ON THE DENOMINATOR OF DEDEKIND SUMS

Stéphane R. Louboutin

Abstract

It is well known that the denominator of the Dedekind sum $s(c, d)$ divides $2 \operatorname{gcd}(d, 3) d$ and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in $S(H, d)$, the sum of the $s(c, d)$'s over all the c 's in a subgroup H of order $n>1$ in the multiplicative group $(\mathbb{Z} / d \mathbb{Z})^{*}$. First, we prove that for $p>3$ a prime, the sum $2 S(H, p)$ is a rational integer of the same parity as $(p-1) / 2$. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator of $S(H, d)$ for non necessarily prime d 's. We show that its denominator is a divisor of some explicit divisor of $2 d \operatorname{gcd}(d, 3)$.

1. Introduction

The Dedekind sums are defined by
$s(c, d):=\frac{1}{4 d} \sum_{n=1}^{d-1} \cot \left(\frac{\pi n}{d}\right) \cot \left(\frac{\pi n c}{d}\right) \quad($ for $c \in \mathbb{Z}, d>1$ and $\operatorname{gcd}(c, d)=1)$
(see [1, Chapter 3, Exercise 11] or [8, (26)]). Dedekind sums are rational numbers whose denominators divide $2 d \operatorname{gcd}(3, d)$:

Proposition 1 (See [8, Theorem 2 page 27]). We have $2 d \operatorname{gcd}(3, d) s(c, d) \in \mathbb{Z}$. Hence, $2 p s(c, p) \in \mathbb{Z}$ for $p>3$ a prime and $p \nmid c$.

Since for example, $2 d \operatorname{gcd}(3, d) s(1, d)=\frac{(d-1)(d-2)}{6 / \operatorname{gcd}(3, d)}$ is a rational integer coprime with d, we cannot expect more in general. Now, for H a subgroup of the multiplicative group $(\mathbb{Z} / d \mathbb{Z})^{*}, d>1$, we set

$$
\begin{equation*}
S(H, d):=\sum_{c \in H} s(c, d) \in \mathbb{Q} \tag{2}
\end{equation*}
$$

Theorems 3 and 4 below obtained in [4] led us to suspect that $2 S(H, p)$ might always be a rational integer for $p>3$ a prime and $\# H>1$. The first aim

Received January 12, 2018; Revised March 1, 2019; Accepted April 25, 2019.
2010 Mathematics Subject Classification. Primary 11F20; Secondary 11M20, 11R29.
Key words and phrases. Dedekind sum, Dirichlet character, mean square value L functions, relative class number.
of the present paper is to prove that $2 S(H, p)$ is indeed a rational integer of known parity for $p>3$ a prime and $\# H>1$ (see Theorem 6). We will then explain that for non-prime d 's we still have some cancelation in the denominator $2 d \operatorname{gcd}(3, d)$ of $S(H, d)$ (Theorem 10 for the case that d is odd and Theorem 13 for the case that d is even).

It seems that it is the first time someone looks at the denominators of sums of Dedekind sums over elements of subgroups of the multiplicative groups $(\mathbb{Z} / d \mathbb{Z})^{*}$ (for denominators of Dedekind sums, we refer the reader to [7]). It would be worth to obtain similar results for the higher dimensional Dedekind sums introduced in [11].

2. Dedekind sums, L-functions and relative class numbers

Let us first explain our motivation for studying sums of Dedekind sums over elements of a subgroup. We refer the reader to [10] for more background details. Let K be an imaginary abelian number field of prime conductor $p \geq 3$, i.e., let K be an imaginary subfield of a cyclotomic number field $\mathbb{Q}\left(\zeta_{p}\right)$ (KroneckerWeber's theorem). The Galois group $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$ is canonically isomorphic to the multiplicative cyclic group $(\mathbb{Z} / p \mathbb{Z})^{*}$ and $H=\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / K\right)$ is a subgroup of $(\mathbb{Z} / p \mathbb{Z})^{*}$ of odd order n and even index $(p-1) / n=[K: \mathbb{Q}]$. Let X_{p}^{-}be the set of the $(p-1) / 2$ odd Dirichlet characters $\bmod p$. The set

$$
X_{p}^{-}(H):=\left\{\chi \in X_{p}^{-} ; \text {and } \chi_{/ H}=1\right\}
$$

is of cardinal $(p-1) /(2 n)$. Let h_{K}^{-}be the relative class number of K and w_{K} be the number of complex roots of unity in K. Hence, $w_{K}=2$ if $K \neq \mathbb{Q}\left(\zeta_{p}\right)$ and $w_{K}=2 p$ otherwise. Let $L(s, \chi)=\sum_{n \geq 1} \chi(n) n^{-s}$ be the Dirichlet L-functions associated with $\chi \in X_{p}^{-}$. Then (see [3, Proposition 1])

$$
\begin{equation*}
L(1, \chi)=\frac{\pi}{2 p} \sum_{a=1}^{p-1} \chi(a) \cot \left(\frac{\pi a}{p}\right) \quad\left(\chi \in X_{p}^{-}\right) \tag{3}
\end{equation*}
$$

Using the arithmetic-geometric mean inequality to obtain (5), plugging (3) in (4) and using the orthogonality relations for characters to obtain (6), we have:

Proposition 2 (See [4, Corollary 3]). Let $n \geq 1$ be an odd integer. Let $p \equiv 1$ $(\bmod 2 n)$ be a prime. Let H_{n} be the only subgroup of order n of the multiplicative cyclic group $(\mathbb{Z} / p \mathbb{Z})^{*}$. Set

$$
\begin{gathered}
S\left(H_{n}, p\right):=\sum_{h \in H_{n}} s(h, p), \\
N\left(H_{n}, p\right):=12 S\left(H_{n}, p\right)-p
\end{gathered}
$$

and

$$
\begin{equation*}
M\left(H_{n}, p\right):=\frac{2 n}{p-1} \sum_{\chi \in X_{p}^{-}\left(H_{n}\right)}|L(1, \chi)|^{2} . \tag{4}
\end{equation*}
$$

