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ON THE DENOMINATOR OF DEDEKIND SUMS

Stéphane R. Louboutin

Abstract. It is well known that the denominator of the Dedekind sum

s(c, d) divides 2 gcd(d, 3)d and that no smaller denominator independent

of c can be expected. In contrast, here we prove that we usually get a
smaller denominator in S(H, d), the sum of the s(c, d)’s over all the c’s in

a subgroup H of order n > 1 in the multiplicative group (Z/dZ)∗. First,
we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of

the same parity as (p−1)/2. We give an application of this result to upper

bounds on relative class numbers of imaginary abelian number fields of
prime conductor. Finally, we give a general result on the denominator of

S(H, d) for non necessarily prime d’s. We show that its denominator is a

divisor of some explicit divisor of 2d gcd(d, 3).

1. Introduction

The Dedekind sums are defined by

(1) s(c, d) :=
1

4d

d−1∑
n=1

cot
(πn
d

)
cot
(πnc
d

)
(for c ∈ Z, d > 1 and gcd(c, d)=1)

(see [1, Chapter 3, Exercise 11] or [8, (26)]). Dedekind sums are rational num-
bers whose denominators divide 2d gcd(3, d):

Proposition 1 (See [8, Theorem 2 page 27]). We have 2d gcd(3, d)s(c, d) ∈ Z.
Hence, 2ps(c, p) ∈ Z for p > 3 a prime and p - c.

Since for example, 2d gcd(3, d)s(1, d) = (d−1)(d−2)
6/ gcd(3,d) is a rational integer co-

prime with d, we cannot expect more in general. Now, for H a subgroup of the
multiplicative group (Z/dZ)∗, d > 1, we set

(2) S(H, d) :=
∑
c∈H

s(c, d) ∈ Q.

Theorems 3 and 4 below obtained in [4] led us to suspect that 2S(H, p) might
always be a rational integer for p > 3 a prime and #H > 1. The first aim
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of the present paper is to prove that 2S(H, p) is indeed a rational integer of
known parity for p > 3 a prime and #H > 1 (see Theorem 6). We will then
explain that for non-prime d’s we still have some cancelation in the denominator
2d gcd(3, d) of S(H, d) (Theorem 10 for the case that d is odd and Theorem 13
for the case that d is even).

It seems that it is the first time someone looks at the denominators of sums of
Dedekind sums over elements of subgroups of the multiplicative groups (Z/dZ)∗

(for denominators of Dedekind sums, we refer the reader to [7]). It would
be worth to obtain similar results for the higher dimensional Dedekind sums
introduced in [11].

2. Dedekind sums, L-functions and relative class numbers

Let us first explain our motivation for studying sums of Dedekind sums over
elements of a subgroup. We refer the reader to [10] for more background details.
Let K be an imaginary abelian number field of prime conductor p ≥ 3, i.e.,
let K be an imaginary subfield of a cyclotomic number field Q(ζp) (Kronecker-
Weber’s theorem). The Galois group Gal(Q(ζp)/Q) is canonically isomorphic to
the multiplicative cyclic group (Z/pZ)∗ and H = Gal(Q(ζp)/K) is a subgroup
of (Z/pZ)∗ of odd order n and even index (p− 1)/n = [K : Q]. Let X−p be the
set of the (p− 1)/2 odd Dirichlet characters mod p. The set

X−p (H) := {χ ∈ X−p ; and χ/H = 1}

is of cardinal (p−1)/(2n). Let h−K be the relative class number of K and wK be
the number of complex roots of unity in K. Hence, wK = 2 if K 6= Q(ζp) and
wK = 2p otherwise. Let L(s, χ) =

∑
n≥1 χ(n)n−s be the Dirichlet L-functions

associated with χ ∈ X−p . Then (see [3, Proposition 1])

(3) L(1, χ) =
π

2p

p−1∑
a=1

χ(a) cot

(
πa

p

)
(χ ∈ X−p ).

