase of 30% of the overall efficiency of SSC algorithm.

Model Predictive Control of Circulating Current Suppression in Parallel-Connected Inverter-fed Motor Drive Systems

  • Kang, Shin-Won;Soh, Jae-Hwan;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1241-1250
    • /
    • 2018
  • Parallel three-phase voltage source inverters in a direct connection configuration are widely used to increase system power ratings. A zero-sequence circulating current can be generated according to the switching method; however, the zero-sequence circulating current not only distorts current, but also reduces the system reliability and efficiency. In this paper, a model predictive control scheme is proposed for parallel inverters to drive an interior permanent magnet synchronous motor with zero-sequence circulating current suppression. The voltage vector of the parallel inverters is derived to predict and control the torque and stator flux components. In addition, the zero-sequence circulating current is suppressed by designing the cost function without an additional current sensor and high-impedance inductor. Simulation and experimental results are presented to verify the proposed control scheme.

A New Resource Allocation Algorithm for Low Power Architecture (저 전력 아키텍처 설계를 위한 새로운 자원할당 알고리즘)

  • 신무경;인치호
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.329-332
    • /
    • 2000
  • This paper proposed resource allocation algorithm for the minimum power consumption of functional unit in high level synthesis process as like DSP which is circuit to give many functional unit. In this paper, the proposed method though high level simulation find switching activity in circuit each functional unit exchange for binary sequence length and value bit are logic one value. To used the switching activity find the allocation with minimal power consumption, the proposed method visits all control steps one by one and determines the allocation with minimal power consumption at each control step.

  • PDF

Improved PWM for reducing torque ripple in PMSM with B4 inverter (인버터 폴트 (B4) 환경 하에 토크리플 절감을 위한 개선된 변조방식)

  • Park Jin-Sik;Jung Sin-Myung;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.292-294
    • /
    • 2006
  • This paper presents a study on the use of improved space-vector modulation of VSI employing only four switches, four body diodes. Different switching sequence strategy for vector control for inverter fault mode are described. The influence of different switching patterns at same modulation index and improved PWM method is proposed. The proposed PWM is compared with conventional PWM. Simulation and experimental results are presented.

  • PDF