Bull. Korean Math. Soc. **56** (2019), No. 4, pp. 815–827 https://doi.org/10.4134/BKMS.b180043 pISSN: 1015-8634 / eISSN: 2234-3016

ON THE DENOMINATOR OF DEDEKIND SUMS

Stéphane R. Louboutin

ABSTRACT. It is well known that the denominator of the Dedekind sum s(c, d) divides $2 \operatorname{gcd}(d, 3)d$ and that no smaller denominator independent of c can be expected. In contrast, here we prove that we usually get a smaller denominator in S(H, d), the sum of the s(c, d)'s over all the c's in a subgroup H of order n > 1 in the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$. First, we prove that for p > 3 a prime, the sum 2S(H, p) is a rational integer of the same parity as (p-1)/2. We give an application of this result to upper bounds on relative class numbers of imaginary abelian number fields of prime conductor. Finally, we give a general result on the denominator is a divisor of some explicit divisor of $2d \operatorname{gcd}(d, 3)$.

1. Introduction

The *Dedekind sums* are defined by

(1)
$$s(c,d) := \frac{1}{4d} \sum_{n=1}^{d-1} \cot\left(\frac{\pi n}{d}\right) \cot\left(\frac{\pi nc}{d}\right) \text{ (for } c \in \mathbb{Z}, d > 1 \text{ and } \gcd(c,d) = 1)$$

(see [1, Chapter 3, Exercise 11] or [8, (26)]). Dedekind sums are rational numbers whose denominators divide $2d \operatorname{gcd}(3, d)$:

Proposition 1 (See [8, Theorem 2 page 27]). We have $2d \operatorname{gcd}(3, d)s(c, d) \in \mathbb{Z}$. Hence, $2ps(c, p) \in \mathbb{Z}$ for p > 3 a prime and $p \nmid c$.

Since for example, $2d \operatorname{gcd}(3, d)s(1, d) = \frac{(d-1)(d-2)}{6/\operatorname{gcd}(3,d)}$ is a rational integer coprime with d, we cannot expect more in general. Now, for H a subgroup of the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*, d > 1$, we set

(2)
$$S(H,d) := \sum_{c \in H} s(c,d) \in \mathbb{Q}.$$

Theorems 3 and 4 below obtained in [4] led us to suspect that 2S(H, p) might always be a rational integer for p > 3 a prime and #H > 1. The first aim

©2019 Korean Mathematical Society

Received January 12, 2018; Revised March 1, 2019; Accepted April 25, 2019.

²⁰¹⁰ Mathematics Subject Classification. Primary 11F20; Secondary 11M20, 11R29.

 $Key\ words\ and\ phrases.$ Dedekind sum, Dirichlet character, mean square value L -functions, relative class number.

S. R. LOUBOUTIN

of the present paper is to prove that 2S(H, p) is indeed a rational integer of known parity for p > 3 a prime and #H > 1 (see Theorem 6). We will then explain that for non-prime d's we still have some cancelation in the denominator $2d \operatorname{gcd}(3, d)$ of S(H, d) (Theorem 10 for the case that d is odd and Theorem 13 for the case that d is even).

It seems that it is the first time someone looks at the denominators of sums of Dedekind sums over elements of subgroups of the multiplicative groups $(\mathbb{Z}/d\mathbb{Z})^*$ (for denominators of Dedekind sums, we refer the reader to [7]). It would be worth to obtain similar results for the higher dimensional Dedekind sums introduced in [11].

2. Dedekind sums, L-functions and relative class numbers

Let us first explain our motivation for studying sums of Dedekind sums over elements of a subgroup. We refer the reader to [10] for more background details. Let K be an imaginary abelian number field of prime conductor $p \ge 3$, i.e., let K be an imaginary subfield of a cyclotomic number field $\mathbb{Q}(\zeta_p)$ (Kronecker-Weber's theorem). The Galois group $\operatorname{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ is canonically isomorphic to the multiplicative cyclic group $(\mathbb{Z}/p\mathbb{Z})^*$ and $H = \operatorname{Gal}(\mathbb{Q}(\zeta_p)/K)$ is a subgroup of $(\mathbb{Z}/p\mathbb{Z})^*$ of odd order n and even index $(p-1)/n = [K : \mathbb{Q}]$. Let X_p^- be the set of the (p-1)/2 odd Dirichlet characters mod p. The set

$$X_p^-(H) := \{ \chi \in X_p^-; \text{ and } \chi_{/H} = 1 \}$$

is of cardinal (p-1)/(2n). Let h_K^- be the relative class number of K and w_K be the number of complex roots of unity in K. Hence, $w_K = 2$ if $K \neq \mathbb{Q}(\zeta_p)$ and $w_K = 2p$ otherwise. Let $L(s, \chi) = \sum_{n \geq 1} \chi(n)n^{-s}$ be the Dirichlet *L*-functions associated with $\chi \in X_p^-$. Then (see [3, Proposition 1])

(3)
$$L(1,\chi) = \frac{\pi}{2p} \sum_{a=1}^{p-1} \chi(a) \cot\left(\frac{\pi a}{p}\right) \qquad (\chi \in X_p^-).$$

