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Abstract

In this paper, we introduce the concept of ordinary smooth topology on a setX by considering the gradation of openness
of ordinary subsets ofX. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its
decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity
and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological
space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace.

Key words : ordinary smooth (co)topological space, r-level and strong r-level, ordinary smooth [resp. weak and strong]
continuity, ordinary smooth open [resp. closed] mapping, ordinary smooth subspace, ordinary smooth base [resp. sub-
base].

1. Introduction and Preliminaries

Chang [1] introduce the concept of fuzzy topology on a
setX by axiomatizing a collection of fuzzy sets inX. Af-
ter that, Pu and Liu [7] and Lowen [5] advanced it. How-
ever, they did not consider the gradation of openness [resp.
closedness] of fuzzy sets inX.

In 1992, Hazra et al.[4] have attempted to introduce a
concept of gradation of openness of fuzzy sets inX by a
mappingτ : IX → I satisfying the following axioms :

(i) τ(0) = τ(1) = 1,
(ii) τ(Ai) > 0, i = 1, 2, impliesτ(A1 ∩A2) > 0,

(iii) τ(Aα) > 0, α ∈ Γ, impliesτ(
⋃
α∈Γ

Aα) > 0.

On the other hand, chattopadhyay et al.[2] modified the
notion of gradation of openness of fuzzy sets inX by a
mappingτ : IX → I satisfying the following axioms :

(i) τ(0) = τ(1) = 1,
(ii) τ(A ∩B) ≥ τ(A) ∧ τ(B), ∀A,B ∈ IX ,

(iii) τ(
⋃
α∈Γ

Aα) ≥
∧
α∈Γ

τ(Aα), ∀{Aα}α∈Γ ⊂ IX .

After then, some work has been done in this field by
Ramadan [8], Chattopadhyay and Samanta [3], and Peeters
[6]. In particular, Ying [9] introduced the concept of the
topology considering the degree of openness of an ordinary
subset of a set and studied some of it’s properties.

In this paper, we introduce the concept of ordinary
smooth topology on a setX by considering the gradation of

openness of ordinary subsets ofX. And we obtain the re-
sult [Corollary 2.13] : An ordinary smooth topology is fully
determined its decomposition in classical topologies. Also
we introduce the notion of ordinary smooth [resp. strong
and weak] continuity and study some its properties. Fi-
nally, we investigate some properties of an ordinary smooth
subspace.

Throughout this paper, letI = [0, 1] be the unit inter-
val, let IX denote the set of all fuzzy sets in a setX, and
we will write I0 = (0, 1] andI1 = [0, 1).

2. Definitions and general properties

Let 2 = {0, 1} and let2X denote the set of all ordinary
subsets ofX.

Definition 2.1. Let X be a nonempty set. Then a map-
ping τ : 2X → I is called anordinary smooth topology
(in short,ost) onX or agradation of openness of ordinary
subsetsof X if τ satisfies the following axioms :

(OST1) τ(∅) = τ(X) = 1.
(OST2) τ(A ∩B) ≥ τ(A) ∧ τ(B), ∀A,B ∈ 2X .

(OST3) τ(
⋃
α∈Γ

Aα) ≥
∧
α∈Γ

τ(Aα), ∀{Aα} ⊂ 2X .

The pair(X, τ) is called anordinary smooth topologi-
cal space(in short,osts). We will denote the set of all ost’s
onX as OST(X).
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Remark 2.2. Ying [9] called the mappingτ : 2X → I
[resp. τ : IX → 2 andτ : IX → I] satisfying the ax-
ioms in Definition 2.1 as afuzzyfying topology[resp. fuzzy
topologyandbifuzzy topology] on X.

Example 2.3. (a) Let X = {a, b, c}. Then 2X =
{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, X}.
We define the mappingτ : 2X → I as follows :

τ(∅) = τ(X) = 1, τ({a}) = 0.7, τ({b}) = 0.4,
τ({c}) = 0.5,

τ({a, b}) = 0.6, τ({a, c}) = 0.3, τ({b, c}) = 0.8.
Then we can easily see thatτ ∈ OST(X).

(b) Let X be a nonempty set. We define the mapping
τ∅ : 2X → I as follows : For eachA ∈ 2X ,

τ∅(A) =
{

1, if A = ∅ or A = X,
0, otherwise.

Then we can easily see thatτ∅ ∈ OST(X). In this case,τ∅
will be called theordinary smooth indiscrete topologyon
X.

(c) Let X be a nonempty set. We define the mapping
τX : 2X → I as follows : For eachA ∈ 2X ,

τX(A) = 1.

Then clearlyτX ∈OST(X). In this case,τX will be called
theordinary smooth discrete topologyonX.

(d) Let X be a set and letr ∈ I1 be fixed. We define
the mappingτ : 2X → I as follows : For eachA ∈ 2X ,

τ(A) =
{

1, if A = ∅ or Ac is finite,
r, otherwise.

Then it can be easily seen thatτ ∈ OST(X). In this
case,τ will be called ther-ordinary smooth finite comple-
ment topologyon X and will be denoted by OSCof(X).
OSCof(X) is of interest only whenX is an infinite set be-
cause ifX is finite, OSCof(X) coincides withτX defined
in (c).

(e) LetX be a set and letr ∈ I1 be fixed. We define
the mappingτ : 2X → I as follows : For eachA ∈ 2X ,

τ(A) =
{

1, if A = ∅ or Ac is countable,
r, otherwise.

Then we can easily see thatτ ∈ OST(X). In this case,τ
will be called ther-ordinary smooth countable complement
topology onX and will be denoted by OSCoc(X).

Remark 2.4. If I = 2, then Definition 2.1 coincides with
the known definition of classical topology.

Definition 2.5. Let X be a nonempty set. Then a mapping
C : 2X → I is called anordinary smooth cotopology(in
short,osct) on X or agradation of closedness of ordinary
subsetsof X if C satisfies the following axioms :

(OSCT1) C(∅) = C(X) = 1.
(OSCT2) C(A ∪B) ≥ C(A) ∧ C(B), ∀A,B ∈ 2X .

