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VARIOUS CONTINUITIES OF A MAP
fi(X,kTY) = (Y,2,Ty) IN COMPUTER TOPOLOGY

SANG-EON HAN

Abstract. For a set X C Z", let (X,T%) be the subspace of the
Khalimsky n-dimensional space (Z",T"), n € N. Considering a k-
adjacency of (X, T%), we use the notation (X, k, T%). In this paper
for a map f: (X, k,T%) — (Y,2,Ty), we find the condition that
weak (k, 2)-continuity of the map f implies strong (k, 2)-continuity
of f.

1. Introduction

Let N, Z, and Z" be the set of natural numbers, integers, and points
in the Euclidean n-dimensional space with integer coordinates, respec-
tively. Let (Z",7™) be the Khalimsky n-dimensional space, n € N [1,
2, 14]. For a set X C Z", considering the subspace (X,T%) C (Z",1T")
with k-adjacency, we use the notation (X, k,7%). In [2, 7] for a map f :
(X, ko, T%°) — (Y, k1, Ty°), the notions of (ko, k1 )-continuity was devel-
oped [2, 7]. Meanwhile, for a discrete topological subspaces with kg- and
ki-adjacency, denoted by (X, ko) and (Y, k1), digital (kg, k1)-continuity
of a map f : (X, ko) — (¥, k1) was also developed [3, 4, 5, 6, 9, 10].

Further, the comparison between (ko, k1)-continuity of f and digital
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(ko, k1)-continuity of f were proceeded in [2]. Recently, the notion of
weak (ko, k1)-continuity was also established [11].

In this paper for a map f : (X, k,7%) — (Y, 2,Ty), the notions of strong
(k, 2)-continuity and weak (k,2)-continuity are investigated and com-
pared with each other. Further, in order to apply this result to discrete
geometry, digital topology, and computer science we need to study vari-

ous properties of these continuities of a map f: (X, k,T%) — (Y,2,Ty).

2. Preliminaries

A set X C Z™ with k-adjacency, denoted by (X, k), has usually been
considered in a quadruple (Z",k, k, X), where n € N, k represents an
adjacency relation for X, and k represents an adjacency relation for
Zr — X [2, 3,4, 5, 6, 13]. However, in this paper we are not concerned
with adjacencies among n-xels of Z" — X. Namely, we only consider a
set X C Z" with k-adjacency and Khalimsky product topology.

As the generalization of the commonly used 4- and 8-adjacency of
Z? and further, 6-, 18- and 26-adjacency of Z* in [13], the k-adjacency

fs

relations of Z™ are established in (2, 3, 4, 5, 8] as follows:

ke{2n(n>1),3" —1(n > 2),

r—2
3T - CprTt—12<r<n~1,n>3)},(2-1)
t=0

where Cp = nl/(n — t)ltl.

For example, 8, 32-, 64- and 80-adjacency relations of Z* are con-
sidered and further, 10-, 50-, 130-, 210- and 242-adjacency relations of
7° are used. Hereafter, each space X C Z" is assumed with one of the
k-adjacency relations of Z".

Indeed, Khalimsky line topology on Z is induced from the subbasis
{2n—1,2n+ 1]z|n € Z} [2, 9, 14] and is denoted by (Z,7"). Namely,
the family of the subset {{2n + 1},[2m — 1,2m + 1]z|m,n € Z}, which
induces open sets for (Z,T), is a basis of the Khalimsky line topology
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onZ (1,29, 14].

If the set [a,blz = {a < n < b:n € Z} with 2-adjacency is consid-
ered with the discrete topology, then it is called a digital interval and
further, if the set [a, b]z is considered as a subspace of (Z,T) with the
Khalimsky line topology, then it is called a Khalimsky interval. For a
digital image (X, k) in Z", we use the notation N} (p) := Ni(p) U {p},
where Ni(p) == {z € X|p is k — adjacent to z} which is called the
k-neighbors of p [13].