Let K be the imaginary subfield of degree $(p-1) / n$ of the cyclotomic number field $\mathbb{Q}\left(\zeta_{p}\right)$. Then

$$
\begin{equation*}
h_{K}^{-}=w_{K}\left(\frac{p}{4 \pi^{2}}\right)^{\frac{p-1}{4 n}} \prod_{\chi \in X_{p}^{-}\left(H_{n}\right)} L(1, \chi) \leq w_{K}\left(\frac{p M\left(H_{n}, p\right)}{4 \pi^{2}}\right)^{\frac{p-1}{4 n}} \tag{5}
\end{equation*}
$$

and we have the mean square value formula

$$
\begin{equation*}
M\left(H_{n}, p\right)=\frac{2 \pi^{2}}{p} S\left(H_{n}, p\right)=\frac{\pi^{2}}{6}\left(1+\frac{N\left(H_{n}, p\right)}{p}\right) \tag{6}
\end{equation*}
$$

2.1. The cases $n=1, n=3$ and $n=(p-1) / 2$

These are the only three cases where explicit formulas for $S\left(H_{n}, p\right)$ are known.

1. Assume that $n=1$. Then $H_{1}=\{1\}, X_{p}^{-}\left(H_{1}\right)=X_{p}^{-}$,

$$
\begin{equation*}
S\left(H_{1}, p\right)=s(1, p)=\frac{(p-1)(p-2)}{12 p} \tag{7}
\end{equation*}
$$

(e.g. see [3, Lemme (a)], or [8, Lemma 2 page 5$]$ with however an alternative definition of the Dedekind sums), $N\left(H_{1}, p\right)=-3+2 / p \leq-1$,

$$
\begin{equation*}
M(\{1\}, p):=\frac{2}{p-1} \sum_{\chi \in X_{p}^{-}}|L(1, \chi)|^{2}=\frac{\pi^{2}}{6}\left(1-\frac{1}{p}\right)\left(1-\frac{2}{p}\right) \leq \frac{\pi^{2}}{6} \tag{8}
\end{equation*}
$$

(see also [9]) and by (5) (see also [3], [5]):

$$
h_{\mathbb{Q}\left(\zeta_{p}\right)}^{-} \leq 2 p\left(\frac{p}{24}\right)^{(p-1) / 4}
$$

2. Assume that $n=(p-1) / 2$, where $3<p \equiv 3(\bmod 4)$ to assure the oddness of n. Then $H_{(p-1) / 2}=\left\{c^{2}: c \in(\mathbb{Z} / p \mathbb{Z})^{*}\right\}$ and $X_{p}^{-}\left(H_{(p-1) / 2}\right)$ is reduced to the Legendre symbol $\left(\frac{\bullet}{p}\right)$. The class number formula gives $L\left(1,\left(\frac{\bullet}{p}\right)\right)=\pi h_{\mathbb{Q}(\sqrt{-p})} / \sqrt{p}$. Hence, $M\left(H_{2}, p\right)=\frac{\pi^{2} h_{\mathbb{Q}(\sqrt{-p})}}{p}$ and

$$
\begin{equation*}
S\left(H_{2}, p\right)=h_{\mathbb{Q}(\sqrt{-p})}^{2} / 2 \quad(p \equiv 3 \quad(\bmod 4)) \tag{9}
\end{equation*}
$$

Notice that in this situation the upper bound (5) is an equality.
3. Assume that $n=3$. Then $p \equiv 1(\bmod 3)$. Surprisingly, we proved in [4] that in that case we have a closed formula:

Theorem 3. Let $p \equiv 1(\bmod 6)$ be a prime. Let H_{3} be the subgroup of order 3 of the multiplicative cyclic group $(\mathbb{Z} / p \mathbb{Z})^{*}$. Let K be the imaginary subfield of degree $(p-1) / 3$ of the cyclotomic number field $\mathbb{Q}\left(\zeta_{p}\right)$. Then $S\left(H_{3}, p\right)=(p-$ 1) $/ 12$ and $N\left(H_{3}, p\right)=-1$. Hence, $M\left(H_{3}, p\right) \leq \pi^{2} / 6$ and $h_{K}^{-} \leq 2(p / 24)^{(p-1) / 12}$ (note the misprint in the exponent in $[4,(8)])$.
4. Since the mean square value of $L(1, \chi), \chi \in X_{p}^{-}$, is asymptotic to $\pi^{2} / 6$, by (8), as in the case $n=3$ we might expect to have bounds close to

$$
\begin{equation*}
M\left(H_{n}, p\right) \leq \pi^{2} / 6 \text { and } h_{K}^{-} \leq w_{K}\left(\frac{p}{24}\right)^{\frac{p-1}{4 n}} \tag{10}
\end{equation*}
$$

by (4) and (5), which would follow from $N\left(H_{n}, p\right) \leq 0$, by (5) and (6). However, it is hopeless to expect such a universal mean square upper bound. Indeed, it is likely that there are infinitely many imaginary abelian number fields of a given degree $m=2 n$ and prime conductors p for which
$M\left(H_{n}, p\right)=\frac{2 n}{p-1} \sum_{\chi \in X_{p}^{-}\left(H_{n}\right)}|L(1, \chi)|^{2} \geq\left(\prod_{\chi \in X_{p}^{-}\left(H_{n}\right)} L(1, \chi)\right)^{\frac{p-1}{4 n}} \gg(\log \log p)^{2}$
(see [2] and [6]). Nevertheless, for $n=5$ we do sometimes have (10):
Theorem $4($ See $[4$, Theorem 5$])$. Let $p \equiv 1(\bmod 10)$ be a prime of the form $p=a^{4}+a^{3}+a^{2}+a+1, a \in \mathbb{Z}$. Let $H_{5}=\langle a\rangle$ be the subgroup of order 5 of the multiplicative cyclic group $(\mathbb{Z} / p \mathbb{Z})^{*}$. Let K be the imaginary subfield of degree $(p-1) / 5$ of the cyclotomic number field $\mathbb{Q}\left(\zeta_{p}\right)$. Then $S\left(H_{5}, p\right)=$ $\left(a^{4}+3 a^{3}+5 a^{2}+3 a\right) / 12$ and $N\left(H_{5}, p\right)=2 a(a+1)^{2}-1$. Hence, for $a \leq-2$ we have $M\left(H_{5}, p\right) \leq \pi^{2} / 6$ and $h_{K}^{-} \leq 2(p / 24)^{(p-1) / 20}$ (note the misprint in the exponent in [4, Theorem 5]).

