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Abstract

In this paper, we introduce the concept of ordinary smooth topology ona bgtconsidering the gradation of openness

of ordinary subsets ak. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its
decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity
and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological
space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace.

Key words : ordinary smooth (co)topological space, r-level and strong r-level, ordinary smooth [resp. weak and strong]
continuity, ordinary smooth open [resp. closed] mapping, ordinary smooth subspace, ordinary smooth base [resp. sub-
base].

1. Introduction and Preliminaries openness of ordinary subsetsXf And we obtain the re-
sult [Corollary 2.13] : An ordinary smooth topology is fully

Chang [1] introduce the concept of fuzzy topology on d@etermined its decomposition in classical topologies. Also
setX by axiomatizing a collection of fuzzy sets Xi. Af-  we introduce the notion of ordinary smooth [resp. strong
ter that, Pu and Liu [7] and Lowen [5] advanced it. How-and weak] continuity and study some its properties. Fi-
ever, they did not consider the gradation of openness [regpally, we investigate some properties of an ordinary smooth
closedness] of fuzzy sets . subspace.

In 1992, Hazra et al.[4] have attempted to introduce a Throughout this paper, lgt = [0, 1] be the unit inter-
concept of gradation of openness of fuzzy setXiby a Vval, letIX denote the set of all fuzzy sets in a sét and
mappingr : IX — I satisfying the following axioms : we will write Iy = (0, 1] andl; = [0, 1).

(i) 7(0) = (1) =1,

(i) 7(A;) > 0,4 =1,2, impliesT(A; N A3) > 0,

(i) 7(A,) > 0, o € T, implies( U A) > 0. 2. Definitions and general properties

aecl
On the other hand, chattopadhyay et al.[2] modified the | gto — {0,1} and let2X denote the set of all ordinary
notion of gradation of openness of fuzzy setsXnby a gypsets ofY.
mappingr : IX — I satisfying the following axioms :

) r(0)=7(1) =1, Definition 2.1. Let X be a nonempty set. Then a map-
(i) 7(ANB) > 7(A) AT(B),VA, B € IX, ping 7 : 2X¥ — I is called anordinary smooth topology
(iii) 7( U Ag) > /\ 7(Aa), Y{Aa aer C I¥. (in short,os?) on X or agradation of openness of ordinary

ael ael subset®f X if 7 satisfies the following axioms :

After then, some work has been done in this field by (OST) 7(0) = 7(X) = 1.
Ramadan [8], Chattopadhyay and Samanta [3], and Peeters (OST,) 7(A N B) > 7(A) A 7(B), VA, B € 2X.
[6]. In particular, Ying [9] introduced the concept of the  (OST;) 7( U Ay) > /\ 7(Aq), V{As} C 2%,
topology considering the degree of openness of an ordinary wel el
subset of a set and studied some of it's properties. The pair(X, 7) is called arordinary smooth topologi-

In this paper, we introduce the concept of ordinancal spacgin short,ost9. We will denote the set of all ost’s
smooth topology on a séf by considering the gradation of on X as OSTX).

Manuscript received August 31, 2011; revised March 15, 2012;
accepted March 20, 2012;

*Corresponding Author : Kul Hur(kulhur@wonkwang.ac.kr)

2000 Mathematics Subject Classification. 54A40.

© The Korean Institute of Intelligent Systems. All rights reserved.

66



Ordinary Smooth Topological Spaces

Remark 2.2. Ying [9] called the mapping : 2X — T (OSCT)C(h) =C(X) = 1.
[resp. 7 : IX — 2andr : IX — I] satisfying the ax- (OSCh)C(AUB) > C( YAC(B),VA, B € 2X.
ioms in Definition 2.1 as &uzzyfying topologjresp.fuzzy (OSCT) C( m Ag) /\ C(Aq), V{A,} C 2%,
topologyandbifuzzy topologlyon X. el wel

The pair(X,C) is called anordinary smooth cotopo-
Example 2.3. (a) Let X = {a,b,c}. Then2® = logical space(in short, oscts). We will denote the set of all
{0, {a}, {b}, {c}, {a, b}, {a, ¢}, {b, c}, X} osct's onX as OSCTX).