Now consider the product topology on Z™ derived from the Khalimsky
line topology on Z,n > 2. Then the topology on Z" is called the product
Khalimsky topology on Z™, and we use the notation (Z",7"). Let us
examine the structure of the Khalimsky n-dimensional space. A point
z = (21,29, - ,Zn) € Z" is open if all coordinates are odd, and closed
if each of the coordinates is even [1, 9, 12, 13, 14]. These points are
called pure and the other points in Z" is called mized. In all subspaces
of (Z™,T™),n € N, of Fig.1, 2, and 3, the symbol &, jumbo dot, and
e mean a pure closed point, a pure open point, and a mixed point,

respectively.

For a set X C Z", consider the subspace (X,T%) induced from the
Khalimsky n-dimensional space (Z"™,T™). Further, considering a topo-
logical space (X, T%) with one of the k-adjacency relations of Z" in (2-1),
we call it a (computer topological) space with k-adjacency and denote it
(X, k,T%) [2, 7, 11].

Meanwhile, a set X C Z™ has often been studied with discrete topol-
ogy with a k-adjaency (2, 3, 4, 5, 6, 7, 8, 13]. For a set with k-adjacency
(X, k) in Z"™, two distinct points z,y € X are called k-connected if there
is a sequence (fﬂi)z‘e[o,m]z C X such that zg = z, z,, = y and further,
r; and x;1 are k-adjacent, i € [0,m — 1]z,m > 1. The number m

is called the length of this k-path [13]. For an adjacency relation k, a
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simple k-path in X is the sequence (;);c[o,mn], C X such that z; and z;
are k-adjacent if and only if either j = i+1ori = j+1[2, 3,4, 5, 6].

By computer topology is now meant the mathematical recognition of
discrete space in 4", e.g., a development of tools implementing topo-
logical concepts for use in computer science and information technology.
Computer topology plays a significant role in computer graphics, image
synthesis, image analysis and so forth. It grew out of discrete geome-
try expanded into applications where significant topological issues arise.
Computer topology may be of interest both for computer scientist who
try to apply topological knowledge for investigating discrete spaces and
for mathematicians who want to use computers to solve complicated
topological problems. We can see some difference between computer
topology and digital topology. Precisely, while computer topology needs
some reasonable topological structure for the research of spaces X C 2™,

digital topology requires the discrete topology for the study of them.

3. Various continuities in computer topology

For a discrete space with k-adjacency (X, k) in Z", let us recall the
digital k-neighborhood of a point z € X as follows. The k-neighborhood
of zg € X with radius € is defined to be the set [2, 3, 4, 5, 6, 7, §]

Ni(zg,e) :=={z € X| lg(zo,z) <e}U{xo}, (3-1)

where (2o, x) is the length of a shortest simple k-path from zg to z in
X. Meanwhile, for a space (X, k,1T%) and « € X, by the neighborhood V
of the point z is typically meant the existence of some open set O, € T%
such that x € O, C V.
Further, if the set Ni(zo,¢) in (3-1) is a topological neighborhood of xg in
(X,T%), then this set is called a (computer topological) k-neighborhood
of xg with radius ¢ € N and iIs denoted by

Nis(:ﬁo,a) = {JTEXNJC(ZE(),I) SE}U{JL‘Q}. (3—2)
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With the terminologies and definitions above at hand we have the

following in terms of (3-1).

Definition 1 (Digital (ko, k1)-continuity). [2, 3, 4, 5, 6, 8, 9, 10]
For two discrete topological spaces with ki-adjacency, © € {0,1}, (X, ko)
in Z™ and (Y, k1) in Z™, a function f : (X, ko) — (Y, k1) is said to be
digitally (ko, k1)-continuous at a point x € X if for any N, (f(z),e) C Y,
there is Ny, (z,6) C X such thatf(Ny,(z,8)) C Nk, (f(z),€).

Further, we say that a map f : (X, ko) — (Y, k1) is digitally (ko,ki)-
continuous if the map f is digitally (kg, k1)-continuous at every point

e X.

Indeed, digital (ko, k1)-continuity from (X, ko) to (Y, k1) implies the
preservation of the kg-connectedness of (X, ko) into the ki-connectedness
of (Y, k). Further, digital (ko, k1)-continuity has the uniform (ko, k1)-

continuity in [6].