(OSCT3) C(
⋂
α∈Γ

Aα) ≥
∧
α∈Γ

C(Aα), ∀{Aα} ⊂ 2X .

The pair(X, C) is called anordinary smooth cotopo-
logical space(in short, oscts). We will denote the set of all
osct’s onX as OSCT(X).

Remark 2.6. If I = 2, then Definition 2.2 also coincides
with the known definition of classical topology.

The following is the immediate result of Definition 2.1
and 2.5.

Proposition 2.7. Let X be a nonempty set. We de-
fine two mappingsf : OST(X) → OSCT(X) and g :
OSCT(X) → OST(X) as follows, respectively :

[f(τ)](A) = τ(Ac), ∀τ ∈ OST(X), ∀A ∈ 2X

and
[g(C)](A) = C(Ac), ∀C ∈ OSCT(X), ∀A ∈ 2X .

Then f and g are well-defined. Furthermoreg ◦ f =
idOST(X) andf ◦ g = idOSCT(X).

Remark 2.8. Let f(τ) = Cτ andg(C) = τC . Then, Propo-
sition 2.3, we can easily see thatτCτ

= τ andCτC = C.

Definition 2.9. Let (X, τ) be an osts and letr ∈ I. Then
we define two ordinary subsets ofX as follows :

[τ ]r = {A ∈ 2X : τ(A) ≥ r}
and

[τ ]∗r = {A ∈ 2X : τ(A) > r}.
We call these ther−levelset and thestrong r-levelset ofτ ,
respectively.

It is clear that[τ ]0 = 2X , the classical discrete topol-
ogy onX and [τ ]∗1 = ∅. Also it can be easily seen that
[τ ]∗r ⊂ [τ ]r for eachr ∈ I.

Proposition 2.10. Let (X, τ) be an osts. Then :
(a) [τ ]r ∈ T(X), ∀r ∈ I.
(a)′ [τ ]∗r ∈ T(X), ∀r ∈ I1.
(b) For anyr, s ∈ I, if r ≤ s, then [τ ]s ⊂ [τ ]r and

[τ ]∗s ⊂ [τ ]∗r .

(c) [τ ]r =
⋂
s<r

[τ ]s, ∀r ∈ I0.

(c)′ [τ ]∗r =
⋃
s>r

[τ ]∗s, ∀r ∈ I1.

Proof. The proofs of (a), (a)′ and (b) are obvious from Def-
initions 2.1 and 2.9.

(c) From (b), it is obvious that{[τ ]r : r ∈ I} is a de-
scending family of classical topologies onX.

Let r ∈ I0. Then clearly[τ ]r ⊂
⋂
s<r

[τ ]s. Assume

that A 6∈ [τ ]r. Then τ(A) < r. Thus∃s ∈ I0 such
that τ(A) < s < r. So A 6∈ [τ ]s for somes < r,

i.e., A 6∈
⋂
s<r

[τ ]s. Hence
⋂
s<r

[τ ]s ⊂ [τ ]r. Therefore

[τ ]r =
⋂
s<r

[τ ]s.
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(c)′ From (b), it is also clear that{[τ ]∗r : r ∈ I} is a
descending family of classical topologies onX.

Let r ∈ I1. Then [τ ]∗r ⊃
⋃
s>r

[τ ]∗s. Assume that

A 6∈ [τ ]∗r . Thenτ(A) ≤ r. Thus∃s ∈ I1 such thatτ(A) ≤
r < s. SoA 6∈ [τ ]∗s for somer < s, i.e., A 6∈

⋃
s>r

[τ ]∗s.

Hence
⋃
s>r

[τ ]∗s ⊂ [τ ]∗r . Therefore[τ ]∗r =
⋃
s>r

[τ ]∗s. This

completes the proof.

Proposition 2.11. Let X be a nonempty set and let{Tr :
r ∈ I} be a nonempty descending family of classical
topologies onX such thatT0 is the classical discrete topol-
ogy.

(a) We define the mappingτ : 2X → I as follows : For
eachA ∈ 2X ,

τ(A) =
∨
{r ∈ I : A ∈ Tr}.

Thenτ ∈ OST(X).
(b) For eachr ∈ I0, if Tr =

⋂
s<r

Ts, then[τ ]r = Tr.

(b)′ For eachr ∈ I1, if Tr =
⋃
s>r

Ts, then[τ ]∗r = Tr.

In this case,τ is called the ordinary smooth topologygen-
eratedby {Tr : r ∈ I}.

Proof. (a) From the definition ofτ , it is clear that
τ(∅) = τ(X) = 1.

Thusτ satisfies the axiom (OST1).
For anyAi ∈ 2X , let τ(Ai) = ki, i = 1, 2. Suppose

ki = 0 for somei. Then clearly
τ(A1 ∩A2) ≥ τ(A1) ∩ τ(A2).

Thus, without loss of generality, supposeki > 0 for
i = 1, 2. Let ε > 0. Then

∃ri ∈ I0 such thatki − ε < ri < ki andAi ∈ Tri ,
i = 1, 2.
Let r = r1 ∧ r2 and letk = k1 ∧ k2. Since{Tr : r ∈ I0}
is a descending family andAi ∈ Tri , A1, A2 ∈ Tr. Thus
A1 ∩A2 ∈ Tr. So, by the definition ofτ ,

τ(A1 ∩A2) ≥ r > k − ε.
Sinceε > 0 is arbitrary, it follows that

τ(A1 ∩A2) ≥ k = k1 ∧ k2 = τ(A1) ∧ τ(A2).
Henceτ satisfies the axiom (OST2).

Now let {Aα}α∈Γ ⊂ 2X , let τ(Aα) = li for each

α ∈ Γ and letl =
∧
α∈Γ

li. Supposel = 0. Then clearly

τ(
⋃
α∈Γ

Aα) ≥
∧
α∈Γ

τ(Aα).