2.2. A question

To conclude this introduction, we give an excerpt of the computations we did on the sign of $N\left(H_{n}, p\right)$. According to them one might expect that asymptotically we have $N\left(H_{n}, p\right) \leq 0$ with a positive probability close to $1 / 2$. Consequently we would have $h_{K}^{-} \leq 2(p / 24)^{m / 4}$ with a positive probability close to $1 / 2$ for imaginary abelian number fields K of prime conductors p and degree m. We have no idea how to efficiently tackle this question.

Setting

$$
\begin{aligned}
& N_{1}(B)=\#\{p: 3 \leq p \leq B\} \\
& N_{2}(B)=\# E(B)
\end{aligned}
$$

where $E(B)=\{(n, p): n \geq 1$ odd divides $p-1$ and $p \leq B\}$ is the number of imaginary abelian number fields of prime conductors less than or equal to B,

$$
N_{3}(B)=\#\left\{(n, p) \in E(B): N\left(H_{n}, p\right) \leq 0\right\}
$$

and $\rho(B)=N_{3}(B) / N_{2}(B)$, we computed:

B	$N_{1}(B)$	$N_{2}(B)$	$N_{3}(B)$	$\rho(B)$
10^{2}	24	60	50	$0.83333 \ldots$
10^{3}	167	666	507	$0.76126 \ldots$
10^{4}	1228	6775	4766	$0.70346 \ldots$
10^{5}	9591	66921	44629	$0.66689 \ldots$
10^{6}	78497	666728	427013	$0.64046 \ldots$

3. On the denominator of $S\left(H_{n}, p\right)$

Lemma 5. Let H be a subgroup of the multiplicative group $(\mathbb{Z} / d \mathbb{Z})^{*}, d>1$. Set

$$
\begin{equation*}
T(H, d):=\sum_{c \in H_{n}} c \in \mathbb{Z} / d \mathbb{Z} \tag{11}
\end{equation*}
$$

(i) If $-1 \in H$, then $T(H, d)=0$ in $\mathbb{Z} / d \mathbb{Z}$ and $S(H, d)=0$ in \mathbb{Q}.
(ii) If $\# H>1$, then $T(H, d) \notin(\mathbb{Z} / d \mathbb{Z})^{*}$, i.e., $\operatorname{gcd}(d, T(H, d))>1$.

In particular, $T(H, p)=0$ whenever H is a subgroup of order greater than one in the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{*}, p \geq 3$ a prime.

Proof. For (i), notice that $c \in H \mapsto-c \in H$ is a bijection and that $s(-c, d)=$ $-s(c, d)$. For (ii), notice that for any $1 \neq c_{0} \in H$ we have $\left(1-c_{0}\right) T(H, d)=$ $T(H, d)-T(H, d)=0$ in $\mathbb{Z} / d \mathbb{Z}$ (as $c \in H \mapsto c_{0} c \in H$ is a bijection).

Let $p \geq 3$ be a prime integer. Let $H=H_{n}$ be a subgroup of order $n>1$ in the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{*}$. If $n=\# H$ is even, then $-1 \in H$ and $S(H, p)=0$ in \mathbb{Q}. Hence, we may assume that $n=\# H>1$ is odd and in his section we prove that $2 S\left(H_{n}, p\right)$ is always a rational integer $($ for $p \equiv 1(\bmod 6)$ we already know that $2 S\left(H_{3}, p\right)=(p-1) / 6 \in \mathbb{Z}$, by Theorem 3):

Theorem 6. Let $p>3$ be a prime integer. (i) If $p \nmid c$, then $2 p s(c, p)$ is a rational integer of the same parity as $(p-1) / 2$. (ii) Let H be a subgroup of odd order $\# H>1$ in the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{*}$. Let $N(H, p)$ be as in Proposition 2. Then $2 S(H, p)$ is a rational integer of the same parity as $(p-1) / 2$ and $N(H, p)=12 S(H, p)-p$ is an odd rational integer.
Proof. To begin with, take $1 \neq c_{0} \in H_{n}$. Then $c \in H \longrightarrow c_{0} c \in H$ being bijective, we have $T\left(H_{n}, p\right)=c_{0} T\left(H_{n}, p\right)$ and $T\left(H_{n}, p\right)=0$. We have

$$
S:=\sum_{m=1}^{p-1} \cot \left(\frac{\pi m}{p}\right)=\sum_{m=1}^{p-1} \cot \left(\frac{\pi(p-m)}{p}\right)=-S
$$

and $S=0$ in \mathbb{Q}. Hence,

$$
s(c, p)=-\frac{1}{p} \sum_{n=1}^{p-1}\left(\frac{\cot \left(\frac{\pi n}{p}\right)-i \cot \left(\frac{\pi n c}{p}\right)-i}{2 i}-\frac{1}{4}\right)
$$