Using the arithmetic-geometric mean inequality to obtain (5), plugging (3) in
(4) and using the orthogonality relations for characters to obtain (6), we have:

Proposition 2 (See [4, Corollary 3]). Let n ≥ 1 be an odd integer. Let p ≡ 1
(mod 2n) be a prime. Let Hn be the only subgroup of order n of the multiplica-
tive cyclic group (Z/pZ)∗. Set

S(Hn, p) :=
∑
h∈Hn

s(h, p),

N(Hn, p) := 12S(Hn, p)− p
and

(4) M(Hn, p) :=
2n

p− 1

∑
χ∈X−p (Hn)

|L(1, χ)|2.
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Let K be the imaginary subfield of degree (p − 1)/n of the cyclotomic number
field Q(ζp). Then

(5) h−K = wK

( p

4π2

) p−1
4n

∏
χ∈X−p (Hn)

L(1, χ) ≤ wK
(
pM(Hn, p)

4π2

) p−1
4n

and we have the mean square value formula

(6) M(Hn, p) =
2π2

p
S(Hn, p) =

π2

6

(
1 +

N(Hn, p)

p

)
.

2.1. The cases n = 1, n = 3 and n = (p − 1)/2

These are the only three cases where explicit formulas for S(Hn, p) are
known.

1. Assume that n = 1. Then H1 = {1}, X−p (H1) = X−p ,

(7) S(H1, p) = s(1, p) =
(p− 1)(p− 2)

12p

(e.g. see [3, Lemme (a)], or [8, Lemma 2 page 5] with however an alternative
definition of the Dedekind sums), N(H1, p) = −3 + 2/p ≤ −1,

(8) M({1}, p) :=
2

p− 1

∑
χ∈X−p

|L(1, χ)|2 =
π2

6

(
1− 1

p

)(
1− 2

p

)
≤ π2

6

(see also [9]) and by (5) (see also [3], [5]):

h−Q(ζp)
≤ 2p

( p
24

)(p−1)/4
.

2. Assume that n = (p − 1)/2, where 3 < p ≡ 3 (mod 4) to assure
the oddness of n. Then H(p−1)/2 = {c2 : c ∈ (Z/pZ)∗} and X−p (H(p−1)/2)

is reduced to the Legendre symbol
(
•
p

)
. The class number formula gives

L(1,
(
•
p

)
) = πhQ(

√
−p)/
√
p. Hence, M(H2, p) =

π2hQ(
√
−p)

p and

(9) S(H2, p) = h2Q(
√
−p)/2 (p ≡ 3 (mod 4)).

Notice that in this situation the upper bound (5) is an equality.

3. Assume that n = 3. Then p ≡ 1 (mod 3). Surprisingly, we proved in [4]
that in that case we have a closed formula:

Theorem 3. Let p ≡ 1 (mod 6) be a prime. Let H3 be the subgroup of order
3 of the multiplicative cyclic group (Z/pZ)∗. Let K be the imaginary subfield
of degree (p−1)/3 of the cyclotomic number field Q(ζp). Then S(H3, p) = (p−
1)/12 and N(H3, p) = −1. Hence, M(H3, p) ≤ π2/6 and h−K ≤ 2 (p/24)

(p−1)/12

(note the misprint in the exponent in [4, (8)]).
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4. Since the mean square value of L(1, χ), χ ∈ X−p , is asymptotic to π2/6,
by (8), as in the case n = 3 we might expect to have bounds close to

(10) M(Hn, p) ≤ π2/6 and h−K ≤ wK
( p

24

) p−1
4n

,

by (4) and (5), which would follow from N(Hn, p) ≤ 0, by (5) and (6). However,
it is hopeless to expect such a universal mean square upper bound. Indeed,
it is likely that there are infinitely many imaginary abelian number fields of a
given degree m = 2n and prime conductors p for which

M(Hn, p) =
2n

p− 1

∑
χ∈X−p (Hn)

|L(1, χ)|2 ≥
( ∏
χ∈X−p (Hn)

L(1, χ)
) p−1

4n � (log log p)2

(see [2] and [6]). Nevertheless, for n = 5 we do sometimes have (10):

Theorem 4 (See [4, Theorem 5]). Let p ≡ 1 (mod 10) be a prime of the form
p = a4 + a3 + a2 + a + 1, a ∈ Z. Let H5 = 〈a〉 be the subgroup of order 5
of the multiplicative cyclic group (Z/pZ)∗. Let K be the imaginary subfield
of degree (p − 1)/5 of the cyclotomic number field Q(ζp). Then S(H5, p) =
(a4 + 3a3 + 5a2 + 3a)/12 and N(H5, p) = 2a(a + 1)2 − 1. Hence, for a ≤ −2

we have M(H5, p) ≤ π2/6 and h−K ≤ 2 (p/24)
(p−1)/20

(note the misprint in the
exponent in [4, Theorem 5]).