Supposel > 0 and letl > ε > 0. Then0 < l − ε < ld
for eachα ∈ Γ. SinceAα ∈ Tlα for eachα ∈ Γ and
{Tr : r ∈ I0} is a descending family,Aα ∈ Tl−ε for
eachα ∈ Γ. SinceTl−ε is a classical topology onX,⋃
α∈Γ

Aα ∈ Tl−ε. Thus, by the definition ofτ ,

τ(
⋃
α∈Γ

Aα) ≥ l − ε.

Sinceε > 0 is arbitrary,
τ(

⋃
α∈Γ

Aα) ≥ l =
∧
α∈Γ

τ(Aα).

Soτ satisfies the axiom (OST3). Henceτ ∈ OST(X).
(b) SupposeTr =

⋂
s<r

Ts for eachr ∈ I0 and let

A ∈ Tr. Then clearlyτ(A) ≥ r. ThusA ∈ τr. SoTr ⊂ τr

for eachr ∈ I0. Let A ∈ τr. Thenτ(A) ≥ r. Thus, by the
definition ofτ ,

τ(A) =
∨

A∈Tk

= s ≥ r.

Let ε > 0. Then∃k ∈ I0 such thats− ε < k andA ∈ Tk.
Thus

r − ε ≤ s− ε < k andA ∈ Tk.
SoA ∈ Tr−ε. Sinceε > 0 is arbitrary, by the hypothesis,
A ∈ Tr. Henceτr ⊂ Tr. Thereforeτr = Tr for each
r ∈ I0.

(b)′ By the similar arguments of the proof of (b), we
can prove that[τ ]∗r = Tr for eachr ∈ I1. This completes
the proof.

Since every mappingt : 2X → I is greater than or
equal to0 on all elements on which it is defined, note that
indeed an extra requirement here is thatT0 is the classi-
cal discrete topology2X . Thus from now on we take this
supplementary condition for granted.

The following is the immediate result of Propositions
2.5 and 2.6.

Corollary 2.12. LetX be a nonempty set, letτ ∈OST(X)
and let{[τ ]r : r ∈ I} be the family of all r-level classi-
cal topologies with respect toτ . We define the mapping
τ1 : 2X → I as follows : For eachA ∈ 2X ,

τ1(A) =
∨
{r ∈ I : A ∈ [τ ]r}.

Thenτ1 = τ .

The fact that an ordinary smooth topological space is
fully determined by its decomposition in classical topolo-
gies is restated in the following result.

Corollary 2.13. Let X be a nonempty set and letτ1, τ2 ∈
OST(X). Thenτ1 = τ2 if and only if [τ1]r = [τ2]r for
eachr ∈ I, or alternatively, if and only if[τ1]∗r = [τ2]∗r for
eachr ∈ I.

Remark 2.14. In a similar way, we study the levels of an
ordinary smooth cotopologyC on a nonempty setX : For
eachr ∈ I,

[C]r = {A ∈ 2X : C(A) ≥ r}
and

[C]∗r = {A ∈ 2X : C(A) > r}.

Definition 2.15. Let X be a nonempty set, letT be a clas-
sical topology and letτ ∈ OST(X). Thenτ is said to be
compatible withT if T = S(τ), whereS(τ) = {A ∈ 2X :
τ(A) > 0}.
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Example 2.16.(a) Letτ∅ be the ordinary smooth indiscrete
topology on a nonempty setX and letl be the classical in-
discrete topology onX. Then clearly

S(τ∅) = {A ∈ 2X : τ∅(A) > 0} = {∅, X} = l.
Thusτ∅ is compatible withl.

(b) LetτX be the ordinary smooth discrete topology on
a nonempty setX and letD be the classical discrete topol-
ogy onX. Then

S(τX) = {A ∈ 2X : τX(A) > 0} = 2X = D.
ThusτX is compatible withD.

(c) LetX be a nonempty set and letr ∈ (0, 1) be fixed.
We define the mappingτ : 2X → I as follows : For each
A ∈ 2X ,

τ(A) =
{

1, if A = ∅ or A = X,
r, otherwise.

Then clearlyτ ∈OST(X) andτ is compatible withD.

From the following result, every classical topology can
be considered as an ordinary smooth topology.

Proposition 2.17. Let T be a classical topology on a
nonempty setX and letr ∈ I0. Then∃T r ∈ OST(X)
such thatT r is compatible withT . Moreover(T r)r = T .
In this case,T r is called anr-th ordinary smooth topology
on X and(X, T r) is called anr-th ordinary smooth topo-
logical space.

Proof. Let r ∈ (0, 1) be fixed and we define the mapping
T r : 2X → I as follows : For eachA ∈ 2X ,

T r(A) =

 1, if A = ∅ or A = X,
r, if A ∈ T\{∅, X},
0, otherwise.

Then we can easily see thatT r ∈OST(X) and(T r)r = T .
On the other hand, by the definition ofT r,

S(T r) = {A ∈ 2X : T r(A) > 0} = T .
SoT r is compatible withT .

Proposition 2.18. Let T be a classical topology on a
nonempty setX and letC(T ) be the set of all ordinary
smooth topologies onX compatible withT . Then there
is a one-to-one correspondence betweenC(T ) and the set
I T̃
0 , whereT̃ = T\{∅, X}.

Proof. We define two mappingsF : C(T ) → I T̃
0 and

G : I T̃
0 → C(T ) as follows, respectively :

[F (τ)](A) = fτ (A) = τ(A), ∀τ ∈ C(T ), ∀A ∈ T̃
and

[G(f)](A)

= τf (A) =


1, if A = ∅ or A = X,
f(A), if A ∈ T̃ ,
0, otherwise,∀f ∈ I T̃

0 , ∀A ∈ 2X .