We define the mapping : 2¥ — I as follows : L o
@) = 7(X) = 1, 7({a}) = 0.7, 7({b}) = 04 Remark 2.6. If I = 2, then Definition 2.2 also coincides

r({c}) = 0.5, with the known definition of classical topology.
7({a,b}) = 0.6, 7({a,c}) = 0.3, 7({b,c}) = 0.8. The following is the immediate result of Definition 2.1
Then we can easily see that OST(X). and 2.5.

(b) Let X be a nonempty set. We define the mappin

7025 — I as follows : For eaci € 2 %roposmon 2.7. Let X be a nonempty set. We de-

fine two mappingsf : OST(X) — OSCT(X) andg :

b if A=0orA=X, OSCT(X) — OST(X) les follows, respectively :X
(A =1 0 otherwise | [F(T)](A) = 7(A°), V7 € OST(X), VA € 2
an
Then we can easily see thgt € OST(X). In this casery [9(C)](A) = C(A°),¥C € OSCT(X), VA € 2¥.
will be called theordinary smooth indiscrete topolo@n Then f and g are well-defined. Furthermorgo f =
X. idosT(x) andf o g = idoscr(x)-

(c) Let X be a nonempty set. We define the mappin

v 1 2% _ I as follows : For eacht € 2% Remark 2.8. Let f(7) = C, andg(C) = 7¢. Then, Propo-

sition 2.3, we can easily see that = r andC,, = C.

Tx(A) = 1. Definition 2.9. Let (X, 7) be an osts and let € I. Then
] ) we define two ordinary subsets &f as follows :
Then clearlyrx € OST(X). In this caserx will be called (], = {A € 2% . 7(A) > 1}
theordinary smooth discrete topologn X . and -
(d) Let X be a set and let € I be fixed. We define [r]5 = {A € 2% : 7(A) > r}.
the mapping : 2% — I as follows : For eactd € 2%, We call these the—levelset and thetrong r-levelset ofr,
A) — 1, if A=0orAcisfinite, respectively.
(4) = r, otherwise It is clear that[r], = 2%, the classical discrete topol-

. . . ogyonX and[r]; = (. Also it can be easily seen that
Then it can be easily seen that € OST(X). In this [7]: C [r], for eachr € I.

case;r will be called ther-ordinary smooth finite comple- ~ "~

ment topologyon X and will be denoted by OSCEK). Proposition 2.10. Let (X, 7) be an osts. Then :
OSCof X) is of interest only wherX is an infinite set be- @)[r], € T(X),Vr el

cause ifX is finite, OSCof X) coincides withryx defined @) [r]; € T(X), ¥r € L.

in (c). (b) For anyr,s € I, if r < s, then|[r]; C [7], and
(e) Let X be a set and let € I; be fixed. We define 7] < [73
the mapping- : 2% — I as follows : For eachl € 2, ©[r], = ﬂ (7], V7 € Io.

© [y = Ul vre 1.

Proof. The proofs of (a), (d)and (b) are obvious from Def-

: - initions 2.1 and 2.9.
Then we can easily see thate OST(X). In this casey n o . .
will be called ther-ordinary smooth countable complement (c) From (b), it is obvious thaf[r], : r € I} is a de-

topology onX and will be denoted by OSCOK). 0 scending family of classical topologies h
Letr € I,. Then clearly[r], C [[r],. Assume

Remark 2.4. If I = 2, then Definition 2.1 coincides with s<r

the known definition of classical topology. that A ¢ [r],. Thent(A) < r. Thusds € I, such
that7(A) < s < r. S0A ¢ [r]s for somes < r,

Definition 2.5. Let X' be a nonempty set. Then a mapping o 4 ¢ ﬂ [7]s. Hence ﬂ [7]s C [r],. Therefore
C : 2% — I is called anordinary smooth cotopologgin s<r s<r

short,osc) on X or agradation of closedness of ordmary[ ], = mm _
subset®f X if C satisfies the following axioms : )

1, if A=0orAcis countable,
r, otherwise

-]

)

s<r
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(cy From (b), it is also clear thaf[r]: : » € I} is a
descending family of classical topologies &n
Letr € I,. Then[r]z > |JIr];. Assume that

S
s>r

A& [r];. Thent(A) < r. Thus3s € I; such thatr(A4) <
r < s. SOA ¢ [r]* for somer < s, i.e., A ¢ U[TE.
s>r

Ul

s>r s>r
completes the proof. O

Hence| J[7]; C [];. Therefore[r]: = This

Proposition 2.11. Let X be a nonempty set and €T, :

r € I} be a nonempty descending family of classical

T(U Ay) >1l—e

. ol
Sincee > 0 is arbitrary,

m(|J 4a) = 1= A 7(4a).
acll ael
Sor satisfies the axiom (OSJ. Hencer € OST(X).
(b) Supposerl,. = ﬂ T, for eachr € Iy and let

s<r
A € T,. Then clearlyr(A) > r. ThusA € 7,.. SoT,. C 7.

for eachr € Iy. Let A € 7.. Thent(A) > r. Thus, by the
definition of 7,
T(A4) = \/ =s>r.