Set $\pi_{p}=1-\zeta_{p}$. Then $\frac{\cot (m \pi / p)-i}{2 i}=\frac{1}{\zeta_{p}^{m}-1}=-\pi_{p}^{-1} u_{m}$ for $p \nmid m$, where $u_{m}:=\left(1-\zeta_{p}\right) /\left(1-\zeta_{p}^{m}\right) \in \mathbb{Z}\left[\zeta_{p}\right]$ is in fact a unit of $\mathbb{Z}\left[\zeta_{p}\right]$, by [10, Lemma 1.3]. We obtain

$$
\begin{equation*}
2 p s(c, p)=-2 \pi_{p}^{-2} w_{p, c}+\frac{p-1}{2}, \text { where } w_{p, c}:=\sum_{n=1}^{p-1} u_{n} u_{c n} \in \mathbb{Z}\left[\zeta_{p}\right] . \tag{12}
\end{equation*}
$$

Now, in the quotient ring $\mathbb{Z}\left[\zeta_{p}\right] / \pi_{p}^{3} \mathbb{Z}\left[\zeta_{p}\right]$ we have

$$
u_{m}=\frac{\pi_{p}}{1-\left(1-\pi_{p}\right)^{m}}=\frac{1}{m}\left(1+\frac{m-1}{2} \pi_{p}+\frac{m^{2}-1}{12} \pi_{p}^{2}\right) \quad(\text { if } p \nmid m) .
$$

Therefore, for $p \nmid c$ we have

$$
w_{p, c}=\sum_{n=1}^{p-1} \frac{1}{c n^{2}}\left(1+\frac{(c+1) n-2}{2} \pi_{p}+\frac{\left(c^{2}+3 c+1\right) n^{2}-3(c+1) n+1}{12} \pi_{p}^{2}\right) .
$$

Moreover, since π_{p}^{3} divides π_{p}^{p-1} and π_{p}^{p-1} divides $p=\prod_{k=1}^{p-1}\left(1-\zeta_{p}^{k}\right)$ and since in $\mathbb{Z} / p \mathbb{Z}$ we have

$$
\sum_{n=1}^{p-1} 1=p-1=-1, \quad \sum_{n=1}^{p-1} \frac{1}{n}=\sum_{n=1}^{p-1} n=\frac{p(p-1)}{2}=0
$$

and

$$
\sum_{n=1}^{p-1} \frac{1}{n^{2}}=\sum_{n=1}^{p-1} n^{2}=\frac{p(p-1)(2 p-1)}{6}=0
$$

we deduce that

$$
\begin{equation*}
w_{p, c}=-\frac{c^{2}+3 c+1}{12 c} \pi_{p}^{2} \quad\left(\text { in } \quad \mathbb{Z}\left[\zeta_{p}\right] / \pi_{p}^{3} \mathbb{Z}\left[\zeta_{p}\right]\right) \tag{13}
\end{equation*}
$$

Hence, π_{p}^{2} divides $w_{p, c}$ in $\mathbb{Z}\left[\zeta_{p}\right]$, i.e., $w_{p, c}=\pi_{p}^{2} W_{p, c}$ with $W_{p, c} \in \mathbb{Z}\left[\zeta_{p}\right]$. By (12), we have $W_{p, c}=\frac{p-1}{4}-p s(c, p) \in \mathbb{Q} \cap \mathbb{Z}\left[\zeta_{p}\right]=\mathbb{Z}, 2 p s(c, p)=-2 W_{p, c}+\frac{p-1}{2} \in \mathbb{Z}$ and $2 p s(c, p) \equiv \frac{p-1}{2}(\bmod 2)$. The proof of the first point is complete.

Moreover,

$$
W_{p, c}=-\frac{c^{2}+3 c+1}{12 c} \quad\left(\text { in } \mathbb{Z}\left[\zeta_{p}\right] / \pi_{p} \mathbb{Z}\left[\zeta_{p}\right]\right)
$$

by (13), and $T(H, p)=\sum_{c \in H} c=\sum_{c \in H} 1 / c=0$ in $\mathbb{Z} / p \mathbb{Z}$.
Hence, in $\mathbb{Z}\left[\zeta_{p}\right] / \pi_{p} \mathbb{Z}\left[\zeta_{p}\right]$ we have

$$
2 p s(c, p)=-2 W_{p, c}+\frac{p-1}{2}=\frac{c^{2}+1}{6 c}
$$

and

$$
2 p S(H, p)=\sum_{c \in H} 2 p s(c, p)=\sum_{c \in H} \frac{c^{2}+1}{6 c}=0 .
$$

Hence, $2 p S(H, p) \in \mathbb{Q} \cap \pi_{p} \mathbb{Z}\left[\zeta_{p}\right]=p \mathbb{Z}, 2 S(H, p) \in \mathbb{Z}$ and using point (i) we have

$$
2 S(H, p) \equiv 2 p S(H, p) \equiv \sum_{c \in H} 2 p s(c, p) \equiv \sum_{c \in H} \frac{p-1}{2} \equiv \frac{p-1}{2} \quad(\bmod 2)
$$

The proof of the second point is complete.

4. On the denominator of $S\left(H_{n}, d\right)$

Throughout the paper, we set

$$
\delta=\operatorname{gcd}(3, d)
$$

Now, what can we say about the denominator of $S\left(H_{n}, d\right)$ for H_{n} a subgroup of order $n>1$ of the multiplicative group $(\mathbb{Z} / d \mathbb{Z})^{*}$ if we do not assume anymore that d is prime? A key ingredient of the proof of Theorem 6 is that $T\left(H_{n}, p\right)=$ 0 . This does not necessarily hold true in general.

For example, there are 4 subgroups of order 3 in $(\mathbb{Z} / 91 \mathbb{Z})^{*}$ and we respectively have:
(i) $S(\{1,9,81\}, 91)=15 / 2$ and $T(\{1,9,81\}, 91)=0$,
(ii) $S(\{1,16,74\}, 91)=15 / 2$ and $T(\{1,16,74\}, 91)=0$,
(iii) $S(\{1,22,29\}, 91)=97 / 14$ and $T(\{1,22,29\}, 91)=52=4 \cdot 13$, and
(iv) $S(\{1,53,79\}, 91)=171 / 26$ and $T(\{1,53,79\}, 91)=42=6 \cdot 7$.