Using the arithmetic-geometric mean inequality to obtain (5), plugging (3) in (4) and using the orthogonality relations for characters to obtain (6), we have:

Proposition 2 (See [4, Corollary 3]). Let $n \ge 1$ be an odd integer. Let $p \equiv 1 \pmod{2n}$ be a prime. Let H_n be the only subgroup of order n of the multiplicative cyclic group $(\mathbb{Z}/p\mathbb{Z})^*$. Set

$$S(H_n, p) := \sum_{h \in H_n} s(h, p),$$
$$N(H_n, p) := 12S(H_n, p) - p$$

and

(4)
$$M(H_n, p) := \frac{2n}{p-1} \sum_{\chi \in X_p^-(H_n)} |L(1, \chi)|^2.$$

Let K be the imaginary subfield of degree (p-1)/n of the cyclotomic number field $\mathbb{Q}(\zeta_p)$. Then

(5)
$$h_{K}^{-} = w_{K} \left(\frac{p}{4\pi^{2}}\right)^{\frac{p-1}{4n}} \prod_{\chi \in X_{p}^{-}(H_{n})} L(1,\chi) \le w_{K} \left(\frac{pM(H_{n},p)}{4\pi^{2}}\right)^{\frac{p-1}{4n}}$$

and we have the mean square value formula

(6)
$$M(H_n, p) = \frac{2\pi^2}{p} S(H_n, p) = \frac{\pi^2}{6} \left(1 + \frac{N(H_n, p)}{p} \right).$$

2.1. The cases n = 1, n = 3 and n = (p - 1)/2

These are the only three cases where explicit formulas for $S(H_n, p)$ are known.

1. Assume that n = 1. Then $H_1 = \{1\}, X_p^-(H_1) = X_p^-,$

(7)
$$S(H_1, p) = s(1, p) = \frac{(p-1)(p-2)}{12p}$$

(e.g. see [3, Lemme (a)], or [8, Lemma 2 page 5] with however an alternative definition of the Dedekind sums), $N(H_1, p) = -3 + 2/p \le -1$,

(8)
$$M(\{1\}, p) := \frac{2}{p-1} \sum_{\chi \in X_p^-} |L(1,\chi)|^2 = \frac{\pi^2}{6} \left(1 - \frac{1}{p}\right) \left(1 - \frac{2}{p}\right) \le \frac{\pi^2}{6}$$

(see also [9]) and by (5) (see also [3], [5]):

$$h_{\mathbb{Q}(\zeta_p)}^- \le 2p\left(\frac{p}{24}\right)^{(p-1)/4}.$$

2. Assume that n = (p-1)/2, where 3 to assure the oddness of <math>n. Then $H_{(p-1)/2} = \{c^2 : c \in (\mathbb{Z}/p\mathbb{Z})^*\}$ and $X_p^-(H_{(p-1)/2})$ is reduced to the Legendre symbol $\left(\frac{\bullet}{p}\right)$. The class number formula gives $L(1, \left(\frac{\bullet}{p}\right)) = \pi h_{\mathbb{Q}(\sqrt{-p})}/\sqrt{p}$. Hence, $M(H_2, p) = \frac{\pi^2 h_{\mathbb{Q}(\sqrt{-p})}}{p}$ and

(9)
$$S(H_2, p) = h_{\mathbb{Q}(\sqrt{-p})}^2 / (p \equiv 3 \pmod{4}).$$

Notice that in this situation the upper bound (5) is an equality.

3. Assume that n = 3. Then $p \equiv 1 \pmod{3}$. Surprisingly, we proved in [4] that in that case we have a closed formula:

Theorem 3. Let $p \equiv 1 \pmod{6}$ be a prime. Let H_3 be the subgroup of order 3 of the multiplicative cyclic group $(\mathbb{Z}/p\mathbb{Z})^*$. Let K be the imaginary subfield of degree (p-1)/3 of the cyclotomic number field $\mathbb{Q}(\zeta_p)$. Then $S(H_3, p) = (p-1)/12$ and $N(H_3, p) = -1$. Hence, $M(H_3, p) \leq \pi^2/6$ and $h_K^- \leq 2(p/24)^{(p-1)/12}$ (note the misprint in the exponent in [4, (8)]).

4. Since the mean square value of $L(1,\chi)$, $\chi \in X_p^-$, is asymptotic to $\pi^2/6$, by (8), as in the case n = 3 we might expect to have bounds close to

(10)
$$M(H_n, p) \le \pi^2/6 \text{ and } h_K^- \le w_K \left(\frac{p}{24}\right)^{\frac{p-1}{4n}}$$

by (4) and (5), which would follow from $N(H_n, p) \leq 0$, by (5) and (6). However, it is hopeless to expect such a universal mean square upper bound. Indeed, it is likely that there are infinitely many imaginary abelian number fields of a given degree m = 2n and prime conductors p for which

$$M(H_n, p) = \frac{2n}{p-1} \sum_{\chi \in X_p^-(H_n)} |L(1, \chi)|^2 \ge \left(\prod_{\chi \in X_p^-(H_n)} L(1, \chi)\right)^{\frac{p}{4n}} \gg (\log \log p)^2$$

n = 1

(see [2] and [6]). Nevertheless, for n = 5 we do sometimes have (10):