Definition 2 (Khalimsky-continuity). [1, 2, 7, 14] For two spaces
(X, T%°) C (Z",T7™) and (Y, Ty) C (Z,T), a function f: X — Y is said
to be Khalimsky continuous at a point x € X if f is continuous at the
point x with the Khalimsky product topology.

Further, we say that a map f: X — Y is Khalimsky continuous if the

map f is Khalimsky continuous at every point z € X.

Definition 3 (Weak (k, 2)-continuity). [11] For computer topological
spaces (X, k,T%) and (Y,2,7y), a function f : X — Y is said to be
weakly (k,2)-continuous at a point x € X if
(1) f: X —Y is Khalimsky continuous at the point z € X, and
(2) f is digitally (k,2)-continuous at a point z € X.

Further, we say that a map f : X — Y is weakly (k, 2)-continuous if the

map f is weakly (k,2)-continuous at every point x € X.

Example 3.1. For a Khalimsky continuous map f : Z — Z, consider
the new map g(z) = f(z) + (2n 4+ 1),n € Z. Then the map ¢ can
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not be a weakly (2,2)-continuous map. Meanwhile, if we take h(z) =

f(z) 4+ 2n,n € Z, then the map h is a weakly (2,2)-continuous map.
Now we have the following in terms of (3-2).

Definition 4 ((ko, k1)-continuity). [2, 7] For two spaces (X, ko, T°)
and(Y, k1, Ty"), a function f : X — Y is said to be (ko, k1 )-continuous
at a point x € X if for any N} (f(2),e) C VY, there is N} (z,6) C X
such that

FNG (@,8)) € IV, (F (@), )
Further, we say that & map [ : X — Y is (ko, k1)-continuous if the map

f is (ko, k1)-continuous at every point z € X.

Remark 3.2. The (k,2)-continuity of amap f : (X, k,7%) — (YV,2,Ty)

in Definition 4 is equivalent to the following: for any point x € X,

F(Ng(z,r)) € Na([(=), 1),

where the number r is the least element of N such that N} (z,r) contains

an open set including the point z.

Indeed, the current (ko, k1)-continuity can be used to develop essential
tools in computer topology such as (ko, k1 )-homotopy, (ko, k1 )-homotopy
equivalence, (ko, k1)-covering theory and so forth [7].

By Definitions 2 and 4 we obtain the following.

Definition 5 (Strong (ko, k1)-continuity). [11] For two spaces (X, ko, T%°)
and (Y, k1,Ty"), a function f : X — Y is said to be strongly (ko, k1)-
continuous at a point © € X if
(1) f is (Khalimsky) continuous at the point z; and
(2) f is (ko, k1)-continuous at the point z.

Further, we say that a map f : X — V is strongly (ko, k1)-continuous if
the map [ is strongly (ko, k1)-continuous at every point x € X.

Theorem 3.3. Foramap [ : (X, k,T%) — (¥,2,Tv), (k, 2)-continuity

of f is irrelevant to weak (k,2)-continuity of f.
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Proof: Consider the two spaces (X, k,T%) and (Y,2,Ty), where X =:
{z1,z9} in which z; is a mixed point and z9 € Ni(z1) is a pure open
point, and Y := {yj,y2}, where y; is an even number and y is an odd
number such that yo € No(y;). Then consider the map f : X — YV
such that f(z1) = y2 and f(z2) = y1. Then we see that the map f is a
(k,2)-continuous map but it can not be weakly (k, 2)-continuous at the
point z1 because the map f can not be Khalimsky continuous at the
point xj.

Conversely, in case that there is no Ny (z,7) in (X, k, T%), the assertion
that weak (k,2)-continuity of f leads to (k,2)-continuity of f can not
be successful. More precisely, consider the map

9:2Z :={aili €[0,11)z} — Y :={0,1,2,3} in Fig.2(b) given by

9{{ao, as, a7, ag, ag, aio, a11}) = {0},

9({a1,a2}) = {1}, and g({a3, a4, as}) = {2}.

