• 제목/요약/키워드: subspace topology

검색결과 15건 처리시간 0.023초

COMPACTNESS OF A SUBSPACE OF THE ZARISKI TOPOLOGY ON SPEC(D)

  • Chang, Gyu-Whan
    • 호남수학학술지
    • /
    • 제33권3호
    • /
    • pp.419-424
    • /
    • 2011
  • Let D be an integral domain, Spec(D) the set of prime ideals of D, and X a subspace of the Zariski topology on Spec(D). We show that X is compact if and only if given any ideal I of D with $I{\nsubseteq}P$ for all $P{\in}X$, there exists a finitely generated idea $J{\subseteq}I$ such that $J{\nsubseteq}P$ for all $P{\in}X$. We also prove that if D = ${\cap}_{P{\in}X}D_P$ and if * is the star-operation on D induced by X, then X is compact if and only if * $_f$-Max(D) ${\subseteq}$X. As a corollary, we have that t-Max(D) is compact and that ${\mathcal{P}}$(D) = {P${\in}$ Spec(D)$|$P is minimal over (a : b) for some a, b${\in}$D} is compact if and only if t-Max(D) ${\subseteq}\;{\mathcal{P}}$(D).

Structural Topology Optimization for the Natural Frequency of a Designated Mode

  • Lim, O-Kaung;Lee, Jin-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.306-313
    • /
    • 2000
  • The homogenization method and the density function method are common approaches to evaluate the equivalent material properties for design cells composed of matter and void. In this research, using a new topology optimization method based on the homogenized material with a penalty factor and the chessboard prevention strategy, we obtain the optimal layout of a structure for the natural frequency of a designated mode. The volume fraction of nodes of each finite element is chosen as the design variable and a total material usage constraint is imposed. In this paper, the subspace method is used to evaluate the eigenvalue and its corresponding eigenvector of the structure for the designated mode and the recursive quadratic programming algorithm, PLBA algorithm, is used to solve the topology optimization problem.

  • PDF

ON LIFT OF HOMOTOPIC MAPS

  • Srivastava, Anjali;Khadke, Abha
    • 충청수학회지
    • /
    • 제16권1호
    • /
    • pp.1-6
    • /
    • 2003
  • By considering a hyperspace CL(X) of a Hausdorffspace X with the Vietoris topology [6] also called the finite topology and treating X as a subspace of CL(X) with the natural embedding, it is obtained that homotopic maps f, g : $X{\rightarrow}Y$ are lifted to homotopic maps on the respective hyperspaces.

  • PDF

Ordinary Smooth Topological Spaces

  • Lim, Pyung-Ki;Ryoo, Byeong-Guk;Hur, Kul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.66-76
    • /
    • 2012
  • In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace.

EXTENSION PROBLEM OF SEVERAL CONTINUITIES IN COMPUTER TOPOLOGY

  • Han, Sang-Eon
    • 대한수학회보
    • /
    • 제47권5호
    • /
    • pp.915-932
    • /
    • 2010
  • The goal of this paper is to study extension problems of several continuities in computer topology. To be specific, for a set $X\;{\subset}\;Z^n$ take a subspace (X, $T_n^X$) induced from the Khalimsky nD space ($Z^n$, $T^n$). Considering (X, $T_n^X$) with one of the k-adjacency relations of $Z^n$, we call it a computer topological space (or a space if not confused) denoted by $X_{n,k}$. In addition, we introduce several kinds of k-retracts of $X_{n,k}$, investigate their properties related to several continuities and homeomorphisms in computer topology and study extension problems of these continuities in relation with these k-retracts.

VARIOUS CONTINUITIES OF A MAP f ; (X, k, TnX) → (Y, 2, TY) IN COMPUTER TOPOLOGY

  • HAN, SANG-EON
    • 호남수학학술지
    • /
    • 제28권4호
    • /
    • pp.591-603
    • /
    • 2006
  • For a set $X{\subset}{\mathbb{Z}}^n$ let $(X,\;T^n_X)$ be the subspace of the Khalimsky n-dimensional space $({\mathbb{Z}}^n,\;T^n)$, $n{\in}N$. Considering a k-adjacency of $(X,\;T^n_X)$, we use the notation $(X,\;k,\;T^n_X)$. In this paper for a map $$f:(X,\;k,\;T^n_X){\rightarrow}(Y,\;2\;T_Y)$$, we find the condition that weak (k, 2)-continuity of the map f implies strong (k, 2)-continuity of f.

  • PDF

KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS

  • Han, Sang-Eon
    • 대한수학회지
    • /
    • 제47권5호
    • /
    • pp.1031-1054
    • /
    • 2010
  • Let $\mathbb{Z}^n$ be the Cartesian product of the set of integers $\mathbb{Z}$ and let ($\mathbb{Z}$, T) and ($\mathbb{Z}^n$, $T^n$) be the Khalimsky line topology on $\mathbb{Z}$ and the Khalimsky product topology on $\mathbb{Z}^n$, respectively. Then for a set $X\;{\subset}\;\mathbb{Z}^n$, consider the subspace (X, $T^n_X$) induced from ($\mathbb{Z}^n$, $T^n$). Considering a k-adjacency on (X, $T^n_X$), we call it a (computer topological) space with k-adjacency and use the notation (X, k, $T^n_X$) := $X_{n,k}$. In this paper we introduce the notions of KD-($k_0$, $k_1$)-homotopy equivalence and KD-k-deformation retract and investigate a classification of (computer topological) spaces $X_{n,k}$ in terms of a KD-($k_0$, $k_1$)-homotopy equivalence.

CATEGORY WHICH IS SUITABLE FOR STUDYING KHALIMSKY TOPOLOGICAL SPACES WITH DIGITAL CONNECTIVITY

  • Han, Sang-Eon
    • 호남수학학술지
    • /
    • 제33권2호
    • /
    • pp.231-246
    • /
    • 2011
  • Let $X_{n,k}$ be a Khalimsky topological n dimensional subspace with digital k-connectivity. In relation to the classification of spaces $X_{n,k}$, by comparing several kinds of continuities and homeomorphisms, the paper proposes a category which is suitable for studying the spaces $X_{n,k}$.

A Characterization of Dedekind Domains and ZPI-rings

  • Rostami, Esmaeil
    • Kyungpook Mathematical Journal
    • /
    • 제57권3호
    • /
    • pp.433-439
    • /
    • 2017
  • It is well known that an integral domain D is a Dedekind domain if and only if D is a Noetherian almost Dedekind domain. In this paper, we show that an integral domain D is a Dedekind domain if and only if D is an almost Dedekind domain such that Max(D) is a Noetherian topological space as a subspace of Spec(D) with respect to the Zariski topology. We also give a new characterization of ZPI-rings.

q-FREQUENT HYPERCYCLICITY IN AN ALGEBRA OF OPERATORS

  • Heo, Jaeseong;Kim, Eunsang;Kim, Seong Wook
    • 대한수학회보
    • /
    • 제54권2호
    • /
    • pp.443-454
    • /
    • 2017
  • We study a notion of q-frequent hypercyclicity of linear maps between the Banach algebras consisting of operators on a separable infinite dimensional Banach space. We derive a sufficient condition for a linear map to be q-frequently hypercyclic in the strong operator topology. Some properties are investigated regarding q-frequently hypercyclic subspaces as shown in [5], [6] and [7]. Finally, we study q-frequent hypercyclicity of tensor products and direct sums of operators.