Then, by the definition ofF , it is clear thatF (τ) = fτ ∈
I T̃
0 , ∀τ ∈ C(T ). ThusF is well-defined. Also, by the def-

inition of G, we can easily see thatG(f) = τf ∈ OST(X)
such thatτf is compatible withT , ∀f ∈ I T̃

0 . SoG is well-
defined.

Now let τ ∈ C(T ). Then
(G ◦ F )(τ) = G(F (τ)) = G(fτ ) = τfτ

.
Thus, for eachA ∈ 2X ,

τfτ
(A) =


1 = τ(A), if A = ∅ or A = X,
fτ (A) = τ(A), if A ∈ T̃ ,
0, otherwise.

Soτfτ
= τ . HenceG ◦ F = idC(T ).

Similarly, it can be proved that(F ◦ G)(f) = f ,
∀f ∈ I T̃

0 . Thus F ◦ G = id
IT̃
0

. This completes the
proof.

3. Ordinary smooth continuous mappings

It is well-known that for any classical topological
spaces(X, T1) and (Y, T2) a mappingf : (X, T1) →
(Y, T2) is continuous if and only iff−1(A) ∈ T1 for each
A ∈ T2.

Definition 3.1. Let (X, τ1) and(Y, τ2) be ordinary smooth
topological spaces. Then a mappingf : X → Y is said to
be :

(i) [10] ordinary smooth continuousif τ2(A) ≤
τ1(f−1(A)), ∀A ∈ 2Y .

(ii) ordinary smooth weakly continuousif τ2(A) >
0 ⇒ τ1(f−1(A)) > 0, ∀A ∈ 2Y .

(iii) ordinary smooth strongly continuousif τ2(A) =
τ1(f−1(A)) > 0, ∀A ∈ 2Y .

In this manner, we obtain an obvious generalization of
the known concept of classical continuity. It is clear that
ordinary smooth strong continuity⇒ ordinary smooth con-
tinuity ⇒ ordinary smooth weak continuity. However, the
converse is not necessarily true.

Example 3.2. (a) LetX = {a, b, c, d}, let A = {b, d} and
let B = {a, c}. For eachi = 1, 2, we define a mapping
τi : 2X → I as follows : For eachC ∈ 2A,

τi(∅) = τi(X) = 1,

τ1(C) =
{

1, if C = A or C = B,
0, otherwise

τ2(C) =
{

1
2 , if C = A or C = B,
0, otherwise.

Then it is clear thatτ1, τ2 ∈ OST(X). Consider the iden-
tity mappingid : (X, τ2) → (X, τ1). Then we can easily
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see thatid is ordinary smooth weakly continuous, but it is
not ordinary smooth continuous.

(b) Let O be the set of all odd number inN and let
An = {1, 3, · · · , 2n−1} for eachn ∈ N. For eachi = 1, 2.
We define a mappingτi : 2N → I as follows : For each
A ∈ 2N,

τi(A) =


1
i , if A = O,
max{ 1

i ,
1

2n−1}, if A = An,
1, otherwise.

Then clearlyτ1, τ2 ∈ OST(X). Consider the identity map-
pingsid : (X, τ2) → (X, τ1) andid : (X, τ1) → (X, τ2).
Then we can easily see thatid : (X, τ2) → (X, τ1)
is ordinary smooth weakly continuous, but not ordinary
smooth continuous andid : (X, τ1) → (X, τ2) is ordi-
nary smooth continuous, but not ordinary smooth strongly
continuous.

The following is the immediate result of Theorem 2.6
and Definition 3.1.

Theorem 3.3. Let (X, τ1) and(Y, τ2) be two osts’s. Then
(a) f is ordinary smooth continuous if and only if

Cτ2(A) ≤ Cτ1(f
−1(A)), ∀A ∈ 2Y .

(b) f is ordinary smooth weakly continuous if and only
if Cτ2(A) > 0 ⇒ Cτ1(f

−1(A)) > 0, ∀A ∈ 2Y .
(c)f is ordinary smooth strongly continuous if and only

if Cτ2(A) = Cτ1(f
−1(A)), ∀A ∈ 2Y .

The following are the immediate results of Definition
3.1.

Proposition 3.4. (See Lemma 2.1 in [10]) Let
(X, τ1),(Y, τ2) and (Z, τ3) be osts’s. Iff : X → Y
andg : Y → Z are ordinary smooth continuous, then so is
g ◦ f .

Proposition 3.5. Let (X, τ) be an osts. Then the identity
mappingid : X → X is ordinary smooth continuous.

Theorem 3.6. Let (X, τ) and(Y, τ ′) be two osts’s and let
f : X → Y be a mapping. Thenf is ordinary smooth con-
tinuous if and only iff : (X, [τ ]r) → (Y, [τ ′]r) is classical
continuous for eachr ∈ I0.

Proof. (⇒) : Supposef is ordinary smooth continuous and
let r ∈ I0. Let A ∈ τ ′r. Then

r ≤ τ ′(A) ≤ τ(f−1(A)).
Thusf−1(A) ∈ τr. Sof : (X, [τ ]r) → (Y, [τ ′]r) is classi-
cal continuous.

(⇐) : Suppose the necessary condition holds and let
A ∈ IY .

If τ ′(A) = 0, then clearlyτ ′(A) ≤ τ(f−1(A)).
If τ ′(A) = r ∈ I0, thenA ∈ [τ ′]r. Thus, by the hy-

pothesis,f−1(A) ∈ [τ ]r. So τ ′(A) = r ≤ τ(f−1(A)).
Hencef : (X, τ) → (Y, τ ′) is ordinary smooth continu-
ous. This completes the proof.

Theorem 3.7. Let (X, T1) and (Y, T2) be two classical
topological spaces and letf : X → Y be a mapping. Then
f : (X, T1) → (Y, T2) is classical continuous if and only if
f : (X, T r

1 ) → (Y, T r
2 ) is ordinary smooth continuous for

eachr ∈ I0.