Theorem 10 will clarify the appearance of these various denominators. Notice that Theorem 10 asserts that for d odd and $n>1$, the denominator of $S\left(H_{n}, d\right)$ is always smaller than $2 d \delta$. Instead of using (1), throughout this section we will use an equivalent definition (15) of the Dedekind sums.
Lemma 7. For $d \geq 1, c \in \mathbb{Z}$ with $\operatorname{gcd}(c, d)=1$, we have

$$
\begin{equation*}
2 d \delta s(c, d)=\frac{(d-1)(2 d-1)}{3 / \delta} c-\delta \frac{d(d-1)}{2}-2 \delta \sum_{n=1}^{d-1} n\left[\frac{n c}{d}\right] \tag{14}
\end{equation*}
$$

Hence (compare with [8, Theorem 2 page 27]), the rational number $2 d \delta s(c, d)$ is a rational integer of known parity, namely

$$
2 d \delta s(c, d) \equiv\left\{\begin{array}{ll}
(d-1) / 2 \quad(\bmod 2) & \text { if } d \text { is odd } \\
d / 2-1 & (\bmod 2)
\end{array} \quad \text { if } d \text { is even } . ~ \$\right.
$$

Proof. For $x \in \mathbb{R}$ we write $x=[x]+\{x\}$ with $[x] \in \mathbb{Z}$ and $0 \leq\{x\}<1$. By d periodicity of both sides of (14), we may assume that $1 \leq c \leq d-1$. According to $\left[1\right.$, Chapter 3, (31) and Exercice 11] or $\left[8,(1)\right.$ page 1] and since $\left[\frac{n}{d}\right]=0$ for $1 \leq n \leq d-1$, we have

$$
\begin{align*}
s(c, d) & =\sum_{n=1}^{d-1}\left(\frac{n}{d}-\left[\frac{n}{d}\right]-\frac{1}{2}\right)\left(\frac{n c}{d}-\left[\frac{n c}{d}\right]-\frac{1}{2}\right) \tag{15}\\
& =\sum_{n=1}^{d-1}\left\{\frac{n^{2} c}{d^{2}}-\frac{n(c+1)}{2 d}+\frac{1}{4}+\frac{1}{2}\left[\frac{n c}{d}\right]-\frac{n}{d}\left[\frac{n c}{d}\right]\right\}
\end{align*}
$$

Using $\sum_{n=1}^{d-1}\left\{\frac{n c}{d}\right\}=\sum_{n=1}^{d-1}\left\{\frac{n}{d}\right\}=\sum_{n=1}^{d-1} \frac{n}{d}$ for $\operatorname{gcd}(c, d)=1$, we obtain

$$
\begin{equation*}
\sum_{n=1}^{d-1}\left[\frac{n c}{d}\right]=\sum_{n=1}^{d-1}\left(\frac{n c}{d}-\left\{\frac{n c}{d}\right\}\right)=\sum_{n=1}^{d-1} \frac{n(c-1)}{d}=\frac{(d-1)(c-1)}{2} \tag{16}
\end{equation*}
$$

The desired first result follows. Since (14) clearly yields

$$
2 d \delta s(c, d) \equiv(d-1) c+\frac{d(d-1)}{2} \quad(\bmod 2)
$$

the second assertion follows by noticing that if d is even, then c is odd.
Lemma 8. For $d \geq 1$, set $\delta=\operatorname{gcd}(3, d)$. For $c \in \mathbb{Z}$ and $\operatorname{gcd}(c, d)=1$, let c^{*} be such that where $c c^{*} \equiv 1(\bmod d)$ and set

$$
\begin{aligned}
G(c, d):= & \frac{(d-1)(2 d-1)}{3 / \delta} c-c^{*} \frac{(d-1)(2 d-1)\left(c^{2}-1\right)}{6 / \delta} \\
& -\delta \frac{d(d-1)}{2}-c^{*} \delta d \frac{(d-1)(c-1)}{2}
\end{aligned}
$$

a rational integer (since c is odd whenever d is even, the four fractions that appear in this formula are all in $\mathbb{Z})$. Then $2 d \delta s(c, d) \equiv G(c, d)(\bmod 2 \delta d)$.
Proof. By (14), we have
(17) $2 d \delta s(c, d) \equiv \frac{(d-1)(2 d-1)}{3 / \delta} c-\delta \frac{d(d-1)}{2}-2 \delta c^{*} \sum_{n=1}^{d-1} n c\left[\frac{n c}{d}\right] \quad(\bmod 2 \delta d)$.

Since $2 x[x]=x^{2}-\{x\}^{2}+[x]^{2}$ and

$$
\sum_{n=1}^{d-1}\left\{\frac{n c}{d}\right\}^{2}=\sum_{n=1}^{d-1}\left\{\frac{n}{d}\right\}^{2}=\sum_{n=1}^{d-1} \frac{n^{2}}{d^{2}} \quad(\operatorname{gcd}(c, d)=1)
$$

we have

$$
\begin{aligned}
2 \sum_{n=1}^{d-1} \frac{n c}{d}\left[\frac{n c}{d}\right] & =\sum_{n=1}^{d-1} \frac{n^{2}\left(c^{2}-1\right)}{d^{2}}+\sum_{n=1}^{d-1}\left[\frac{n c}{d}\right]^{2} \\
& =\frac{(d-1)(2 d-1)\left(c^{2}-1\right)}{6 d}+\sum_{n=1}^{d-1}\left[\frac{n c}{d}\right]^{2}
\end{aligned}
$$

Therefore, using $\left[\frac{n c}{d}\right]^{2} \equiv\left[\frac{n c}{d}\right](\bmod 2)$ and (16), we obtain

$$
2 \delta \sum_{n=1}^{d-1} n c\left[\frac{n c}{d}\right] \equiv \frac{(d-1)(2 d-1)\left(c^{2}-1\right)}{6 / \delta}+\delta d \frac{(d-1)(c-1)}{2} \quad(\bmod 2 \delta d)
$$

Using (17), the desired result follows.
By Lemma 7 , if $d \equiv 1,2(\bmod 4)$, then $d \delta s(c, d)$ is a rational integer whose parity we now determine:

Lemma 9. (i) If $d \equiv 1(\bmod 4)$, then $d \delta s(c, d)$ is a rational integer of the same parity as $(d-1) / 4$. (ii) If $d \equiv 2(\bmod 4)$, then $d \delta s(c, d)$ is a rational integer of the same parity as $(d-2) / 4$.