Theorem 4 (See [4, Theorem 5]). Let $p \equiv 1 \pmod{10}$ be a prime of the form $p = a^4 + a^3 + a^2 + a + 1$, $a \in \mathbb{Z}$. Let $H_5 = \langle a \rangle$ be the subgroup of order 5 of the multiplicative cyclic group $(\mathbb{Z}/p\mathbb{Z})^*$. Let K be the imaginary subfield of degree (p-1)/5 of the cyclotomic number field $\mathbb{Q}(\zeta_p)$. Then $S(H_5,p) = (a^4 + 3a^3 + 5a^2 + 3a)/12$ and $N(H_5,p) = 2a(a+1)^2 - 1$. Hence, for $a \leq -2$ we have $M(H_5,p) \leq \pi^2/6$ and $h_K^- \leq 2(p/24)^{(p-1)/20}$ (note the misprint in the exponent in [4, Theorem 5]).

2.2. A question

To conclude this introduction, we give an excerpt of the computations we did on the sign of $N(H_n, p)$. According to them one might expect that asymptotically we have $N(H_n, p) \leq 0$ with a positive probability close to 1/2. Consequently we would have $h_K^- \leq 2(p/24)^{m/4}$ with a positive probability close to 1/2 for imaginary abelian number fields K of prime conductors p and degree m. We have no idea how to efficiently tackle this question.

Setting

$$N_1(B) = \#\{p : 3 \le p \le B\},\$$

 $N_2(B) = \#E(B),$

where $E(B) = \{(n, p) : n \ge 1 \text{ odd divides } p - 1 \text{ and } p \le B\}$ is the number of imaginary abelian number fields of prime conductors less than or equal to B,

$$N_3(B) = \#\{(n, p) \in E(B) : N(H_n, p) \le 0\}$$

and $\rho(B) = N_3(B)/N_2(B)$, we computed:

B	$N_1(B)$	$N_2(B)$	$N_3(B)$	$\rho(B)$
10^{2}	24	60	50	$0.83333\ldots$
10^{3}	167	666	507	0.76126
10^4	1228	6775	4766	$0.70346\ldots$
10^{5}	9591	66921	44629	0.66689
10^{6}	78497	666728	427013	0.64046

3. On the denominator of $S(H_n, p)$

Lemma 5. Let H be a subgroup of the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$, d > 1. Set

(11)
$$T(H,d) := \sum_{c \in H_n} c \in \mathbb{Z}/d\mathbb{Z}$$

(i) If $-1 \in H$, then T(H, d) = 0 in $\mathbb{Z}/d\mathbb{Z}$ and S(H, d) = 0 in \mathbb{Q} .

(ii) If #H > 1, then $T(H, d) \notin (\mathbb{Z}/d\mathbb{Z})^*$, i.e., gcd(d, T(H, d)) > 1.

In particular, T(H, p) = 0 whenever H is a subgroup of order greater than one in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^*$, $p \geq 3$ a prime.

Proof. For (i), notice that $c \in H \mapsto -c \in H$ is a bijection and that s(-c, d) = -s(c, d). For (ii), notice that for any $1 \neq c_0 \in H$ we have $(1 - c_0)T(H, d) = T(H, d) - T(H, d) = 0$ in $\mathbb{Z}/d\mathbb{Z}$ (as $c \in H \mapsto c_0 c \in H$ is a bijection).

Let $p \geq 3$ be a prime integer. Let $H = H_n$ be a subgroup of order n > 1in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^*$. If n = #H is even, then $-1 \in H$ and S(H,p) = 0 in \mathbb{Q} . Hence, we may assume that n = #H > 1 is odd and in his section we prove that $2S(H_n, p)$ is always a rational integer (for $p \equiv 1 \pmod{6}$) we already know that $2S(H_3, p) = (p-1)/6 \in \mathbb{Z}$, by Theorem 3):

Theorem 6. Let p > 3 be a prime integer. (i) If $p \nmid c$, then 2ps(c, p) is a rational integer of the same parity as (p-1)/2. (ii) Let H be a subgroup of odd order #H > 1 in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^*$. Let N(H,p) be as in Proposition 2. Then 2S(H,p) is a rational integer of the same parity as (p-1)/2 and N(H,p) = 12S(H,p) - p is an odd rational integer.

Proof. To begin with, take $1 \neq c_0 \in H_n$. Then $c \in H \longrightarrow c_0 c \in H$ being bijective, we have $T(H_n, p) = c_0 T(H_n, p)$ and $T(H_n, p) = 0$. We have

$$S := \sum_{m=1}^{p-1} \cot\left(\frac{\pi m}{p}\right) = \sum_{m=1}^{p-1} \cot\left(\frac{\pi (p-m)}{p}\right) = -S$$

and S = 0 in \mathbb{Q} . Hence,

$$s(c,p) = -\frac{1}{p} \sum_{n=1}^{p-1} \left(\frac{\cot\left(\frac{\pi n}{p}\right) - i}{2i} \frac{\cot\left(\frac{\pi n c}{p}\right) - i}{2i} - \frac{1}{4} \right).$$