Proof. (⇒) : Supposef : (X, T1) → (Y, T2) is classical
continuous and letA ∈ 2Y . Then we have the following
possibilities :

(i) A = ∅ or Y ,
(ii) A ∈ T2,
(iii) A 6∈ T2.
In case (i),f−1(∅) = ∅ andf−1(y) = X. By Propo-

sition 2.16,T r
1 ∈ OST(X) and T r

2 ∈ OST(Y ) for each
r ∈ I0. Thus

T r
1 (f−1(A)) = 1 ≥ T r

2 (A).
In case (ii),T r

2 (A) = r, by Proposition 2.16. Since
f : (X, T1) → (Y, T2) is classical continuous andA ∈ T2,
f−1(A) ∈ T1. Thus

T r
1 (f−1(A)) = r. SoT r

2 (A) ≤ T r
1 (f−1(A)).

In case (iii),T r
2 (A) = 0, by Proposition 2.16. Thus

0 = T r
2 (A) ≤ T r

1 (f−1(A)).
Hencef : (X, T r

1 ) → (Y, T r
2 ) is ordinary smooth continu-

ous for eachr ∈ I0.
(⇐) : Suppose the necessary condition holds. Then it

follows from Proposition 2.16 and Theorem 3.6.

Theorem 3.8. Let (X, τ) be an osts and letf : X → Y
be a mapping. Let{T ′

r : r ∈ I0} be a descending family of
classical topologies onY and letτ ′ be the ost onY gener-
ated by this family. For eachr ∈ I0, let Br be a base and
sr be a subbase forT ′

r. Then
(a)f : (X, τ) → (Y, τ ′) is ordinary smooth continuous

if and only if r ≤ τ(f−1(A)), ∀A ∈ T ′
r, ∀r ∈ I0.

(b) f : (X, τ) → (Y, τ ′) is ordinary smooth continuous
if and only if r ≤ τ(f−1(A)), ∀A ∈ Br, ∀r ∈ I0.

(c) f : (X, τ) → (Y, τ ′) is ordinary smooth continuous
if and only if r ≤ τ(f−1(A)), ∀A ∈ sr, ∀r ∈ I0.

Proof. (a) (⇒) : Supposef : (X, τ) → (Y, τ ′) is ordinary
smooth continuous. Letr ∈ I0 and letA ∈ T ′

r. Then
r ≤ τ ′(A) ≤ τ(f−1(A)).

(⇐) : Suppose the necessary condition holds. Let
A ∈ 2Y and letτ ′(A) = r > 0. Then clearlyA ∈ T ′

r.
Thus

τ ′(A) = r ≤ τ(f−1(A)).
Arguing as above and using the definition of base and

subbase for a classical topology, we have (b) and (c).

Definition 3.9. [10] Let τ1 ∈ OST(X), C1 ∈ OSCT(X),
τ2 ∈ OST(Y ) and C2 ∈ OSCT(Y ). Then a mapping
f : X → Y is said to be :

(i) ordinary smooth openif τ1(A) ≤ τ2(f(A)), ∀A ∈
2X .

(ii) ordinary smooth closedif C1(A) ≤ C1(f(A)),
∀A ∈ 2X .
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Definition 3.10. [10] Let τ1 ∈ OST(X) and let τ2 ∈
OST(Y ). Then a mappingf : X → Y is called anor-
dinary smooth homeomorphismif f is bijective, andf and
f−1 are ordinary smooth continuous.

The following is the immediate result of Definitions
3.1, 3.9 and Theorem 3.3 (a).

Theorem 3.11. Let (X, τ1) and(Y, τ2) be two osts’s and
let f : X → Y be a mapping. Then the following are
equivalent :

(a)f is an ordinary smooth homeomorphism.
(b)f is ordinary smooth open and ordinary smooth con-

tinuous.
(c) f is ordinary smooth closed and ordinary smooth

continuous.

The following is the immediate result of Proposition
2.11 and Definitions 3.1 and 3.9.

Proposition 3.12. Let X andY be two sets, let{Tr : r ∈
I0} and {T ′

r : r ∈ I0} be descending families of ordi-
nary topologies onX andY , respectively. Letτ andτ ′ be
ost’s onX andY , respectively generated by the families
{Tr : r ∈ I0} and{T ′

r : r ∈ I0}, and letf : X → Y
be a mapping. For eachr ∈ I0, if f : (X, Tr) → (Y, T ′

r)
is classical continuous [resp. classical open and classical
closed], thenf : (X, τ) → (Y, τ ′) is ordinary smooth con-
tinuous [resp. ordinary smooth open and ordinary smooth
closed].

4. Bases for an ordinary smooth topology

Definition 4.1. [9] Let (X, τ) be an osts and letx ∈ X.
ThenNx is called the ordinary smooth neighborhood sys-
tem (in short, osns) ofx if Nx : 2X → I is the mapping
defined as follows : For eachA ∈ 2X ,

Nx(A) =
∨

x∈B⊂A

τ(B).

Result 4.A. [9, Lemma 3.1]Let (X, τ) be an osts and let
x ∈ X. Then

τ(A) =
∧

x∈A

∨
x∈B⊂A

τ(B), ∀A ∈ 2X .

Definition 4.2. Let (X, τ) be an ordinary smooth topolog-
ical spaces and letB : 2X → I be a mapping such that
B ≤ τ . ThenB is called an ordinary smooth base forτ if
for eachA ∈ 2X ,

τ(A) =
∨

{Bα}α∈Γ⊂2X , A =
⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα).

Example 4.3. (a) LetX be a set and letB : 2X → I be the
mapping defined byB({x}) = 1 for eachx ∈ X. ThenB
is an ordinary smooth base for the ordinary smooth discrete
topologyτX onX.

(b) Let X = {a, b, c},let r ∈ I1 be fixed and let
B : 2X → I be the mapping defined as follows : For
eachA ∈ 2X ,

B(A) =
{

1, A = {a, b} or {b, c} or X;
r, otherwise.

Then B is not an ordinary smooth base for an ordinary
smooth topology onX.