Proof. Let us prove point (i).
We have $\frac{(d-1)(2 d-1)}{3 / \delta} c \in 4 \mathbb{Z}$ and the three others terms in $G(c, d)$ are even. Hence $G(c, d)$ is even. Since if n is even and a is odd, then $a n \equiv n(\bmod 4)$, we have

$$
\begin{aligned}
G(c, d) \equiv \frac{3}{\delta} G(c, d) & \equiv \frac{d-1}{2}\left(-(2 d-1) c^{*}\left(c^{2}-1\right)-3 d-3 d c^{*}(c-1)\right) \\
& \equiv \frac{d-1}{2}\left(-c^{*}\left(c^{2}-1\right)-1-c^{*}(c-1)\right) \equiv \frac{d-1}{2} \quad(\bmod 4)
\end{aligned}
$$

since $-c^{*}\left(c^{2}-1\right)-1-c^{*}(c-1)=-c^{*}\left(c^{2}+c-2\right)-1$ is odd.
Let us prove point (ii).
Since c is odd, we have $c^{2}-1 \equiv 0(\bmod 8)$ and $\frac{(d-1)(2 d-1)\left(c^{2}-1\right)}{6 / \delta} \in 4 \mathbb{Z}$. Hence,

$$
G(c, d) \equiv \delta c-0-\delta \frac{d}{2}-\delta \frac{d}{2} c^{*}(c-1) \equiv \delta c(1-d / 2) \equiv d / 2-1 \quad(\bmod 4)
$$

using $d \equiv 2(\bmod 4)$ and $c^{*}(c-1) \equiv c-1(\bmod 4)\left(\right.$ as c and c^{*} are odd).
Using Lemma 8 we will obtain Theorem 10 (which implies Theorem 6).
Using Lemmas 8 and 9 we will obtain Theorem 13 and obtain in Corollary 14 the same result for $S\left(H_{n}, 2 p\right)$ than the one obtained for $S\left(H_{n}, p\right)$ in Theorem 6 or Corollary 11.

4.1. The case that d is odd

Theorem 10. Assume that $d>1$ is odd. Set $\delta=\operatorname{gcd}(3, d)$. Let H_{n} be a subgroup of order n of the multiplicative group $(\mathbb{Z} / d \mathbb{Z})^{*}$. Let $T\left(H_{n}, d\right)$ be as in (11). Then $\operatorname{gcd}\left(d, T\left(H_{n}, d\right)\right)>1$ and

$$
2 \delta \frac{d}{\operatorname{gcd}\left(d, T\left(H_{n}, d\right)\right)} S\left(H_{n}, d\right)
$$

is a rational integer of the same parity as $n \frac{d-1}{2}$ and

$$
2 \delta S\left(H_{n}, d\right) \in \mathbb{Z} \Leftrightarrow d \mid T\left(H_{n}, d\right)
$$

In contrast, $2 \delta s(c, d) \in \mathbb{Z} \Leftrightarrow c^{2} \equiv-1(\bmod d)$, in which case $s(c, d)=0$.
Proof. For the first assertion, see point (ii) of Lemma 5.
Noticing that $D_{6}:=\frac{(d-1)(2 d-1)}{6 / \delta} \in \mathbb{Z}$, that the third and fourth terms of $G(c, d)$ in Lemma 8 are in $d \mathbb{Z}$ and that $2 c-c^{*}\left(c^{2}-1\right) \equiv c+c^{*}(\bmod d)$, we obtain (in \mathbb{Z})

$$
2 d \delta s(c, d) \equiv G(c, d) \equiv D_{6}\left(c+c^{*}\right) \quad(\bmod d)
$$

and

$$
2 d \delta S\left(H_{n}, d\right) \equiv 2 D_{6} T\left(H_{n}, d\right) \quad(\bmod d)
$$

Therefore, $2 d \delta S\left(H_{n}, d\right)$ is indeed in $\operatorname{gcd}\left(d, T\left(H_{n}, d\right)\right) \mathbb{Z}$. Since $\operatorname{gcd}\left(2 D_{6}, d\right)=1$, the rational number $2 \delta S\left(H_{n}, d\right)$ is in \mathbb{Z} if and only if d divides $T\left(H_{n}, d\right)$, as asserted, and the rational number $2 \delta s(c, d)$ is in \mathbb{Z} if and only if $c+c^{*} \equiv 0$
$(\bmod d)$, i.e., if and only if $c^{2} \equiv-1(\bmod d)$, as asserted. In that case, the change of variable $n \mapsto c^{*} n$ in (1) gives $s(c, d)=s\left(c^{*}, d\right)=-s(c, d)$ and $s(c, d)=0$, as asserted.

Finally, by Lemma 7 , we have (in \mathbb{Z})

$$
2 d \delta S\left(H_{n}, d\right)=\sum_{c \in H_{n}} 2 d \delta s(c, d) \equiv n \frac{d-1}{2} \quad(\bmod 2)
$$

Using the oddness of $\operatorname{gcd}\left(d, T\left(H_{n}, d\right)\right)$ we obtain

$$
2 \delta \frac{d}{\operatorname{gcd}\left(d, T\left(H_{n}, d\right)\right)} S\left(H_{n}, d\right) \equiv n \frac{d-1}{2} \quad(\bmod 2)
$$

as asserted.
Corollary 11. If H_{n} is a subgroup of order $n>1$ of the multiplicative group $(\mathbb{Z} / p \mathbb{Z})^{*}, p>3$, then $S\left(H_{n}, p\right)=0$ if n is even, whereas $2 S\left(H_{n}, p\right)$ is a rational integer of the same parity as $(p-1) / 2$ if n is odd.