AETk

topologies onX such thaff}, is the classical discrete topol- Lete > 0. Then3k € I, such thats — e < k andA € 1.

0gy.
(a) We define the mapping: 2% — I as follows : For
eachA c 2%,

T(A) :\/{TEI:AETT}.

Thenr € OST(X).
(b) For eachr € I, if T, = ﬂ T, then[r], = T.
s<r

(bY Foreach- ¢ I,if T}, = U T, then[r]* = T,.

s>r
In this casey is called the ordinary smooth topologgn-
eratedby {T,. : r € I'}.

Proof. (a) From the definition of, it is clear that
7(0) =7(X)=1.
Thusr satisfies the axiom (OS7.
For anyA; € 2%, let7(A4;) = k;, i = 1,2. Suppose
k; = 0 for somei. Then clearly
T(Al N AQ) Z T(Al) N T(AQ).
Thus, without loss of generality, suppoge > 0 for
i=1,2. Lete > 0. Then
dr; € Iy suchthat; —e < r; < k; andA; € T,.,,
i=1,2.
Letr = r; Ary andletk = ki A ko. Since{T, : r € Iy}
is a descending family and; € T,.,, A1, As € T,.. Thus
Ay N Ay € T,.. So, by the definition of,
T(AiNA)>r>k—e
Sincee > 0 is arbitrary, it follows that
T(AlﬁAg) >k=ki Nko :T(Al)/\T(AQ).
Hencer satisfies the axiom (OSJ.
Now let {A,}oer C 2%, let 7(A,) = I; for each
acTandletl = /\ l;. Supposé = 0. Then clearly
acl’
(| 4a) = N (4w

acl aecl
Supposd > 0andletl > € > 0. Then0 < —¢€ < I4

for eacha € I'. SinceA, € T;, for eacha € I'" and
{T, : r € Iy} is a descending familyd, € T;_. for
eacha € I'. SinceT;_. is a classical topology oiX,
U A, € T,_.. Thus, by the definition of,

acl
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Thus
r—e<s—c<kandA eT}.

SoA € T,_.. Sincee > 0 is arbitrary, by the hypothesis,
A € T,. Hencer, C T,. Thereforer, = T, for each
r € .

(b) By the similar arguments of the proof of (b), we
can prove thair]}: = T, for eachr € I;. This completes
the proof. O

Since every mapping : 2X¥ — I is greater than or
equal to0 on all elements on which it is defined, note that
indeed an extra requirement here is tiigtis the classi-
cal discrete topologgX. Thus from now on we take this
supplementary condition for granted.

The following is the immediate result of Propositions
2.5and 2.6.

Corollary 2.12. Let X be a nonempty set, lete OST(X)

and let{[r], : » € I} be the family of all r-level classi-

cal topologies with respect to. We define the mapping

71 : 2% — I as follows : For eacttl € 2%,
T(A)=\{rel:Aec]r]}.

Thent; = 7.

The fact that an ordinary smooth topological space is
fully determined by its decomposition in classical topolo-
gies is restated in the following result.

Corollary 2.13. Let X be a nonempty set and let, » €
OST(X). Thent, = 7 if and only if [11], = [r2], for
eachr € I, or alternatively, if and only ifr ] = [r] for
eachr € I.

Remark 2.14. In a similar way, we study the levels of an
ordinary smooth cotopology on a nonempty seX : For
eachr € I,

[Cl, ={Ae2X:C(A)>r}
and

[Clr ={Ae2X:C(A) >r}.