2.2. A question

To conclude this introduction, we give an excerpt of the computations we
did on the sign of N(Hn, p). According to them one might expect that asymp-
totically we have N(Hn, p) ≤ 0 with a positive probability close to 1/2. Con-
sequently we would have h−K ≤ 2(p/24)m/4 with a positive probability close to
1/2 for imaginary abelian number fields K of prime conductors p and degree
m. We have no idea how to efficiently tackle this question.

Setting

N1(B) = #{p : 3 ≤ p ≤ B},
N2(B) = #E(B),

where E(B) = {(n, p) : n ≥ 1 odd divides p− 1 and p ≤ B} is the number of
imaginary abelian number fields of prime conductors less than or equal to B,

N3(B) = #{(n, p) ∈ E(B) : N(Hn, p) ≤ 0}
and ρ(B) = N3(B)/N2(B), we computed:

B N1(B) N2(B) N3(B) ρ(B)
102 24 60 50 0.83333 . . .
103 167 666 507 0.76126 . . .
104 1228 6775 4766 0.70346 . . .
105 9591 66921 44629 0.66689 . . .
106 78497 666728 427013 0.64046 . . .
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3. On the denominator of S(Hn, p)

Lemma 5. Let H be a subgroup of the multiplicative group (Z/dZ)∗, d > 1.
Set

(11) T (H, d) :=
∑
c∈Hn

c ∈ Z/dZ.

(i) If −1 ∈ H, then T (H, d) = 0 in Z/dZ and S(H, d) = 0 in Q.
(ii) If #H > 1, then T (H, d) 6∈ (Z/dZ)∗, i.e., gcd(d, T (H, d)) > 1.

In particular, T (H, p) = 0 whenever H is a subgroup of order greater than one
in the multiplicative group (Z/pZ)∗, p ≥ 3 a prime.

Proof. For (i), notice that c ∈ H 7→ −c ∈ H is a bijection and that s(−c, d) =
−s(c, d). For (ii), notice that for any 1 6= c0 ∈ H we have (1 − c0)T (H, d) =
T (H, d)− T (H, d) = 0 in Z/dZ (as c ∈ H 7→ c0c ∈ H is a bijection). �

Let p ≥ 3 be a prime integer. Let H = Hn be a subgroup of order n > 1
in the multiplicative group (Z/pZ)∗. If n = #H is even, then −1 ∈ H and
S(H, p) = 0 in Q. Hence, we may assume that n = #H > 1 is odd and in his
section we prove that 2S(Hn, p) is always a rational integer (for p ≡ 1 (mod 6)
we already know that 2S(H3, p) = (p− 1)/6 ∈ Z, by Theorem 3):

Theorem 6. Let p > 3 be a prime integer. (i) If p - c, then 2ps(c, p) is a
rational integer of the same parity as (p − 1)/2. (ii) Let H be a subgroup of
odd order #H > 1 in the multiplicative group (Z/pZ)∗. Let N(H, p) be as
in Proposition 2. Then 2S(H, p) is a rational integer of the same parity as
(p− 1)/2 and N(H, p) = 12S(H, p)− p is an odd rational integer.

Proof. To begin with, take 1 6= c0 ∈ Hn. Then c ∈ H −→ c0c ∈ H being
bijective, we have T (Hn, p) = c0T (Hn, p) and T (Hn, p) = 0. We have

S :=

p−1∑
m=1

cot

(
πm

p

)
=

p−1∑
m=1

cot

(
π(p−m)

p

)
= −S

and S = 0 in Q. Hence,

s(c, p) = −1

p

p−1∑
n=1

cot
(
πn
p

)
− i

2i

cot
(
πnc
p

)
− i

2i
− 1

4

 .

Set πp = 1 − ζp. Then cot(mπ/p)−i
2i = 1

ζmp −1
= −π−1p um for p - m, where

um := (1− ζp)/(1− ζmp ) ∈ Z[ζp] is in fact a unit of Z[ζp], by [10, Lemma 1.3].
We obtain

(12) 2ps(c, p) = −2π−2p wp,c +
p− 1

2
, where wp,c :=

p−1∑
n=1

unucn ∈ Z[ζp].
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Now, in the quotient ring Z[ζp]/π
3
pZ[ζp] we have

um =
πp

1− (1− πp)m
=

1

m

(
1 +

m− 1

2
πp +

m2 − 1

12
π2
p

)
( if p - m).