Then, while the map g is weakly (4, 2)-continuous, it can not be (4, 2)-
continuous at the point ag because there is only the 4-neighborhood of
ag, Nj(ap,6) = Z, which can not lead to (4, 2)-continuity of the map g
at the point ag. (O

Indeed, strong (k, 2)-continuity of f leads to weak (k, 2)-continuity of
f. Now, we investigate some relations between weak (k,2)- and strong
(k, 2)-continuities of a map [ : (X,k,7%) — (¥,2,7y), n € N (see
Theorem 3.4 and Corollary 3.5).

Theorem 3.4. Assume that (X, k,T%) and (V,2,7y) are k- and
2-connected, respectively. Let f : (X, k,T%) — (Y,2,Ty) be a map,
n € N. Then we obtain the following.

(1) Weak (k, 2)-continuity of f implies strong (k, 2)-continuity of f if
E=3"—-1.

(2) Weak (k,2)-continuity of f implies strong (k,2)-continuity of f
with some hypothesis if k # 3" — 1.
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Proof: (1) If n = 1, then weak (2, 2)-continuity of f is easily equivalent
to strong (2, 2)-continuity of f because for any point z € X and f(2) € Y
we see that Na(z,1) = Nj(z,1) and further, No(f(z),1) = N3 (f(z),1).

(2) In case that n > 2, in order to prove (1), (2), we need to consider
a pair of distinct points z1, 29 € X such that z, and x4 are k-adjacent,
we investigate the following six cases according to the locations of both
z1 € X and f(z1) € Y (see Fig.1).

(Case 1) {Case 2)
$:
______ s o
xl
¢
W
(Case 4) (Case 5) (Case 6)
FIGURE 1

(Case 2-1) Assume that the point 7 € X is a pure open point and
f(z1) € Y is odd in Y. Since both {z1} and {f(z1)} are the smallest
open sets containing the points 1 and f(z1), respectively, by the weak

(k, 2)-continuity of f, we see that
FNg (21, 1)) = f(Ne(z1, 1)) € No(f(21),1) = N3 (f(21), 1),

which means that f is a strongly (k, 2)-continuous map at the point z1.

(Case 2-2) Assume that x; is a pure open point and f(z1) is an even
integer. By the weak (k, 2)-continuity of f at the point z; and Remark
3.2, take N3 (f(z1),1) ¢ (V,2,Ty). Then, since {z1} is an open set,
there is N (x1,1) = Ng(z1,1) C X such that

fINg(z1, 1)) = f(Ne(z1,1)) € No(f(21),1) = Ny (f(z1), 1),
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which means that the map f is strongly (k, 2)-continuous at the point
1.

(Case 2-3) Assume that z1 is a pure closed point and f(z1) is odd in
V.
In case that & = 3" — 1, the smallest open set containing the point z;
is Njn_1(21,1) = N3n_1(z1,1) and further, N5(f(z1),1) = Na(f(21),1)
because {f(z1)} is an open set. By the weak (k,2)-continuity of f at
the point x71, we see that f(N3n_1(z1,1)) = {f(x1)}. Consequently,

F(Ngn_1(21,1)) = f(N3n_1(21,1)) C No(f(21),1) = N3 (f(21),1),

which implies that f is strongly (k,2)-continuous at the point ;.

In case that k # 3" — 1, the assertion need not be true.
As a counterexample, consider the map f : X — Y in Fig.2(a) given by
f({ao, a1, a2, a9, arg, a11, ay2, 13, a1, a1s}) = {1},
[({a,08}) = {2}, and f({as, a5, ar}) = {3).
Then, while the map f is weakly (4,2)-continuous at the point ag, it
can not be strongly (4,2)-continuous at the point ag. If not, suppose
that the map f is a strongly (4, 2)-continuous at the point ag. Then the
minimal 4-neighborhood of of ag is the set Nj(ag, 6) = X — {ar, as, a9},
so that f(N;(ao,6)) = {0,1,2} = N5(f(ao), 1), which contradicts to the
weak (4, 2)-continuity of the map [ at the point ag.