Definition 2.15. Let X be a nonempty set, |16t be a clas-
sical topology and let € OST(X). Thenr is said to be
compatible withl" if T = S(7), whereS(r) = {A € 2% :
T(A) > 0}.
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Example 2.16.(a) Letry be the ordinary smooth indiscrete Then, by the definition of", it is clear thatF' (1) = f; €
topology on a nonempty seéf and let/ be the classical in- ', v+ € C(T). ThusF is well-defined. Also, by the def-

discrete topology otX'. Then clearly inition of G, we can easily see thét(f) = 7y € OST(X)
S(ry) ={A€2¥ :7p(A) >0} = {0, X} = 1. such thatr; is compatible withr, vV € I7. SoG is well-
ThusTy is compatible with. defined.
(b) Let7x be the ordinary smooth discrete topology on  Now let7 € C/(T'). Then
a nonempty seX and let® be the classical discrete topol- (GoF)(r)=G(F(r)) =G(f,) = 4.
ogy onX. Then Thus, for eacd € 2X,

S(rx)={Ae€2X :7x(A) >0} =2% =D.
Thusty is compatible withD.

(c) Let X be a nonempty set and ket (0, 1) be fixed. 1=1(A), if A=0orA=X,
We define the mapping : 2X — I as follows : Foreach 74 (A) =< f.(A)=7(4), ifAeT,
Ag2X, 0, otherwise
T(A): 1, ifA=0orA=X, SOTfTZT. HenceGoF:idC(T).
r, otherwise Similarly, it can be proved thatF o G)(f) = f,
Then clearlyr € OST(X) andr is compatible witto. 0 ¥/ € Ig. ThusF oG = id,r. This completes the
proof. O

From the following result, every classical topology can
be considered as an ordinary smooth topology.

B . 3. Ordinary smooth continuous mappings
Proposition 2.17. Let T' be a classical topology on a

nonempty setX and letr € Iy. Then3T" € OST(X) ) ] ]
such that” is compatible witHI". Moreover(T"), = T. It is well-known that for any classical topological
In this case7™ is called an-th ordinary smooth topology SPaces(X,Ti) and (Y, T) a maPPjTgf (X)) —
on X and(X,T") is called an--th ordinary smooth topo- (Y, T3) is continuous if and only iff —*(A) € T} for each

logical space AeT.
Proof. Let r € (0,1) be fixed and we define the mappingPefinition 3.1. Let (X, ) and(Y, 72) be ordinary smooth
77+ 29X _, I as follows : For eachi € 2%, topological spaces. Then a mappifig X — Y is said to
be :
1, fA=0ordA=X, () [10] ordinary smooth continuousf m(A4) <
T (A) =< », if AeT\{0, X}, T (f~1(A)), VA € 2V,
0, otherwise (ii) ordinary smooth weakly continuouf 75(A) >

0=7(f"1(4) >0,VAe€2Y.

(iii) ordinary smooth strongly continuous 75(A) =
m(f~1(A)) >0,VA € 2Y.

In this manner, we obtain an obvious generalization of
the known concept of classical continuity. It is clear that
ordinary smooth strong continuity ordinary smooth con-
tinuity = ordinary smooth weak continuity. However, the
converse is not necessarily true.

Then we can easily see that € OST(X) and(T"), =T

On the other hand, by the definitiondf,
S(TT)={Aec2X:T"(A) >0} =T.

SoT" is compatible withl".

Proposition 2.18. Let 7' be a classical topology on a
nonempty setX and letC(T') be the set of all ordinary
smooth topologies otX' compatible with7. Then there
is a one-to-one correspondence betwékfi') and the set Example 3.2. (a) LetX = {a,b,c,d}, let A = {b,d} and
I, whereT' = T\{0, X }. let B = {a,c}. For eachi = 1,2, we define a mapping
7; : 2% — T as follows : For eaclt’ € 24,

Proof. We define two mappings” : C(T) Iy and 7(0) = 7(X) = 1,

G : I — C(T) as follows, respectively :

[F(T)](A) = f-(A) =7(A),VT € C(T),VAET 1, fC=AorC =B,
and n(C) = { 0, otherwise
1 iffCc=AorC =B,
[G(H](A) m(C) = { 6, otherwise
1, if A=0orA=X,
= 14(4) = { flA), ifAe T, i Then it is clear thaty, 2 € OST(X). Consider the iden-
0, otherwisey f € I}, VA € 2¥X. tity mappingid : (X, ) — (X, 71). Then we can easily
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see thatd is ordinary smooth weakly continuous, but it isTheorem 3.7. Let (X, T;) and (Y, T,) be two classical
not ordinary smooth continuous. topological spaces and Ig¢t: X — Y be a mapping. Then

(b) Let O be the set of all odd number iN and let f:(X,Ty) — (Y, T3) is classical continuous if and only if
A, ={1,3,--- ,2n—1}foreachn € N. Foreach = 1,2. f: (X,T7) — (Y,T3) is ordinary smooth continuous for
We define a mapping; : 2N — I as follows : For each eachr € I.