Therefore, for p - c we have

wp,c =

p−1∑
n=1

1

cn2

(
1 +

(c+ 1)n− 2

2
πp +

(c2 + 3c+ 1)n2 − 3(c+ 1)n+ 1

12
π2
p

)
.

Moreover, since π3
p divides πp−1p and πp−1p divides p =

∏p−1
k=1(1− ζkp ) and since

in Z/pZ we have

p−1∑
n=1

1 = p− 1 = −1,

p−1∑
n=1

1

n
=

p−1∑
n=1

n =
p(p− 1)

2
= 0

and
p−1∑
n=1

1

n2
=

p−1∑
n=1

n2 =
p(p− 1)(2p− 1)

6
= 0,

we deduce that

(13) wp,c = −c
2 + 3c+ 1

12c
π2
p (in Z[ζp]/π

3
pZ[ζp]).

Hence, π2
p divides wp,c in Z[ζp], i.e., wp,c = π2

pWp,c with Wp,c ∈ Z[ζp]. By (12),

we have Wp,c = p−1
4 − ps(c, p) ∈ Q ∩ Z[ζp] = Z, 2ps(c, p) = −2Wp,c + p−1

2 ∈ Z
and 2ps(c, p) ≡ p−1

2 (mod 2). The proof of the first point is complete.
Moreover,

Wp,c = −c
2 + 3c+ 1

12c
(in Z[ζp]/πpZ[ζp]),

by (13), and T (H, p) =
∑
c∈H c =

∑
c∈H 1/c = 0 in Z/pZ.

Hence, in Z[ζp]/πpZ[ζp] we have

2ps(c, p) = −2Wp,c +
p− 1

2
=
c2 + 1

6c

and

2pS(H, p) =
∑
c∈H

2ps(c, p) =
∑
c∈H

c2 + 1

6c
= 0.

Hence, 2pS(H, p) ∈ Q ∩ πpZ[ζp] = pZ, 2S(H, p) ∈ Z and using point (i) we
have

2S(H, p) ≡ 2pS(H, p) ≡
∑
c∈H

2ps(c, p) ≡
∑
c∈H

p− 1

2
≡ p− 1

2
(mod 2).

The proof of the second point is complete. �
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4. On the denominator of S(Hn, d)

Throughout the paper, we set

δ = gcd(3, d).

Now, what can we say about the denominator of S(Hn, d) for Hn a subgroup of
order n > 1 of the multiplicative group (Z/dZ)∗ if we do not assume anymore
that d is prime? A key ingredient of the proof of Theorem 6 is that T (Hn, p) =
0. This does not necessarily hold true in general.

For example, there are 4 subgroups of order 3 in (Z/91Z)∗ and we respec-
tively have:

(i) S({1, 9, 81}, 91) = 15/2 and T ({1, 9, 81}, 91) = 0,
(ii) S({1, 16, 74}, 91) = 15/2 and T ({1, 16, 74}, 91) = 0,
(iii) S({1, 22, 29}, 91) = 97/14 and T ({1, 22, 29}, 91) = 52 = 4 · 13, and
(iv) S({1, 53, 79}, 91) = 171/26 and T ({1, 53, 79}, 91) = 42 = 6 · 7.
Theorem 10 will clarify the appearance of these various denominators. No-

tice that Theorem 10 asserts that for d odd and n > 1, the denominator of
S(Hn, d) is always smaller than 2dδ. Instead of using (1), throughout this
section we will use an equivalent definition (15) of the Dedekind sums.

Lemma 7. For d ≥ 1, c ∈ Z with gcd(c, d) = 1, we have

(14) 2dδs(c, d) =
(d− 1)(2d− 1)

3/δ
c− δ d(d− 1)

2
− 2δ

d−1∑
n=1

n
[nc
d

]
.

Hence (compare with [8, Theorem 2 page 27]), the rational number 2dδs(c, d)
is a rational integer of known parity, namely

2dδs(c, d) ≡

{
(d− 1)/2 (mod 2) if d is odd,

d/2− 1 (mod 2) if d is even.