4.2. The case that d is even

We cannot expect Theorem 10 to hold true for d even. For example, for $n=3, d=14$ and $H_{3}=\{1,9,11\}$, we have $2 \delta S\left(H_{3}, d\right)=2 S\left(H_{3}, 14\right)=1 \in \mathbb{Z}$ but $d=14$ does not divide $T\left(H_{3}, 14\right)=7$.

If d is even, recalling that c^{*} is such that $c c^{*} \equiv 1(\bmod d)$, we set

$$
\begin{equation*}
T^{\prime}\left(H_{n}, d\right):=\sum_{c \in H_{n}}\left(c-c^{*} \frac{c^{2}-1}{2}-\frac{d}{2}\right) \in \mathbb{Z} / d \mathbb{Z} \tag{18}
\end{equation*}
$$

(if d is even, then c^{*} and c are odd and $\left(c^{2}-1\right) / 2 \in 2 \mathbb{Z}$. Moreover, the application c (odd) $\mapsto \frac{c^{2}-1}{2}$ modulo d is d-periodic. Hence, $T^{\prime}\left(H_{n}, d\right)$ is well defined).

Lemma 12. Let H_{n} be a subgroup of order $n>1$ of the multiplicative group $(\mathbb{Z} / d \mathbb{Z})^{*}$.
(i) If d is even, then $T\left(H_{n}, d\right) \equiv n(\bmod 2), T^{\prime}\left(H_{n}, d\right)=T\left(H_{n}, d\right)$ or $T\left(H_{n}, d\right)+\frac{d}{2}$.
(ii) If $d \equiv 2(\bmod 4)$ or $d \equiv 4(\bmod 8)$, then $T^{\prime}\left(H_{n}, d\right)=T\left(H_{n}, d\right)+n \frac{d}{2}$ in $\mathbb{Z} / d \mathbb{Z}$.
(iii) Assume that $d=2 p$, where $p \geq 3$ is prime. Then there exists at most one subgroup H_{n} of a given order n in the cyclic group $(\mathbb{Z} / 2 p \mathbb{Z})^{*}$. If n is even, then $-1 \in H_{n}$ and $S\left(H_{n}, d\right)=0$ (Lemma 5). If n is odd, then $T\left(H_{n}, 2 p\right)=p$ and $T^{\prime}\left(H_{n}, 2 p\right)=0$.
Proof. Any $c \in H_{n}$ being odd, the first assertion of (i) follows. Since $2 c-$ $c^{*}\left(c^{2}-1\right) \equiv c+c^{*}(\bmod d)$, we have $2 T_{n}^{\prime}\left(H_{n}, d\right) \equiv \sum_{c \in H_{n}}\left(c+c^{*}\right) \equiv 2 T\left(H_{n}, d\right)$ $(\bmod d)$ and the second assertion of (i) follows.

For (ii), it suffices to prove that $S:=\sum_{c \in H_{n}} c^{*} \frac{c^{2}-1}{2}=0$ in $\mathbb{Z} / d \mathbb{Z}$. Clearly, $2 S=T\left(H_{n}, d\right)-T\left(H_{n}, d\right)=0$. Hence $S=0$ or $S=\frac{d}{2}$. Since clearly $S=[4 s]_{d}$
in $\mathbb{Z} / d \mathbb{Z}$ for some $s \in \mathbb{Z}$, if we had $S=d / 2$, then we would have $4 s \equiv \frac{d}{2}$ $(\bmod d)$ and the contradictions $4 s \equiv 1(\bmod 2)$ for $d \equiv 2(\bmod 4)$ and $4 s \equiv 2$ $(\bmod 4)$ for $d \equiv 4(\bmod 8)$.

Notice, for example, that if $n=2, d=8$ and $H_{2}=\{1,9\}$, then $0=$ $T^{\prime}\left(H_{2}, 8\right) \neq T\left(H_{2}, 8\right)+n \frac{d}{2}=4$ in $\mathbb{Z} / 8 \mathbb{Z}$.

For (iii), we have $T\left(H_{n}, 2 p\right) \equiv n \equiv 1(\bmod 2)$, by point (i), and $T\left(H_{n}, 2 p\right) \in$ $\{0,2, p\}$, by point (ii) of Lemma 5. Hence, $T\left(H_{n}, 2 p\right)=p$ and point (ii) gives $T^{\prime}\left(H_{n}, 2 p\right)=T\left(H_{n}, 2 p\right)+p=0$.

Theorem 13. Assume that $d>1$ is even. Set $\delta=\operatorname{gcd}(3, d)$. Let H_{n} be a subgroup of order n of the multiplicative group $(\mathbb{Z} / d \mathbb{Z})^{*}$. Let $T^{\prime}\left(H_{n}, d\right)$ be as in (18). Then

$$
2 \delta \frac{d}{\operatorname{gcd}\left(d, T^{\prime}\left(H_{n}, d\right)\right)} S\left(H_{n}, d\right) \in \mathbb{Z}
$$

and

$$
2 \delta S\left(H_{n}, d\right) \in \mathbb{Z} \Leftrightarrow d \mid T^{\prime}\left(H_{n}, d\right)
$$