A e 2N, _ .
Proof. (=) : Supposef : (X,T1) — (Y, T5) is classical
) . continuous and letl € 2. Then we have the following
3 if A=0, possibilities :
mi(A) =< max{1, 51}, if A=A, (YA=0orY,
1, otherwise (i) A €T,
(i) A & To.

Then clearlyr;, » € OST(X). Consider the identity map-
pingsid : (X, 72) — (X, m) andid : (X,m) = (X, 7). o0 o 16,77 € OST(X) andTj € OST(Y) for each
Then we can easily see thad : (X, z) — (X,m) c I. Thus
is ordinary smooth weakly continuous, but not ordinarf o Tr(F-1(A)) = 1 > T5(A)
i f . N i i 1 - 2 .
ir;rgo;&ggmlgggﬁrfuzzf t.)u(t)?c;lc))rdina(r‘;/(’s:;Z)cI)?hosTrlongI)g In case (i), 73 (4) = r, by Proposition 2.16. Since
’ (X,T1) — (Y, Ty) is classical continuous andl € T,

In case (i),f ~1(#) = D andf~!(y) = X. By Propo-

continuous. O - (A) €' Tv. Thus
The following is the immediate result of Theorem 2.6 Tr(f~Y(A)) =r. STy (A) < TT (f~1(A)).
and Definition 3.1. In case (iii), 75 (A) =0, by Proposition 2.16. Thus

0="T5(A) < T{ (f~1(A)).
Hencef : (X,T7) — (Y, T%) is ordinary smooth continu-
ous for each € I.
(<) : Suppose the necessary condition holds. Then it
follows from Proposition 2.16 and Theorem 3.6. O

Theorem 3.3. Let (X, ;) and(Y, 72) be two osts’s. Then

(&) f is ordinary smooth continuous if and only if
Cra(A) < Cry(f71(A)), VA € 2.

(b) f is ordinary smooth weakly continuous if and only
if Cr,(A) >0=Cr, (f71(A)) >0,VA € 2Y.

() fis ordlnary smooth strongly continuous if and onlyTheorem 3.8. Let (X, 7) be an osts and let : X — Y

if Cr,(A) = Cr, (f71(A4)), VA € 27. be a mapping. LefT” : r € I,} be a descending family of
The following are the immediate results of DefinitionC/assical topologies ol and letr’ be the ost or” gener-
31 ated by this family. For each € I, let 5, be a base and

s, be a subbase faF.. Then
Proposition 3.4. (See Lemma 2.1 in [10]) Let  (a)f:(X,r)— (Y,7)is ordinary smooth continuous
(X,m),(Y,72) and (Z,73) be osts's. Iff : X — Y ifandonlyifr < 7(f'(A)),VA € T/, Vr € I.
andg : Y — Z are ordinary smooth continuous, thensois  (b) f : (X, 7) — (Y,7’) is ordinary smooth continuous
gof. if and only ifr < 7(f~1(A)),VA € B,., Vr € I,.

Proposition 3.5. Let (X, 7) be an osts. Then the identity " (g) f I (.)f(’ T<) - in 72 Is ozﬂinary smooth continuous
mappingid : X — X is ordinary smooth continuous. ifand only if - < 7(f~(A)), YA € 5, Vr € L.

Theorem 3.6.Let (X, 7) and(Y 7') be two osts’s and let Proof. (a) (=) : Supposef : (X,7) — (Y, 7/) is ordinary

tinuous if and only iff : (X, [7],) — (Y, [],.) is classical r < (4) < 7(f1(A)).
continuous for each € 1. (<) : Suppose the necessary condition holds. Let

. . _ A € 2¥ and letr’(A) = r > 0. Then clearlyA € T7.
Proof. (=) : Suppos¢f is ordinary smooth continuous and Thys

letr € Iy. Let A € 7). Then 7(A) = r < 7(f71(A)).

r<7'(A) < 7(f71(A). Arguing as above and using the definition of base and

Thusf‘_l(A) €. Sof : (X,[7];) — (Y, [r']») is classi-  gupbase for a classical topology, we have (b) and (c]2
cal continuous.