Proof. For x ∈ R we write x = [x] + {x} with [x] ∈ Z and 0 ≤ {x} < 1. By d-
periodicity of both sides of (14), we may assume that 1 ≤ c ≤ d−1. According
to [1, Chapter 3, (31) and Exercice 11] or [8, (1) page 1] and since

[
n
d

]
= 0 for

1 ≤ n ≤ d− 1, we have

s(c, d) =

d−1∑
n=1

(
n

d
−
[n
d

]
− 1

2

)(
nc

d
−
[nc
d

]
− 1

2

)
(15)

=

d−1∑
n=1

{
n2c

d2
− n(c+ 1)

2d
+

1

4
+

1

2

[nc
d

]
− n

d

[nc
d

]}
.

Using
∑d−1
n=1

{
nc
d

}
=
∑d−1
n=1

{
n
d

}
=
∑d−1
n=1

n
d for gcd(c, d) = 1, we obtain

(16)

d−1∑
n=1

[nc
d

]
=

d−1∑
n=1

(nc
d
−
{nc
d

})
=

d−1∑
n=1

n(c− 1)

d
=

(d− 1)(c− 1)

2
.
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The desired first result follows. Since (14) clearly yields

2dδs(c, d) ≡ (d− 1)c+
d(d− 1)

2
(mod 2),

the second assertion follows by noticing that if d is even, then c is odd. �

Lemma 8. For d ≥ 1, set δ = gcd(3, d). For c ∈ Z and gcd(c, d) = 1, let c∗ be
such that where cc∗ ≡ 1 (mod d) and set

G(c, d) :=
(d− 1)(2d− 1)

3/δ
c− c∗ (d− 1)(2d− 1)(c2 − 1)

6/δ

− δ d(d− 1)

2
− c∗δd (d− 1)(c− 1)

2
,

a rational integer (since c is odd whenever d is even, the four fractions that
appear in this formula are all in Z). Then 2dδs(c, d) ≡ G(c, d) (mod 2δd).

Proof. By (14), we have

(17) 2dδs(c, d) ≡ (d−1)(2d−1)

3/δ
c− δ d(d−1)

2
− 2δc∗

d−1∑
n=1

nc
[nc
d

]
(mod 2δd).

Since 2x[x] = x2 − {x}2 + [x]2 and

d−1∑
n=1

{nc
d

}2

=

d−1∑
n=1

{n
d

}2

=

d−1∑
n=1

n2

d2
(gcd(c, d) = 1),

we have

2

d−1∑
n=1

nc

d

[nc
d

]
=

d−1∑
n=1

n2(c2 − 1)

d2
+

d−1∑
n=1

[nc
d

]2
=

(d− 1)(2d− 1)(c2 − 1)

6d
+

d−1∑
n=1

[nc
d

]2
.

Therefore, using
[
nc
d

]2 ≡ [ncd ] (mod 2) and (16), we obtain

2δ

d−1∑
n=1

nc
[nc
d

]
≡ (d− 1)(2d− 1)(c2 − 1)

6/δ
+ δd

(d− 1)(c− 1)

2
(mod 2δd).

Using (17), the desired result follows. �

By Lemma 7, if d ≡ 1, 2 (mod 4), then dδs(c, d) is a rational integer whose
parity we now determine:

Lemma 9. (i) If d ≡ 1 (mod 4), then dδs(c, d) is a rational integer of the
same parity as (d − 1)/4. (ii) If d ≡ 2 (mod 4), then dδs(c, d) is a rational
integer of the same parity as (d− 2)/4.
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Proof. Let us prove point (i).

We have (d−1)(2d−1)
3/δ c ∈ 4Z and the three others terms in G(c, d) are even.

Hence G(c, d) is even. Since if n is even and a is odd, then an ≡ n (mod 4),
we have

G(c, d) ≡ 3

δ
G(c, d) ≡ d− 1

2

(
−(2d− 1)c∗(c2 − 1)− 3d− 3dc∗(c− 1)

)
≡ d− 1

2

(
−c∗(c2 − 1)− 1− c∗(c− 1)

)
≡ d− 1

2
(mod 4),

since −c∗(c2 − 1)− 1− c∗(c− 1) = −c∗(c2 + c− 2)− 1 is odd.
Let us prove point (ii).

Since c is odd, we have c2 − 1 ≡ 0 (mod 8) and (d−1)(2d−1)(c2−1)
6/δ ∈ 4Z.

Hence,

G(c, d) ≡ δc− 0− δ d
2
− δ d

2
c∗(c− 1) ≡ δc(1− d/2) ≡ d/2− 1 (mod 4),

using d ≡ 2 (mod 4) and c∗(c− 1) ≡ c− 1 (mod 4) (as c and c∗ are odd). �

Using Lemma 8 we will obtain Theorem 10 (which implies Theorem 6).
Using Lemmas 8 and 9 we will obtain Theorem 13 and obtain in Corollary

14 the same result for S(Hn, 2p) than the one obtained for S(Hn, p) in Theorem
6 or Corollary 11.