Set $\pi_p = 1 - \zeta_p$. Then $\frac{\cot(m\pi/p) - i}{2i} = \frac{1}{\zeta_p^m - 1} = -\pi_p^{-1}u_m$ for $p \nmid m$, where $u_m := (1 - \zeta_p)/(1 - \zeta_p^m) \in \mathbb{Z}[\zeta_p]$ is in fact a unit of $\mathbb{Z}[\zeta_p]$, by [10, Lemma 1.3]. We obtain

(12)
$$2ps(c,p) = -2\pi_p^{-2}w_{p,c} + \frac{p-1}{2}, \text{ where } w_{p,c} := \sum_{n=1}^{p-1} u_n u_{cn} \in \mathbb{Z}[\zeta_p].$$

Now, in the quotient ring $\mathbb{Z}[\zeta_p]/\pi_p^3\mathbb{Z}[\zeta_p]$ we have

$$u_m = \frac{\pi_p}{1 - (1 - \pi_p)^m} = \frac{1}{m} \left(1 + \frac{m - 1}{2} \pi_p + \frac{m^2 - 1}{12} \pi_p^2 \right) \quad (\text{ if } p \nmid m).$$

Therefore, for $p \nmid c$ we have

$$w_{p,c} = \sum_{n=1}^{p-1} \frac{1}{cn^2} \left(1 + \frac{(c+1)n - 2}{2} \pi_p + \frac{(c^2 + 3c + 1)n^2 - 3(c+1)n + 1}{12} \pi_p^2 \right).$$

Moreover, since π_p^3 divides π_p^{p-1} and π_p^{p-1} divides $p = \prod_{k=1}^{p-1} (1 - \zeta_p^k)$ and since in $\mathbb{Z}/p\mathbb{Z}$ we have

$$\sum_{n=1}^{p-1} 1 = p - 1 = -1, \quad \sum_{n=1}^{p-1} \frac{1}{n} = \sum_{n=1}^{p-1} n = \frac{p(p-1)}{2} = 0$$

and

$$\sum_{n=1}^{p-1} \frac{1}{n^2} = \sum_{n=1}^{p-1} n^2 = \frac{p(p-1)(2p-1)}{6} = 0,$$

we deduce that

(13)
$$w_{p,c} = -\frac{c^2 + 3c + 1}{12c} \pi_p^2 \quad (\text{in } \mathbb{Z}[\zeta_p]/\pi_p^3 \mathbb{Z}[\zeta_p]).$$

Hence, π_p^2 divides $w_{p,c}$ in $\mathbb{Z}[\zeta_p]$, i.e., $w_{p,c} = \pi_p^2 W_{p,c}$ with $W_{p,c} \in \mathbb{Z}[\zeta_p]$. By (12), we have $W_{p,c} = \frac{p-1}{4} - ps(c,p) \in \mathbb{Q} \cap \mathbb{Z}[\zeta_p] = \mathbb{Z}$, $2ps(c,p) = -2W_{p,c} + \frac{p-1}{2} \in \mathbb{Z}$ and $2ps(c,p) \equiv \frac{p-1}{2} \pmod{2}$. The proof of the first point is complete. Moreover,

$$W_{p,c} = -\frac{c^2 + 3c + 1}{12c} \qquad (\text{in } \mathbb{Z}[\zeta_p]/\pi_p \mathbb{Z}[\zeta_p]),$$

by (13), and
$$T(H,p) = \sum_{c \in H} c = \sum_{c \in H} 1/c = 0$$
 in $\mathbb{Z}/p\mathbb{Z}$.
Hence, in $\mathbb{Z}[\zeta_p]/\pi_p\mathbb{Z}[\zeta_p]$ we have

$$2ps(c,p) = -2W_{p,c} + \frac{p-1}{2} = \frac{c^2 + 1}{6c}$$

and

$$2pS(H,p) = \sum_{c \in H} 2ps(c,p) = \sum_{c \in H} \frac{c^2 + 1}{6c} = 0.$$

Hence, $2pS(H,p) \in \mathbb{Q} \cap \pi_p\mathbb{Z}[\zeta_p] = p\mathbb{Z}, 2S(H,p) \in \mathbb{Z}$ and using point (i) we have

$$2S(H,p) \equiv 2pS(H,p) \equiv \sum_{c \in H} 2ps(c,p) \equiv \sum_{c \in H} \frac{p-1}{2} \equiv \frac{p-1}{2} \pmod{2}.$$

The proof of the second point is complete.

_	_	_	
-	-		

4. On the denominator of $S(H_n, d)$

Throughout the paper, we set

$$\delta = \gcd(3, d).$$

Now, what can we say about the denominator of $S(H_n, d)$ for H_n a subgroup of order n > 1 of the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$ if we do not assume anymore that d is prime? A key ingredient of the proof of Theorem 6 is that $T(H_n, p) = 0$. This does not necessarily hold true in general.