Assume thatB is an ordinary smooth base for an or-
dinary smooth topologyτ on X. Then clearlyB ≤ τ .
Moreover,τ({a, b}) = τ({b, c}) = 1. Thus

τ({b}) = τ({a, b} ∩ {b, c})
≥ τ({a, b}) ∧ τ({b, c})
= 1.

Soτ({b}) = 1. On the other hand, by the definition of an
ordinary smooth base,

τ({b}) =
∨

{Aα}α∈Γ⊂2X , {x} =
⋃
α∈Γ

Aα

∧
α∈Γ

B(Aα)

= r.

This is a contradiction. HenceB is not an ordinary smooth
base for an ordinary smooth topology onX.

Theorem 4.4. Let (X, τ) be an ordinary smooth topolog-
ical space and letB : 2X → I be a mapping such that
B ≤ τ . ThenB is an ordinary smooth base forτ if and
only if Nx(A) ≤

∨
x∈B⊂A

B(B), for eachx ∈ X and each

A ∈ 2X .

Proof. (⇒) : SupposeB is an ordinary smooth base forτ .
Let x ∈ X and letA ∈ 2X . Then

Nx(A) =
∨

x∈B⊂A

τ(B) [By Definition 4.1]

=
∨

x∈B⊂A

∨
{Bα}α∈Γ⊂2X , B =

⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα).

[By Definition 4.2]
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If x ∈ B ⊂ A andB =
⋃
α∈Γ

Bα, then there existsα0 ∈ Γ

such thatx ∈ Bα0 .

Thus
∧
α∈Γ

B(Bα) ≤ B(Bα0) ≤
∨

x∈B⊂A

B(B). So

Nx(A) ≤
∨

x∈B⊂A

B(B).

(⇐): Suppose the necessary condition holds. Let

A ∈ 2X . SupposeA =
⋃
α∈Γ

Bα and {Bα}α∈Γ ⊂ 2X .

Then

τ(A) ≥
∧
α∈Γ

τ(Bα) [By the condition(OST3)]

≥
∧
α∈Γ

B(Bα). [Since B ≤ τ ]

Thus

τ(A) ≥
∨

{Bα}α∈Γ⊂2X , A =
⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα) (4.1)

On the other hand,

τ(A) =
∧

x∈X

∨
x∈B⊂A

τ(B) [By Result 4.A]

=
∧

x∈X

Nx(A) [By Definition 4.1]

=
∧

x∈X

∨
x∈B⊂A

B(B) [By the hypothesis]

=
∨

f∈
∏
x∈A

Bx

∧
x∈A

B(f(x)),

whereBx = {B ∈ 2X : x ∈ B ⊂ A}. Moreover,

A =
⋃

x∈A

f(x) for eachf ∈
∏
x∈A

Bx. Thus

∨
f∈

∏
x∈A

Bx

∧
x∈A

B(f(x)) =
∨

{Bα}α∈Γ⊂2X , A =
⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα)

So

τ(A) ≤
∨

{Bα}α∈Γ⊂2X , A =
⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα) (4.2)

Hence, by (4.1) and (4.2),

τ(A) =
∨

{Bα}α∈Γ⊂2X , A =
⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα)

B is an ordinary smooth base forτ .

The following is the restatement of Theorem 4.3.

Theorem 4.5. Let B : 2X → I be a mapping. ThenB is
an ordinary smooth base for some ordinary smooth topol-
ogy τ on X if and only if it satisfies the following condi-
tions :

(a)
∨

{Bα}α∈Γ⊂2X , X =
⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα) = 1

(b) For any A1, A2 ∈ 2X and eachx ∈ A1 ∩
A2,B(A1) ∧B(A2) ≤

∨
x∈A⊂A1∩A2

B(A)

In fact,τ : 2X → I is the mapping defined as follows : For
eachA ∈ 2X ,

τ(A) =


1, if A = ∅ ;∨
{Bα}α∈Γ⊂2X , A =

⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα),otherwise.

In this case,τ is called the ordinary smooth topology onX
generated byB.

Proof. Since the proof is similar to that of Theorem 4.2 in
[9], we omit it.

Example 4.6. (a) LetX = {a, b, c} and letr ∈ I1 be fixed.
We define the mappingB : 2X → I as follows : For each
A ∈ 2X ,

B(A) =
{

1, if A = {b} or {a, b} or {b, c};
r, otherwise.

Then we can easily see thatB satisfies the conditions (a)
and (b) in Theorem 4.3. ThusB is an ordinary smooth
base for an ordinary smooth topologyτ on X. In fact,
τ : 2X → I be the mapping defined as follows : For each
A ∈ 2X ,

τ(A) =
{

1, if A ∈ {∅, {b}, {a, b}, {b, c}, X};
r, otherwise.

(b) Let r ∈ I1 be fixed. We define the mapping
B : 2R → I as follows : For eachA ∈ 2R,

B(A) =
{

1, if A = (a, b);
r, otherwise.
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Then it can be easily seen thatB satisfies the conditions
(a) and (b) in Theorem 2.3. ThusB is an ordinary smooth
base for an ordinary smooth topologyUr onR. In this case,
Ur will be called ther-ordinary smooth usual topology.

(c) Let r ∈ I1 be fixed. We define the mapping
B : 2R → I as follows : For eachA ∈ 2R,

B(A) =
{

1, if A = [a, b);
r, otherwise.

Then we can see thatB satisfies the conditions (a) and (b)
in Theorem 4.5. ThusB is an ordinary smooth base for an
ordinary smooth topologyUl onX. Furthermore,U � Ul.
In this case,Ul will be called ther-ordinary smooth lower-
limit topologyonR.

Definition 4.7. Let τ1, τ2 ∈ OST(X), and letB1 andB2

be ordinary smooth bases forτ1 andτ2, respectively. Then
B1 andB2 areequivalentif τ1 = τ2.