4.1. The case that d is odd

Theorem 10. Assume that d > 1 is odd. Set δ = gcd(3, d). Let Hn be a
subgroup of order n of the multiplicative group (Z/dZ)∗. Let T (Hn, d) be as in
(11). Then gcd(d, T (Hn, d)) > 1 and

2δ
d

gcd(d, T (Hn, d))
S(Hn, d)

is a rational integer of the same parity as nd−12 and

2δS(Hn, d) ∈ Z⇔ d | T (Hn, d).

In contrast, 2δs(c, d) ∈ Z⇔ c2 ≡ −1 (mod d), in which case s(c, d) = 0.

Proof. For the first assertion, see point (ii) of Lemma 5.

Noticing that D6 := (d−1)(2d−1)
6/δ ∈ Z, that the third and fourth terms of

G(c, d) in Lemma 8 are in dZ and that 2c − c∗(c2 − 1) ≡ c + c∗ (mod d), we
obtain (in Z)

2dδs(c, d) ≡ G(c, d) ≡ D6(c+ c∗) (mod d)

and
2dδS(Hn, d) ≡ 2D6T (Hn, d) (mod d).

Therefore, 2dδS(Hn, d) is indeed in gcd(d, T (Hn, d))Z. Since gcd(2D6, d) = 1,
the rational number 2δS(Hn, d) is in Z if and only if d divides T (Hn, d), as
asserted, and the rational number 2δs(c, d) is in Z if and only if c + c∗ ≡ 0
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(mod d), i.e., if and only if c2 ≡ −1 (mod d), as asserted. In that case, the
change of variable n 7→ c∗n in (1) gives s(c, d) = s(c∗, d) = −s(c, d) and
s(c, d) = 0, as asserted.

Finally, by Lemma 7, we have (in Z)

2dδS(Hn, d) =
∑
c∈Hn

2dδs(c, d) ≡ nd− 1

2
(mod 2).

Using the oddness of gcd(d, T (Hn, d)) we obtain

2δ
d

gcd(d, T (Hn, d))
S(Hn, d) ≡ nd− 1

2
(mod 2),

as asserted. �

Corollary 11. If Hn is a subgroup of order n > 1 of the multiplicative group
(Z/pZ)∗, p > 3, then S(Hn, p) = 0 if n is even, whereas 2S(Hn, p) is a rational
integer of the same parity as (p− 1)/2 if n is odd.

4.2. The case that d is even

We cannot expect Theorem 10 to hold true for d even. For example, for
n = 3, d = 14 and H3 = {1, 9, 11}, we have 2δS(H3, d) = 2S(H3, 14) = 1 ∈ Z
but d = 14 does not divide T (H3, 14) = 7.

If d is even, recalling that c∗ is such that cc∗ ≡ 1 (mod d), we set

(18) T ′(Hn, d) :=
∑
c∈Hn

(
c− c∗ c

2 − 1

2
− d

2

)
∈ Z/dZ

(if d is even, then c∗ and c are odd and (c2 − 1)/2 ∈ 2Z. Moreover, the

application c (odd) 7→ c2−1
2 modulo d is d-periodic. Hence, T ′(Hn, d) is well

defined).

Lemma 12. Let Hn be a subgroup of order n > 1 of the multiplicative group
(Z/dZ)∗.

(i) If d is even, then T (Hn, d) ≡ n (mod 2), T ′(Hn, d) = T (Hn, d) or
T (Hn, d) + d

2 .

(ii) If d ≡ 2 (mod 4) or d ≡ 4 (mod 8), then T ′(Hn, d) = T (Hn, d) + nd2
in Z/dZ.

(iii) Assume that d = 2p, where p ≥ 3 is prime. Then there exists at most
one subgroup Hn of a given order n in the cyclic group (Z/2pZ)∗. If n
is even, then −1 ∈ Hn and S(Hn, d) = 0 (Lemma 5). If n is odd, then
T (Hn, 2p) = p and T ′(Hn, 2p) = 0.