For example, there are 4 subgroups of order 3 in $(\mathbb{Z}/91\mathbb{Z})^*$ and we respectively have:

(i) $S(\{1,9,81\},91) = 15/2$ and $T(\{1,9,81\},91) = 0$,

(ii) $S(\{1, 16, 74\}, 91) = 15/2$ and $T(\{1, 16, 74\}, 91) = 0$,

(iii) $S(\{1, 22, 29\}, 91) = 97/14$ and $T(\{1, 22, 29\}, 91) = 52 = 4 \cdot 13$, and

(iv) $S(\{1, 53, 79\}, 91) = 171/26$ and $T(\{1, 53, 79\}, 91) = 42 = 6 \cdot 7$.

Theorem 10 will clarify the appearance of these various denominators. Notice that Theorem 10 asserts that for d odd and n > 1, the denominator of $S(H_n, d)$ is always smaller than $2d\delta$. Instead of using (1), throughout this section we will use an equivalent definition (15) of the Dedekind sums.

Lemma 7. For $d \ge 1$, $c \in \mathbb{Z}$ with gcd(c, d) = 1, we have

(14)
$$2d\delta s(c,d) = \frac{(d-1)(2d-1)}{3/\delta}c - \delta \frac{d(d-1)}{2} - 2\delta \sum_{n=1}^{d-1} n\left[\frac{nc}{d}\right].$$

Hence (compare with [8, Theorem 2 page 27]), the rational number $2d\delta s(c,d)$ is a rational integer of known parity, namely

$$2d\delta s(c,d) \equiv \begin{cases} (d-1)/2 \pmod{2} & \text{if } d \text{ is } odd, \\ d/2 - 1 \pmod{2} & \text{if } d \text{ is } even. \end{cases}$$

Proof. For $x \in \mathbb{R}$ we write $x = [x] + \{x\}$ with $[x] \in \mathbb{Z}$ and $0 \leq \{x\} < 1$. By *d*-periodicity of both sides of (14), we may assume that $1 \leq c \leq d-1$. According to [1, Chapter 3, (31) and Exercise 11] or [8, (1) page 1] and since $\begin{bmatrix} n \\ d \end{bmatrix} = 0$ for $1 \leq n \leq d-1$, we have

(15)
$$s(c,d) = \sum_{n=1}^{d-1} \left(\frac{n}{d} - \left[\frac{n}{d} \right] - \frac{1}{2} \right) \left(\frac{nc}{d} - \left[\frac{nc}{d} \right] - \frac{1}{2} \right)$$
$$= \sum_{n=1}^{d-1} \left\{ \frac{n^2c}{d^2} - \frac{n(c+1)}{2d} + \frac{1}{4} + \frac{1}{2} \left[\frac{nc}{d} \right] - \frac{n}{d} \left[\frac{nc}{d} \right] \right\}$$

Using $\sum_{n=1}^{d-1} \left\{ \frac{nc}{d} \right\} = \sum_{n=1}^{d-1} \left\{ \frac{n}{d} \right\} = \sum_{n=1}^{d-1} \frac{n}{d}$ for gcd(c, d) = 1, we obtain

(16)
$$\sum_{n=1}^{d-1} \left[\frac{nc}{d} \right] = \sum_{n=1}^{d-1} \left(\frac{nc}{d} - \left\{ \frac{nc}{d} \right\} \right) = \sum_{n=1}^{d-1} \frac{n(c-1)}{d} = \frac{(d-1)(c-1)}{2}.$$

The desired first result follows. Since (14) clearly yields

$$2d\delta s(c,d) \equiv (d-1)c + \frac{d(d-1)}{2} \pmod{2},$$

the second assertion follows by noticing that if d is even, then c is odd. \Box

Lemma 8. For $d \ge 1$, set $\delta = \gcd(3, d)$. For $c \in \mathbb{Z}$ and $\gcd(c, d) = 1$, let c^* be such that where $cc^* \equiv 1 \pmod{d}$ and set

$$G(c,d) := \frac{(d-1)(2d-1)}{3/\delta}c - c^* \frac{(d-1)(2d-1)(c^2-1)}{6/\delta} - \delta \frac{d(d-1)}{2} - c^* \delta d \frac{(d-1)(c-1)}{2},$$

a rational integer (since c is odd whenever d is even, the four fractions that appear in this formula are all in \mathbb{Z}). Then $2d\delta s(c, d) \equiv G(c, d) \pmod{2\delta d}$.

Proof. By (14), we have

(17)
$$2d\delta s(c,d) \equiv \frac{(d-1)(2d-1)}{3/\delta}c - \delta \frac{d(d-1)}{2} - 2\delta c^* \sum_{n=1}^{d-1} nc \left[\frac{nc}{d}\right] \pmod{2\delta d}.$$

Since $2x[x] = x^2 - \{x\}^2 + [x]^2$ and

$$\sum_{n=1}^{d-1} \left\{ \frac{nc}{d} \right\}^2 = \sum_{n=1}^{d-1} \left\{ \frac{n}{d} \right\}^2 = \sum_{n=1}^{d-1} \frac{n^2}{d^2} \qquad (\gcd(c,d) = 1),$$

we have

$$2\sum_{n=1}^{d-1} \frac{nc}{d} \left[\frac{nc}{d} \right] = \sum_{n=1}^{d-1} \frac{n^2(c^2 - 1)}{d^2} + \sum_{n=1}^{d-1} \left[\frac{nc}{d} \right]^2$$
$$= \frac{(d-1)(2d-1)(c^2 - 1)}{6d} + \sum_{n=1}^{d-1} \left[\frac{nc}{d} \right]^2.$$

Therefore, using $\left[\frac{nc}{d}\right]^2 \equiv \left[\frac{nc}{d}\right] \pmod{2}$ and (16), we obtain

$$2\delta \sum_{n=1}^{d-1} nc \left[\frac{nc}{d} \right] \equiv \frac{(d-1)(2d-1)(c^2-1)}{6/\delta} + \delta d \frac{(d-1)(c-1)}{2} \pmod{2\delta d}.$$

Using (17), the desired result follows.