Theorem 4.8. Let τ1, τ2 ∈ OST(X), and letB1 andB2

be ordinary smooth bases forτ1 andτ2, respectively. Then
τ2 is finer thanτ1, i.e., τ1 ≤ τ2 if and only if for each
x ∈ X and eachB ∈ 2X , if x ∈ B, thenB1(B) ≤∨
x∈B′⊂B

B2(B′).

Proof. (⇒) : Supposeτ1 ≤ τ2. For eachx ∈ X, let
B ∈ 2X such thatx ∈ B. Then

B1(B) ≤ τ1(B)
[Since B1 is an ordinary smooth base for τ1]

≤ τ2(B) [By the hypothesis]

=
∨

{Bα}α∈Γ⊂2X , B =
⋃
α∈Γ

Bα

∧
α∈Γ

B2(Bα).

[Since B2 is an ordinary smooth base for τ2]

Sincex ∈ B, if B =
⋃
α∈Γ

Bα, then there existsα0 ∈ Γ

such thatx ∈ Bα0 . Thus

∧
α∈Γ

B2(Bα) ≤ B2(Bα0) ≤
∨

x∈B′⊂B

B2(B′).

So

B2(B) ≤
∨

x∈B′⊂B

B2(B′).

(⇐) : Suppose the necessary condition holds. LetA ∈ 2X

and letN1x
be the ordinary smooth neighborhood system

of x ∈ X w.r.t. τ1. Then

τ1(A) =
∧

x∈A

N1x
(A) [By Definition 4.1 and Result 4.A]

≤
∧

x∈A

∨
x∈B⊂A

B1(B) [By Theorem 4.3]

≤
∧

x∈A

∨
x∈B⊂A

∨
x∈B′⊂B

B2(B′) [By hypothesis]

=
∨

x∈B′⊂A

∧
x∈A

B2(B′)

=
∨

{Bx}x∈A⊂2X , A =
⋃

x∈A

Bx

∧
x∈A

B2(Bx)

= τ2(A).

Thusτ1 ≤ τ2. This completes the proof.

The following is the immediate result of Definition 4.5
and Theorem 4.6.

Corollary 4.9. Let B1 and B2 be two ordinary smooth
bases for ordinary smooth topologies on a setX, respec-
tively. ThenB1 andB2 are equivalent if and only if

(a) For eachB1 ∈ 2X and eachx ∈ B1,B1(B1) ≤∨
x∈B2⊂B1

B2(B2).

(b) For eachB2 ∈ 2X and eachx ∈ B2,B2(B2) ≤∨
x∈B1⊂B2

B1(B1).

It is clear that the ordinary smooth topology itself forms
an ordinary smooth base. Then every ordinary smooth
topology has an ordinary smooth base. The following pro-
vides a condition for one to check to see if a mapping
B : 2X → I such thatB ≤ τ is an ordinary smooth
base forτ , whereτ ∈ OST(X).

Proposition 4.10. Let (X, τ) be an ordinary smooth topo-
logical space, letB : 2X → I a mapping such thatB ≤ τ ,
and for eachx ∈ X and eachA ∈ 2X with x ∈ A, let
τ(A) ≤

∨
x∈B⊂A

B(B). ThenB is an ordinary smooth base

for τ .
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Proof. ∨
{Bα}α∈Γ⊂2X , X =

⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα)

≤
∨

{Bα}α∈Γ⊂2X , X =
⋃
α∈Γ

Bα

∧
α∈Γ

τ(Bα) [Since B ≤ τ ]

≤
∨

{Bα}α∈Γ⊂2X , X =
⋃
α∈Γ

Bα

τ(
⋃
α∈Γ

Bα)

[By the axiom (OST3)]
= τ(X)

=
∧

x∈A

∨
x∈B⊂X

τ(B) [By Result 4.A]

≤
∧

x∈A

∨
x∈B⊂X

∨
x∈C⊂B

B(C) [By the hypothesis]

=
∨

x∈C⊂X

∧
x∈A

B(C)

=
∨

{Bx}x∈X⊂2X , X =
⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα)

Then

τ(X) =
∨

{Bα}α∈Γ⊂2X , X =
⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα).

Sinceτ ∈ OST(X), τ(X) = 1. Thus

∨
{Bα}α∈Γ⊂2X , X =

⋃
α∈Γ

Bα

∧
α∈Γ

B(Bα) = 1.

So the condition (a) of Theorem 4.5 holds.
Now letA1, A2 ∈ 2X and letx ∈ A1 ∩A2. Then

B(A1) ∧B(A2) ≤ τ(A1) ∧ τ(A2) [Since B ≤ τ ]
≤ τ(A1 ∩A2) [By the axiom (OST2)]

≤
∨

x∈A⊂A1∩A2

B(A). [By the hypothesis]

Thus the condition (b) of Theorem 4.5 holds. So, by The-
orem 4.5,B is an ordinary smooth base forτ . This com-
pletes the proof.

Definition 4.11. Let (X, τ) be an ordinary smooth topo-
logical space, letϕ : 2X → I a mapping. Thenϕ is
called anordinary smooth subbasefor τ if ϕu is an ordi-
nary smooth base forτ , whereϕu : 2X → I is the mapping
defined as follows : For eachA ∈ 2X ,

ϕu(A) =
∨

{Bα}α∈Γ<2X , A =
⋂
α∈Γ

Bα

∧
α∈Γ

B(Bα),

with < standing for “ a finite subset of ”.

Example 4.12.Let r ∈ I1 be fixed. We define the mapping
ϕ : 2R → I as follows : For eachA ∈ 2R,

{
1, if A = (a,∞) or−∞, b or (a, b);
r, otherwise.

wherea, b ∈ R such thata < b. Then we can easily see that
ϕ is an ordinary smooth subbase for ther-ordinary smooth
usual topologyUr onR.