(<) : Suppose the necessary condition holds and I&efinition 3.9. [10] Let 3 € OST(X), C; € OSCTX),
Ael¥. T, € OST(Y) andC; € OSCT(Y). Then a mapping

If 7/(A) = 0, then clearlyr’(A) < 7(f~1(A)). f:X —Yissaidto be:

If 7/(A) = r € Iy, thenA € [r'],. Thus, by the hy- (i) ordinary smooth opeif 71(A) < m(f(A4)), VA €
pothesis,f~*(A) € [r],. SoT'(A) = r < 7(f~1(4)). 2%.
Hencef : (X,7) — (Y,7’) is ordinary smooth continu- (i) ordinary smooth closedf Ci(A4) < Ci(f(A)),
ous. This completes the proof. O VA€ 2X.
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Definition 3.10. [10] Let ; € OST(X) and let» € Example 4.3.(a) LetX be asetand 1B : 2X — [ be the
OST(Y). Then a mapping’ : X — Y is called anor- mapping defined b$3({x}) = 1 for eachz € X. Then®B
dinary smooth homeomorphidinf is bijective, andf and is an ordinary smooth base for the ordinary smooth discrete
f~1 are ordinary smooth continuous. topologyrx on X.

(b) Let X = {a,b,c}letr € I, be fixed and let
B : 2%X — I be the mapping defined as follows : For
each4 € 2%,

The following is the immediate result of Definitions
3.1, 3.9 and Theorem 3.3 (a).

Theorem 3.11. Let (X, 1) and (Y, 72) be two osts’s and

let f : X — Y be a mapping. Then the following are

equivalent : %(A) — { 1L, A= {a} b} or {b7 C} or X;
(a) f is an ordinary smooth homeomorphism. r, otherwise.
(b) f is ordinary smooth open and ordinary smooth con-

tinuous. ThenB is not an ordinary smooth base for an ordinary
(c) f is ordinary smooth closed and ordinary smoott$mooth topology orX.
continuous. Assume that8 is an ordinary smooth base for an or-

o ) ] . dinary smooth topology- on X. Then clearlys < 7.
The following is the immediate result of PrOpOS't'O”Moreoverr({a 1) = r({b,c}) = 1. Thus

2.11 and Definitions 3.1 and 3.9.

Proposition 3.12. Let X andY” be two sets, lefT,. : r €

I} and {7 : r € I,} be descending families of ordi- T({b})
nary topologies orX andY’, respectively. Let andr’ be

ost's onX andY, respectively generated by the families

{T, :r € Iyyand{T. : r € Iy}, and letf : X — Y

be a mapping. For eaohe Iy, if f : (X,T;) = (Y,17)  sor({p}) = 1. On the other hand, by the definition of an
is classical continuous [resp. classical open and cIaSS|Q§JrIdinary smooth base,

closed], therf : (X, 7) — (Y, 7’) is ordinary smooth con-

tinuous [resp. ordinary smooth open and ordinary smooth

closed]. r({b}) = \/ /\ B(Ay)

. {AataerceX, {2} = U At
4. Bases for an ordinary smooth topology ael

=7

7({a, b} N {b,c})
7({a,b}) AT({b, ¢})
1

Y

Definition 4.1. [9] Let (X, 7) be an osts and let € X.

Then, is called the ordinary smooth neighborhood SYSThis is a contradiction. Henc® is not an ordinary smooth

tem (in short, osns) of if \, : 2¥ — I is the mapping pase for an ordinary smooth topology &n 0
defined as follows : For each € 2X,

Theorem 4.4. Let (X, 7) be an ordinary smooth topolog-

No(A) = \/ 7(B). ical space and le® : 2¥ — I be a mapping such that
z€BCA B8 < 7. ThenB is an ordinary smooth base forif and
Result 4.A. [9, Lemma 3.1]Let (X, 7) be an osts and let only if NV (A) < \/ B(B), for eachz € X and each
z € X. Then t€BCA
A€ 2X.
rA)= N V 7(B) vAae2X _ _
ceAsEBCA Proof. (=) : Supposeés is an ordinary smooth base for

i _ Letz € X and let4 € 2%, Then
Definition 4.2. Let (X, 7) be an ordinary smooth topolog-

ical spaces and leB : 2X — I be a mapping such that
B < 7. Then® is called an ordinary smooth base foif No(A) — B) By Definition 4.1
for eachA € 2%, »(4) \/ 7(B) [By Definition 4.1]

x€BCA
~y Vo A
T(A) = \/ /\ B(B,). Tz€BCA (Butuerc2¥, B = U p. @€l
aecll afact ’ @
{Ba}aEFC2X7A = U Ba ael’
ael [By Definition 4.2]
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If x € BC AandB = U B,, then there existay € T’

acl
such thatr € B,,.