By Lemma 7, if $d\equiv 1,2\pmod{4},$ then $d\delta s(c,d)$ is a rational integer whose parity we now determine:

Lemma 9. (i) If $d \equiv 1 \pmod{4}$, then $d\delta s(c, d)$ is a rational integer of the same parity as (d-1)/4. (ii) If $d \equiv 2 \pmod{4}$, then $d\delta s(c, d)$ is a rational integer of the same parity as (d-2)/4.

Proof. Let us prove point (i).

We have $\frac{(d-1)(2d-1)}{3/\delta}c \in 4\mathbb{Z}$ and the three others terms in G(c,d) are even. Hence G(c,d) is even. Since if n is even and a is odd, then $an \equiv n \pmod{4}$, we have

$$G(c,d) \equiv \frac{3}{\delta}G(c,d) \equiv \frac{d-1}{2} \left(-(2d-1)c^*(c^2-1) - 3d - 3dc^*(c-1) \right)$$
$$\equiv \frac{d-1}{2} \left(-c^*(c^2-1) - 1 - c^*(c-1) \right) \equiv \frac{d-1}{2} \pmod{4},$$

since $-c^*(c^2 - 1) - 1 - c^*(c - 1) = -c^*(c^2 + c - 2) - 1$ is odd. Let us prove point (ii).

Since c is odd, we have $c^2 - 1 \equiv 0 \pmod{8}$ and $\frac{(d-1)(2d-1)(c^2-1)}{6/\delta} \in 4\mathbb{Z}$. Hence,

$$G(c,d) \equiv \delta c - 0 - \delta \frac{d}{2} - \delta \frac{d}{2} c^*(c-1) \equiv \delta c(1-d/2) \equiv d/2 - 1 \pmod{4},$$

using $d \equiv 2 \pmod{4}$ and $c^*(c-1) \equiv c-1 \pmod{4}$ (as c and c^* are odd). \Box

Using Lemma 8 we will obtain Theorem 10 (which implies Theorem 6).

Using Lemmas 8 and 9 we will obtain Theorem 13 and obtain in Corollary 14 the same result for $S(H_n, 2p)$ than the one obtained for $S(H_n, p)$ in Theorem 6 or Corollary 11.

4.1. The case that d is odd

Theorem 10. Assume that d > 1 is odd. Set $\delta = \gcd(3, d)$. Let H_n be a subgroup of order n of the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$. Let $T(H_n, d)$ be as in (11). Then $\gcd(d, T(H_n, d)) > 1$ and

$$2\delta \frac{d}{\gcd(d, T(H_n, d))} S(H_n, d)$$

is a rational integer of the same parity as $n\frac{d-1}{2}$ and

$$2\delta S(H_n, d) \in \mathbb{Z} \Leftrightarrow d \mid T(H_n, d).$$

In contrast, $2\delta s(c,d) \in \mathbb{Z} \Leftrightarrow c^2 \equiv -1 \pmod{d}$, in which case s(c,d) = 0.

Proof. For the first assertion, see point (ii) of Lemma 5.

Noticing that $D_6 := \frac{(d-1)(2d-1)}{6/\delta} \in \mathbb{Z}$, that the third and fourth terms of G(c, d) in Lemma 8 are in $d\mathbb{Z}$ and that $2c - c^*(c^2 - 1) \equiv c + c^* \pmod{d}$, we obtain (in \mathbb{Z})

$$2d\delta s(c,d) \equiv G(c,d) \equiv D_6(c+c^*) \pmod{d}$$

and

$$2d\delta S(H_n, d) \equiv 2D_6 T(H_n, d) \pmod{d}.$$

Therefore, $2d\delta S(H_n, d)$ is indeed in $gcd(d, T(H_n, d))\mathbb{Z}$. Since $gcd(2D_6, d) = 1$, the rational number $2\delta S(H_n, d)$ is in \mathbb{Z} if and only if d divides $T(H_n, d)$, as asserted, and the rational number $2\delta s(c, d)$ is in \mathbb{Z} if and only if $c + c^* \equiv 0$

(mod d), i.e., if and only if $c^2 \equiv -1 \pmod{d}$, as asserted. In that case, the change of variable $n \mapsto c^*n$ in (1) gives $s(c,d) = s(c^*,d) = -s(c,d)$ and s(c,d) = 0, as asserted.