Result 4.B. [9, Theorem 4.3]Let ϕ : 2X → I a mapping.
Thenϕ is an ordinary smooth subbase for some ordinary
smooth topologyτ onX if and only if

∨
{Bα}α∈Γ⊂2X , X =

⋃
α∈Γ

Bα

∧
α∈Γ

ϕ(Bα) = 1.

In this case,τ is called the ordinary smooth topologygen-
eratedby ϕ.

Example 4.13. Let X = {a, b, c, d, e} and letr ∈ I1 be
fixed. We define the mappingϕ : 2X → I as follows : For
eachA ∈ 2X ,

ϕ(A) =
{

1, if A ∈ {{a}, {a, b, c}, {b, c, d}, {c, e}};
r, otherwise.

Then

X = {a} ∪ {b, c, d} ∪ {c, e}
and

ϕ({a}) ∧ ϕ({b, c, d}) ∧ ϕ({c, e}) = 1

Thus

∨
{Bα}α∈Γ⊂2X , X =

⋃
α∈Γ

Bα

∧
α∈Γ

ϕ(Bα) = 1.

So, by the result 4.B,ϕ is an ordinary smooth subbase for
some ordinary smooth topologyτ onX.
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The following is the immediate result of Corollary 4.9
and Result 4.A.

Proposition 4.14. Let ϕ1, ϕ2 : 2X → I be two mappings
such that

∨
{Bα}α∈Γ⊂2X , X =

⋃
α∈Γ

Bα

∧
α∈Γ

ϕ1(Bα) = 1.

and

∨
{Bα}α∈Γ⊂2X , X =

⋃
α∈Γ

Bα

∧
α∈Γ

ϕ2(Bα) = 1.

Suppose the two conditions holds :
(a) For eachS1 ∈ 2X and eachx ∈ S1, ϕ1(S1) ≤∨

x∈S2⊂S1

ϕ2(S2).

(b) For eachS2 ∈ 2X and eachx ∈ S2, ϕ2(S2) ≤∨
x∈S1⊂S2

ϕ1(S1).

Thenϕ1 andϕ2 are ordinary smooth subbases for the some
ordinary smooth topology onX.

5. Ordinary smooth subspace

Proposition 5.1. Let (X, τ) be an osts and letA ⊂ X.
We define a mappingτA : 2A → I as follows : For each
B ∈ 2A,

τA(B) =
∨
{τ(C) : C ∈ 2X andC ∩A = B}.

Then τA ∈ OST(A) and τ(B) ≤ τA(B). In this case,
(A, τA) is called anordinary smooth subspaceof (X, τ)
andτA is called theinduced ordinary smooth topologyon
A by τ .

Proof. (OST1) It is clear thatτA(∅) = τA(A) = 1.
(OST2) Let B1, B2 ∈ 2A. Then

τA(B1) ∧ τA(B2)
= (

∨
{τ(C1) : C1 ∈ 2Xand C1 ∩ A = B1}) ∧

(
∨
{τ(C2) : C2 ∈ 2XandC2 ∩A = B2})
=

∨
{τ(C1) ∧ τ(C2) : C1, C2 ∈ 2X and(C1 ∩ C2) ∩

A = B1 ∩B2}
≤

∨
{τ(C1)∩τC2) : C1, C2 ∈ 2X and(C1∩C2)∩A =

B1 ∩B2}
= τA(B1 ∩B2).
(OST3) Let {Bα}α∈Γ ⊂ 2A. Then
τA(Bα) =

∨
{τ(Cα) : Cα ∈ 2X andCα∩A = Bα},

∀α ∈ Γ.
Thus

∧
α∈Γ

τA(Bα)

=
∨
{

∧
α∈Γ

τ(Cα) : Cα ∈ 2X and(
⋃
α∈Γ

Cα) ∩A =
⋃
α∈Γ

Bα}

≤
∨
{τ(

⋃
α∈Γ

Cα) : Cα ∈ 2X and(
⋃
α∈Γ

Cα) ∩A =
⋃
α∈Γ

Bα}

= τA(
⋃
α∈Γ

Bα).

HenceτA ∈ OST(A).
Now letB ∈ 2A. Then

τA(B) =
∨
{τ(C) : C ∈ 2XandC ∩A = B}

≤ τ(B).[SinceB ⊂ A,B ∩A = B]

This completes the proof.

Proposition 5.2. Let (X, τ) be an osts, let(Y, τY ) be an
ordinary smooth subspace of(X, τ) and letA ∈ 2Y . Then

(a)CτY
(A) =

∨
{Cτ (B) : B ∈ 2Xand B ∩Y = A}.

(b) If Z ⊂ Y ⊂ X thenτZ = (τY )C .

Proof. (a)

FτY
(A) = τY (Y −A)

=
∨
{τ(B) : B ∈ 2Xand B ∩Y = Y −A}

=
∨
{τ(B) : Bc ∈ 2Xand Bc ∩Y = A}

=
∨
{Fτ (Bc) : Bc ∈ 2Xand Bc ∩Y = A}

=
∨
{Fτ (C) : C ∈ 2Xand C ∩Y = A}.

(b) LetA ∈ 2Z . Then

(τY )Z(A)

=
∨
{τY (B) : B ∈ 2Y and B ∩ Z = A}

=
∨

[
∨
{τ(C) : C ∈ 2Xand C ∩Y = B} : B ∈ 2Yand B ∩ Z = A]

=
∨
{τ(C) : C ∈ 2Xand C ∩ Z = A}

= τZ(A).

Proposition 5.3. (See Lemma 2.2 in [10]) Let(X, τ) and
(Y, τ ′) be two osts’s, letf : X → Y be ordinary smooth
continuous and letA ⊂ X. Then the restrictionf |A:
(A, τA) → (Y, τ ′) is also ordinary smooth continuous.
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Proof. Let B ∈ 2Y . Then

τA((f |A)−1(B))

=
∨
{τ(C) : C ∈ 2Xand C ∩A = (f |A)−1(B)}

≥ τ(f−1(B))
≥ τ ′(B).

Sof |A is ordinary smooth continuous.
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