• 제목/요약/키워드: sum-prime

검색결과 80건 처리시간 0.027초

ON SUBMODULES INDUCING PRIME IDEALS OF ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • 제16권1호
    • /
    • pp.33-48
    • /
    • 2000
  • In this paper, for any ring R with an identity, in order to study prime ideals of the endomorphism ring $End_R$(M) of left R-module $_RM$, meet-prime submodules, prime radical, sum-prime submodules and the prime socle of a module are defined. Some relations of the prime radical, the prime socle of a module and the prime radical of the endomorphism ring of a module are investigated. It is revealed that meet-prime(or sum-prime) modules and semi-meet-prime(or semi-sum-prime) modules have their prime, semi-prime endomorphism rings, respectively.

  • PDF

MERSENNE PRIME FACTOR AND SUM OF BINOMIAL COEFFICIENTS

  • JO, GYE HWAN;KIM, DAEYEOUL
    • Journal of applied mathematics & informatics
    • /
    • 제40권1_2호
    • /
    • pp.61-68
    • /
    • 2022
  • Let Mp := 2p - 1 be a Mersenne prime. In this article, we find integers a, b, c, d, e and n satisfying $\sum_{t=0}^{n}\;\({an+b\\ct+d}\)\;=\;M_{p^e}$ given a Mersenne prime number Mp. In order to find a special case that satisfies the above results, we reprove an well-known relation of a certain sum of binomial coefficients and a divisor function.

MODULES WITH PRIME ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • 대한수학회지
    • /
    • 제38권5호
    • /
    • pp.987-1030
    • /
    • 2001
  • Some discrimination of modules whose endomorhism rings are prime is introduced, by means of structures of submodules inducing prime ideals of the endomorphism ring End(sub)R (M) of a left R-module (sub)RM over a ring R. Modules with non-prime endomorphism rings are contrapositively studied as well.

  • PDF

THE EXISTENCE OF TWO POSITIVE SOLUTIONS FOR $m$-POINT BOUNDARY VALUE PROBLEM WITH SIGN CHANGING NONLINEARITY

  • Liu, Jian
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.517-529
    • /
    • 2012
  • In this paper, the existence theorem of two positive solutions is established for nonlinear m-point boundary value problem by using an inequality for the following third-order differential equations $$({\phi}(u^{\prime\prime}))^{\prime}+a(t)f(t,u(t))=0,\;t{\in}(0,1)$$, $${\phi}(u^{\prime\prime}(0))=\sum^{m-2}_{i=1}a_i{\phi}(u^{\prime\prime}({\xi}_i)),\;u^{\prime}(1)=0,\;u(0)=\sum^{m-2}_{i=1}b_iu({\xi}_i)$$, where ${\phi}:R{\rightarrow}R$ is an increasing homeomorphism and homomorphism and $\phi(0)=0$. The nonlinear term f may change sign, as an application, an example to demonstrate our results is given.

ON THE DENOMINATOR OF DEDEKIND SUMS

  • Louboutin, Stephane R.
    • 대한수학회보
    • /
    • 제56권4호
    • /
    • pp.815-827
    • /
    • 2019
  • It is well known that the denominator of the Dedekind sum s(c, d) divides 2 gcd(d, 3)d and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in S(H, d), the sum of the s(c, d)'s over all the c's in a subgroup H of order n > 1 in the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$. First, we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of the same parity as (p-1)/2. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator of S(H, d) for non necessarily prime d's. We show that its denominator is a divisor of some explicit divisor of 2d gcd(d, 3).

논리 함수를 최소의 Sum of Products와 가까운 형태로 나타내기 위한 프라임 임프리컨트 선택 별렬 처리 모델 (A Parallel Processing Model for Selecting Prime Implicants of a Logic Function for a Near Minimal Sum of Products Form)

  • Kim, Won-Jun;Hwang, Hee-Yeung
    • 대한전기학회논문지
    • /
    • 제39권12호
    • /
    • pp.1288-1295
    • /
    • 1990
  • In this paper, we propose a parallel processing model for the efficient selection of Prime Implicants of Logic Functions. This model consists of simple parallel processing nodes, connections between them, Max Net (a part of Hamming Net) and quasi essential Prime Implicant selection standard in simplified cost form. Through these, this model selects essential Prime Implicants in a certain period of time regardless of the number of given Prime Implicants and minterms and also selects quasi essential Prime Implicants in short time.

APPLICATION OF CONVOLUTION SUM ∑k=1N-1σ1(k)σ1(2nN-2nk)

  • Kim, Daeyeoul;Kim, Aeran
    • Journal of applied mathematics & informatics
    • /
    • 제31권1_2호
    • /
    • pp.45-54
    • /
    • 2013
  • Let $$S^{\pm}_{(n,k)}\;:=\{(a,b,x,y){\in}\mathbb{N}^4:ax+by=n,x{\equiv}{\pm}y\;(mod\;k)\}$$. From the formula $\sum_{(a,b,x,y){\in}S^{\pm}_{(n,k)}}\;ab=4\sum_{^{m{\in}\mathbb{N}}_{m<n/k}}\;{\sigma}_1(m){\sigma}_1(n-km)+\frac{1}{6}{\sigma}_3(n)-\frac{1}{6}{\sigma}_1(n)-{\sigma}_3(\frac{n}{k})+n{\sigma}_1(\frac{n}{k})$, we find the Diophantine solutions for modulo $2^{m^{\prime}}$ and $3^{m^{\prime}}$, where $m^{\prime}{\in}\mathbb{N}$.