Finally, by Lemma 7, we have (in \mathbb{Z})

$$2d\delta S(H_n, d) = \sum_{c \in H_n} 2d\delta s(c, d) \equiv n \frac{d-1}{2} \pmod{2}.$$

Using the oddness of $gcd(d, T(H_n, d))$ we obtain

$$2\delta \frac{d}{\gcd(d, T(H_n, d))} S(H_n, d) \equiv n \frac{d-1}{2} \pmod{2},$$

 \Box

as asserted.

Corollary 11. If H_n is a subgroup of order n > 1 of the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^*$, p > 3, then $S(H_n, p) = 0$ if n is even, whereas $2S(H_n, p)$ is a rational integer of the same parity as (p-1)/2 if n is odd.

4.2. The case that d is even

We cannot expect Theorem 10 to hold true for d even. For example, for n = 3, d = 14 and $H_3 = \{1, 9, 11\}$, we have $2\delta S(H_3, d) = 2S(H_3, 14) = 1 \in \mathbb{Z}$ but d = 14 does not divide $T(H_3, 14) = 7$.

If d is even, recalling that c^* is such that $cc^* \equiv 1 \pmod{d}$, we set

(18)
$$T'(H_n, d) := \sum_{c \in H_n} \left(c - c^* \frac{c^2 - 1}{2} - \frac{d}{2} \right) \in \mathbb{Z}/d\mathbb{Z}$$

(if d is even, then c^* and c are odd and $(c^2 - 1)/2 \in 2\mathbb{Z}$. Moreover, the application $c \pmod{b} \mapsto \frac{c^2-1}{2}$ modulo d is d-periodic. Hence, $T'(H_n, d)$ is well defined).

Lemma 12. Let H_n be a subgroup of order n > 1 of the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$.

- (i) If d is even, then $T(H_n, d) \equiv n \pmod{2}$, $T'(H_n, d) = T(H_n, d)$ or $T(H_n, d) + \frac{d}{2}$.
- (ii) If $d \equiv 2 \pmod{4}$ or $d \equiv 4 \pmod{8}$, then $T'(H_n, d) = T(H_n, d) + n\frac{d}{2}$ in $\mathbb{Z}/d\mathbb{Z}$.
- (iii) Assume that d = 2p, where p ≥ 3 is prime. Then there exists at most one subgroup H_n of a given order n in the cyclic group (Z/2pZ)*. If n is even, then -1 ∈ H_n and S(H_n, d) = 0 (Lemma 5). If n is odd, then T(H_n, 2p) = p and T'(H_n, 2p) = 0.

Proof. Any $c \in H_n$ being odd, the first assertion of (i) follows. Since $2c - c^*(c^2 - 1) \equiv c + c^* \pmod{d}$, we have $2T'_n(H_n, d) \equiv \sum_{c \in H_n} (c + c^*) \equiv 2T(H_n, d) \pmod{d}$ and the second assertion of (i) follows.

For (ii), it suffices to prove that $S := \sum_{c \in H_n} c^* \frac{c^2 - 1}{2} = 0$ in $\mathbb{Z}/d\mathbb{Z}$. Clearly, $2S = T(H_n, d) - T(H_n, d) = 0$. Hence S = 0 or $S = \frac{d}{2}$. Since clearly $S = [4s]_d$

in $\mathbb{Z}/d\mathbb{Z}$ for some $s \in \mathbb{Z}$, if we had S = d/2, then we would have $4s \equiv \frac{d}{2} \pmod{d}$ and the contradictions $4s \equiv 1 \pmod{2}$ for $d \equiv 2 \pmod{4}$ and $4s \equiv 2 \pmod{4}$ for $d \equiv 4 \pmod{8}$.

Notice, for example, that if n = 2, d = 8 and $H_2 = \{1, 9\}$, then $0 = T'(H_2, 8) \neq T(H_2, 8) + n\frac{d}{2} = 4$ in $\mathbb{Z}/8\mathbb{Z}$.

For (iii), we have $T(H_n, 2p) \equiv n \equiv 1 \pmod{2}$, by point (i), and $T(H_n, 2p) \in \{0, 2, p\}$, by point (ii) of Lemma 5. Hence, $T(H_n, 2p) = p$ and point (ii) gives $T'(H_n, 2p) = T(H_n, 2p) + p = 0$.

Theorem 13. Assume that d > 1 is even. Set $\delta = \gcd(3, d)$. Let H_n be a subgroup of order n of the multiplicative group $(\mathbb{Z}/d\mathbb{Z})^*$. Let $T'(H_n, d)$ be as in (18). Then

$$2\delta \frac{d}{\gcd(d,T'(H_n,d))}S(H_n,d) \in \mathbb{Z}$$

and

$$2\delta S(H_n, d) \in \mathbb{Z} \Leftrightarrow d \mid T'(H_n, d).$$

In contrast, $2\delta s(c,d) \in \mathbb{Z} \Leftrightarrow c^2 \equiv -1 \pmod{d}$, in which case s(c,d) = 0. Moreover, if $d \equiv 2 \pmod{4}$, then

$$2\delta \frac{d}{\gcd(d, T'(H_n, d))} S(H_n, d)$$

is a rational integer of the same parity as $n\frac{d-2}{4}$.