In contrast, $2 \delta s(c, d) \in \mathbb{Z} \Leftrightarrow c^{2} \equiv-1(\bmod d)$, in which case $s(c, d)=0$.
Moreover, if $d \equiv 2(\bmod 4)$, then

$$
2 \delta \frac{d}{\operatorname{gcd}\left(d, T^{\prime}\left(H_{n}, d\right)\right)} S\left(H_{n}, d\right)
$$

is a rational integer of the same parity as $n \frac{d-2}{4}$.
Proof. We set

$$
D_{3}:=\frac{(d-1)(2 d-1)}{3 / \delta} \in \mathbb{Z}
$$

Notice that $\operatorname{gcd}\left(D_{3}, d\right)=1$.
Since c is odd, $c^{2}-1$ is even, D_{3} is odd, the fourth term of $G(c, d)$ in Lemma 8 is in $d \mathbb{Z}$ and its third term is equal to $d / 2$ modulo d. Hence (in \mathbb{Z}), we have

$$
2 d \delta s(c, d) \equiv D_{3}\left(c-c^{*} \frac{c^{2}-1}{2}\right)-\frac{d}{2} \equiv D_{3}\left(c-c^{*} \frac{c^{2}-1}{2}-\frac{d}{2}\right) \quad(\bmod d)
$$

and

$$
2 d \delta S\left(H_{n}, d\right)=\sum_{c \in H_{n}} 2 d \delta s(c, d) \equiv D_{3} T^{\prime}\left(H_{n}, d\right) \quad(\bmod d) .
$$

Therefore, $2 d \delta S\left(H_{n}, d\right)$ is indeed in $\operatorname{gcd}\left(d, T^{\prime}\left(H_{n}, d\right)\right) \mathbb{Z}$. Since $\operatorname{gcd}\left(D_{3}, d\right)=1$, the rational number $2 \delta S\left(H_{n}, d\right)$ is in \mathbb{Z} if and only if d divides $T^{\prime}\left(H_{n}, d\right)$, as asserted, and if the rational number $2 \delta s(c, d)$ is in \mathbb{Z}, then d divides $2 c-c^{*}\left(c^{2}-\right.$ 1) $-d$, hence divides $c+c^{*}$ and we obtain $c^{2} \equiv-1(\bmod d)$. Conversely, if $c^{2} \equiv-1(\bmod d)$, then as in the proof of Theorem 10 we have $s(c, d)=0$ and hence $2 \delta s(c, d) \in \mathbb{Z}$.

Finally, assume that $d \equiv 2(\bmod 4)$. Then $T^{\prime}\left(H_{n}, d\right) \equiv 0(\bmod 2)$, by (18). Hence, $\operatorname{gcd}\left(d, T^{\prime}\left(H_{n}, d\right)\right)=2 \operatorname{gcd}\left(d / 2, T^{\prime}\left(H_{n}, d\right)\right)$. The oddness of $\operatorname{gcd}(d / 2$,
$\left.T^{\prime}\left(H_{n}, d\right)\right)$ gives

$$
\begin{aligned}
2 \frac{d}{\operatorname{gcd}\left(d, T^{\prime}\left(H_{n}, d\right)\right)} \delta S\left(H_{n}, d\right) & =\frac{d}{\operatorname{gcd}\left(d / 2, T^{\prime}\left(H_{n}, d\right)\right)} \delta S\left(H_{n}, d\right) \\
& \equiv d \delta S\left(H_{n}, d\right) \quad(\bmod 2) .
\end{aligned}
$$

By Lemma 9 we have $d \delta s(c, d) \in \mathbb{Z}, d \delta S\left(H_{n}, d\right) \in \mathbb{Z}$ and

$$
d \delta S\left(H_{n}, d\right) \equiv n \frac{d-2}{4} \quad(\bmod 2)
$$

The last assertion follows.

Corollary 14. If H_{n} is a subgroup of order $n>1$ of the multiplicative group $(\mathbb{Z} / 2 p \mathbb{Z})^{*}, p>3$, then $S\left(H_{n}, 2 p\right)=0$ if n is even, whereas $2 S\left(H_{n}, 2 p\right)$ is a rational integer of the same parity as $(p-1) / 2$ if n is odd.

Proof. The last assertion follows from $T^{\prime}\left(H_{n}, 2 p\right)=0, n$ odd (Lemma 12).

References

[1] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, SpringerVerlag, New York, 1976.
[2] P. J. Cho and H. H. Kim, Dihedral and cyclic extensions with large class numbers, J. Théor. Nombres Bordeaux 24 (2012), no. 3, 583-603.
[3] S. Louboutin, Quelques formules exactes pour des moyennes de fonctions L de Dirichlet, Canad. Math. Bull. 36 (1993), no. 2, 190-196. https://doi.org/10.4153/ CMB-1993-028-8
[4] , Dedekind sums, mean square value of L-functions at $s=1$ and upper bounds on relative class numbers, Bull. Pol. Acad. Sci. Math. 64 (2016), no. 2-3, 165-174. https://doi.org/10.4064/ba8092-12-2016
[5] T. Metsänkylä, Class numbers and μ-invariants of cyclotomic fields, Proc. Amer. Math. Soc. 43 (1974), 299-300. https://doi.org/10.2307/2038882
[6] H. L. Montgomery and P. J. Weinberger, Real quadratic fields with large class number, Math. Ann. 225 (1977), no. 2, 173-176. https://doi.org/10.1007/BF01351721
[7] L. Pinzur, Denominators of Dedekind sums, J. Number Theory 9 (1977), no. 3, 361-369. https://doi.org/10.1016/0022-314X(77)90071-3
[8] H. Rademacher and E. Grosswald, Dedekind Sums, The Mathematical Association of America, Washington, DC, 1972.
[9] H. Walum, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), no. 1, 1-3. http://projecteuclid.org/euclid.ijm/1256046895
[10] L. C. Washington, Introduction to Cyclotomic Fields, second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997. https://doi.org/10.1007/ 978-1-4612-1934-7
[11] D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149-172. https: //doi.org/10.1007/BF01351173

Stéphane R. Louboutin
Aix Marseille Université
CNRS, Centrale Marseille, I2M
Marseille, France
Postal address: Institut de Mathématiques de Marseille
Aix Marseille Université
163 Avenue de Luminy, Case 907
13288 Marseille Cedex 9, France
Email address: stephane.louboutin@univ-amu.fr