Proof. Any c ∈ Hn being odd, the first assertion of (i) follows. Since 2c −
c∗(c2−1) ≡ c+ c∗ (mod d), we have 2T ′n(Hn, d) ≡

∑
c∈Hn

(c+ c∗) ≡ 2T (Hn, d)

(mod d) and the second assertion of (i) follows.

For (ii), it suffices to prove that S :=
∑
c∈Hn

c∗ c
2−1
2 = 0 in Z/dZ. Clearly,

2S = T (Hn, d)− T (Hn, d) = 0. Hence S = 0 or S = d
2 . Since clearly S = [4s]d
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in Z/dZ for some s ∈ Z, if we had S = d/2, then we would have 4s ≡ d
2

(mod d) and the contradictions 4s ≡ 1 (mod 2) for d ≡ 2 (mod 4) and 4s ≡ 2
(mod 4) for d ≡ 4 (mod 8).

Notice, for example, that if n = 2, d = 8 and H2 = {1, 9}, then 0 =
T ′(H2, 8) 6= T (H2, 8) + nd2 = 4 in Z/8Z.

For (iii), we have T (Hn, 2p) ≡ n ≡ 1 (mod 2), by point (i), and T (Hn, 2p) ∈
{0, 2, p}, by point (ii) of Lemma 5. Hence, T (Hn, 2p) = p and point (ii) gives
T ′(Hn, 2p) = T (Hn, 2p) + p = 0. �

Theorem 13. Assume that d > 1 is even. Set δ = gcd(3, d). Let Hn be a
subgroup of order n of the multiplicative group (Z/dZ)∗. Let T ′(Hn, d) be as in
(18). Then

2δ
d

gcd(d, T ′(Hn, d))
S(Hn, d) ∈ Z

and

2δS(Hn, d) ∈ Z⇔ d | T ′(Hn, d).

In contrast, 2δs(c, d) ∈ Z⇔ c2 ≡ −1 (mod d), in which case s(c, d) = 0.
Moreover, if d ≡ 2 (mod 4), then

2δ
d

gcd(d, T ′(Hn, d))
S(Hn, d)

is a rational integer of the same parity as nd−24 .

Proof. We set

D3 :=
(d− 1)(2d− 1)

3/δ
∈ Z.

Notice that gcd(D3, d) = 1.
Since c is odd, c2−1 is even, D3 is odd, the fourth term of G(c, d) in Lemma

8 is in dZ and its third term is equal to d/2 modulo d. Hence (in Z), we have

2dδs(c, d) ≡ D3(c− c∗ c
2 − 1

2
)− d

2
≡ D3(c− c∗ c

2 − 1

2
− d

2
) (mod d)

and

2dδS(Hn, d) =
∑
c∈Hn

2dδs(c, d) ≡ D3T
′(Hn, d) (mod d).

Therefore, 2dδS(Hn, d) is indeed in gcd(d, T ′(Hn, d))Z. Since gcd(D3, d) = 1,
the rational number 2δS(Hn, d) is in Z if and only if d divides T ′(Hn, d), as
asserted, and if the rational number 2δs(c, d) is in Z, then d divides 2c−c∗(c2−
1) − d, hence divides c + c∗ and we obtain c2 ≡ −1 (mod d). Conversely, if
c2 ≡ −1 (mod d), then as in the proof of Theorem 10 we have s(c, d) = 0 and
hence 2δs(c, d) ∈ Z.

Finally, assume that d ≡ 2 (mod 4). Then T ′(Hn, d) ≡ 0 (mod 2), by (18).
Hence, gcd(d, T ′(Hn, d)) = 2 gcd(d/2, T ′(Hn, d)). The oddness of gcd(d/2,
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T ′(Hn, d)) gives

2
d

gcd(d, T ′(Hn, d))
δS(Hn, d) =

d

gcd(d/2, T ′(Hn, d))
δS(Hn, d)

≡ dδS(Hn, d) (mod 2).

By Lemma 9 we have dδs(c, d) ∈ Z, dδS(Hn, d) ∈ Z and

dδS(Hn, d) ≡ nd− 2

4
(mod 2).

The last assertion follows. �

Corollary 14. If Hn is a subgroup of order n > 1 of the multiplicative group
(Z/2pZ)∗, p > 3, then S(Hn, 2p) = 0 if n is even, whereas 2S(Hn, 2p) is a
rational integer of the same parity as (p− 1)/2 if n is odd.

Proof. The last assertion follows from T ′(Hn, 2p) = 0, n odd (Lemma 12). �
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