Proof. We set

$$D_3 := \frac{(d-1)(2d-1)}{3/\delta} \in \mathbb{Z}.$$

Notice that $gcd(D_3, d) = 1$.

Since c is odd, $c^2 - 1$ is even, D_3 is odd, the fourth term of G(c, d) in Lemma 8 is in $d\mathbb{Z}$ and its third term is equal to d/2 modulo d. Hence (in \mathbb{Z}), we have

$$2d\delta s(c,d) \equiv D_3(c-c^*\frac{c^2-1}{2}) - \frac{d}{2} \equiv D_3(c-c^*\frac{c^2-1}{2} - \frac{d}{2}) \pmod{d}$$

and

$$2d\delta S(H_n, d) = \sum_{c \in H_n} 2d\delta s(c, d) \equiv D_3 T'(H_n, d) \pmod{d}.$$

Therefore, $2d\delta S(H_n, d)$ is indeed in $gcd(d, T'(H_n, d))\mathbb{Z}$. Since $gcd(D_3, d) = 1$, the rational number $2\delta S(H_n, d)$ is in \mathbb{Z} if and only if d divides $T'(H_n, d)$, as asserted, and if the rational number $2\delta s(c, d)$ is in \mathbb{Z} , then d divides $2c - c^*(c^2 - 1) - d$, hence divides $c + c^*$ and we obtain $c^2 \equiv -1 \pmod{d}$. Conversely, if $c^2 \equiv -1 \pmod{d}$, then as in the proof of Theorem 10 we have s(c, d) = 0 and hence $2\delta s(c, d) \in \mathbb{Z}$.

Finally, assume that $d \equiv 2 \pmod{4}$. Then $T'(H_n, d) \equiv 0 \pmod{2}$, by (18). Hence, $\gcd(d, T'(H_n, d)) = 2 \gcd(d/2, T'(H_n, d))$. The oddness of $\gcd(d/2, d)$. $T'(H_n, d)$ gives

$$2\frac{d}{\gcd(d,T'(H_n,d))}\delta S(H_n,d) = \frac{d}{\gcd(d/2,T'(H_n,d))}\delta S(H_n,d)$$
$$\equiv d\delta S(H_n,d) \pmod{2}.$$

By Lemma 9 we have $d\delta s(c,d) \in \mathbb{Z}, \, d\delta S(H_n,d) \in \mathbb{Z}$ and

$$d\delta S(H_n, d) \equiv n \frac{d-2}{4} \pmod{2}.$$

The last assertion follows.

Corollary 14. If H_n is a subgroup of order n > 1 of the multiplicative group $(\mathbb{Z}/2p\mathbb{Z})^*$, p > 3, then $S(H_n, 2p) = 0$ if n is even, whereas $2S(H_n, 2p)$ is a rational integer of the same parity as (p-1)/2 if n is odd.

Proof. The last assertion follows from $T'(H_n, 2p) = 0$, n odd (Lemma 12). \Box

References

- T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, New York, 1976.
- [2] P. J. Cho and H. H. Kim, Dihedral and cyclic extensions with large class numbers, J. Théor. Nombres Bordeaux 24 (2012), no. 3, 583–603.
- [3] S. Louboutin, Quelques formules exactes pour des moyennes de fonctions L de Dirichlet, Canad. Math. Bull. 36 (1993), no. 2, 190-196. https://doi.org/10.4153/ CMB-1993-028-8
- [4] _____, Dedekind sums, mean square value of L-functions at s = 1 and upper bounds on relative class numbers, Bull. Pol. Acad. Sci. Math. 64 (2016), no. 2-3, 165-174. https://doi.org/10.4064/ba8092-12-2016
- [5] T. Metsänkylä, Class numbers and μ-invariants of cyclotomic fields, Proc. Amer. Math. Soc. 43 (1974), 299–300. https://doi.org/10.2307/2038882
- [6] H. L. Montgomery and P. J. Weinberger, Real quadratic fields with large class number, Math. Ann. 225 (1977), no. 2, 173–176. https://doi.org/10.1007/BF01351721
- [7] L. Pinzur, Denominators of Dedekind sums, J. Number Theory 9 (1977), no. 3, 361–369. https://doi.org/10.1016/0022-314X(77)90071-3
- [8] H. Rademacher and E. Grosswald, *Dedekind Sums*, The Mathematical Association of America, Washington, DC, 1972.
- H. Walum, An exact formula for an average of L-series, Illinois J. Math. 26 (1982), no. 1, 1-3. http://projecteuclid.org/euclid.ijm/1256046895
- [10] L. C. Washington, Introduction to Cyclotomic Fields, second edition, Graduate Texts in Mathematics, 83, Springer-Verlag, New York, 1997. https://doi.org/10.1007/ 978-1-4612-1934-7
- [11] D. Zagier, Higher dimensional Dedekind sums, Math. Ann. 202 (1973), 149–172. https: //doi.org/10.1007/BF01351173

826

Stéphane R. Louboutin Aix Marseille Université CNRS, Centrale Marseille, I2M Marseille, France Postal address: Institut de Mathématiques de Marseille Aix Marseille Université 163 Avenue de Luminy, Case 907 13288 Marseille Cedex 9, France Email address: stephane.louboutin@univ-amu.fr