(Case 2-4) Consider the case that z; is a pure closed point and f(z1)
is an even integer.

In case that k = 3™ — 1, the smallest open set containing the point z;
is Njn_1(z1,1) = N3n_1(21,1) and further, N5(f(z1),1) = No(f(21),1).
Due to the weak (k,2)-continuity of f at the point z;, we obtain the

following.

f(N3n_1(21,1)) = f(Nan_1(21,1)) C Na(f(21), 1) = Ny (f(21), 1),

which implies that f is strongly (k,2)-continuous at the point z;.
In case that k # 3™ — 1, the assertion need not be held.
As a counterexample, consider themap g : Z — Y := {0, 1, 2,3} given by
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FIGURE 2

9({ao, as, a7, as, ag, arg, ann}) = {0}, g({a1, a2} = {1}), and g({as, as, as}) =
{2},where Z := {a;]1 € [0,11]z} and ¥ := {0, 1,2, 3}.
Then, while the map g is weakly (4, 2)-continuous, g can not be strongly
(4,2)-continuous at the point ap because the minimal 4-neighborhood
of ag is the set X = Nj(ag,6), which contradicts to the weak (4,2)-
continuity of g at the point ag.

(Case 2-5) Assume that z; is a mized point and f(z1) is odd in Y.
In case that kK = 3" — 1, the smallest open set containing the point x;
is N3n_(21,1) = Nan_y(x1,1) and further, N5(f(z1),1) = Na(f(z1),1)
because {f{z1)} is an open set. By the weak (k,2)-continuity of f at

the point x1, we obtain the following
9(Nin_1(21,1)) = g(Nan_1(z1,1)) C Na(g(z1),1) = N3(9(z1), 1),

which implies that f is strongly (k, 2)-continuous at the point z;.
In case that k ¢ {3" — 1,3"™ — 2™ — 1}, the assertion need not be true.

As a counterexample, consider the map f : X — Y in Fig.3(a) given by
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F{zy, 20}) = {3}, F({zs, z4}) = {2}
Then, while the map f is weakly (6,2)-continuous at the point z, it
can not be strongly (6,2)-continuous at the point z; because 1% =

{X,¢,{z1, 22}, {xa}} so that there is no Ng(x1,¢) C X,e € N for the
strong (6, 2)-continuity of f.

o
s, - ..

™ N
e 1 - )
7 M,J X e
I % 1’ ( 2|/ 3
{‘ Uy A £ (%) \X, A
T : AAAAAA ‘ T 17 (4- e .’x';\ \" 1 |~ \.,g (xl) 2
{ ROV e 0,40 /
\ 4 e \ X4 [P o NS R—— P 1
g
x X —Y
() (b)

FIGURE 3

(Case 2-6) Assume that z; is a mized point and f(z1) is an even

integer.

In case that k = 3" — 1, by the same method as the above and the
weak (k,2)-continuity of f we obtain the following.

f(N3n_1(21,1)) = f(Nan_1(z1,1)) C Na(f(z1),1) = N3 (f(21),1),

which implies that f is strongly (k, 2)-continuous at the point x;.
In case that k ¢ {3" —1,3" — 2™ — 1}, the assertion need not be true.
As an counterexample, consider the map g : X — V in Fig.3(b) given by

g{z1, z2}) = {2}, 9({w3, za}) = {1}.

Then, while the map g is weakly (6, 2)-continuous at the point z1, it
can not be strongly (6, 2)-continuous at the point z; because there is no
Ni(z1,e) C X forany e € N. O
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By Theorem 3.4 we obtain the following because for a map f :
(X, k,T%) — (V,2,7v) if k = 3" — 1, then strong (k, 2)-continuity of
f implies weak (k, 2)-continuity of f.

Corollary 8.5, For amap f: (X, k,T%) — (Y,2,Ty) ifk =3" -1,
then weak (k,2)-continuity of f is equivalent to strong (k,2)-continuity

of f.

4. Concluding remark

Several continuities have been studied in computer and digital topol-
ogy, which are used in computer topological morphelogy, image process-

ing, discrete geometry, digital topology, and computer science.
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