Thus /\ B(B.) < B(B.,) < \/ B(B). So
a€el z€EBCA
N.(A) < \/ B(B).
TEBCA
(«<): Suppose the necessary condition holds.

A € 2¥X. Supposed = U B, and{By}aer C 2¥.

acl
Then
7(A) > A 7(Ba) [By the condition(OSTs3)]
acl
> /\ B(By). [Since B < 7]
aecl
Thus
T(A) > \/ N B(B.) 4.1)
{BQ}QEFC2X7A = U Ba aEF
ael
On the other hand,
7(4) = /\ \/ 7(B)[ByResult4.A]
zeX x€BCA
= /\ N (A) [By Definition 4.1]
rzeX
= /\ \/ B(B) [By the hypothesis]
zeX z€BCA

VN B(f@),
fe H SBQE €A

z€A

where®B, = {B € 2X : 2 € B C A}. Moreover,
A= f(=)foreachf € J] B.. Thus

€A €A
VA B(f@)= \/ /\ B(B.)

f€ H %ac wEA {BG}GEFC2X7A - U BO/ aEF
€A ael’
So
7(A) < \V A B(B.) (42
acl’

{Ba}aeFC2X7A = U B(x
acl

Hence, by (4.1) and (4.2),

72

T(A) =

V

{BaYaerc2X, A = U B,
ael

N\ B(Ba)

acl’

8 is an ordinary smooth base for O

Let

The following is the restatement of Theorem 4.3.

Theorem 4.5. Let B : 2X — I be a mapping. Thef8 is
an ordinary smooth base for some ordinary smooth topol-
ogy 7 on X if and only if it satisfies the following condi-

tions :

(@) \V N\ B(Ba) =1

{Ba}aeFCQX-,X == U B(l el
ael

(b) For any A;,A;, € 2% and eachz € A, N

Ay, B(A)AB(A) </ B4
TEACA1NAS

In fact,7 : 2X — I is the mapping defined as follows : For
each4 € 2%,

if A=10;
/\ B(B.),otherwise.
acl

V

{Ba}aeFCQX,A = U Boz
ael

7(4) =

In this caser is called the ordinary smooth topology 6h
generated byB.

Proof. Since the proof is similar to that of Theorem 4.2 in
[9], we omit it. O

Example 4.6. (a) LetX = {a,b,c} and letr € I, be fixed.
We define the mappin® : 2X — I as follows : For each
A e 2X,

B(A) = { 1, ifA= {b} or {a,b} or {b, c};

r, otherwise.
Then we can easily see th# satisfies the conditions (a)
and (b) in Theorem 4.3. Thu$ is an ordinary smooth
base for an ordinary smooth topologyon X. In fact,
7 : 2% — I be the mapping defined as follows : For each
A€ 2%,

1, if Ac{0,{b},{a,b},{bc}, X};
r, otherwise.

)= {
(b) Let r € I, be fixed. We define the mapping
B : 28 — I as follows : For eacht € 2F,

1, if A= (a,b);
r, otherwise.

B(A) = {



Then it can be easily seen th#t satisfies the conditions

(a) and (b) in Theorem 2.3. Th#8 is an ordinary smooth
base for an ordinary smooth topology onR. In this case,
U, will be called ther-ordinary smooth usual topology

(c) Letr € I, be fixed. We define the mapping

B : 2R — T as follows : For eacht € 2F,

1, if A=/a,b);
r, otherwise.

B(A) = {

Then we can see th& satisfies the conditions (a) and (b)
in Theorem 4.5. Thu$s is an ordinary smooth base for an

ordinary smooth topologd/; on X. Furthermorel/ < U;.
In this casel/; will be called ther-ordinary smooth lower-
limit topologyon R. O

Definition 4.7. Let 1, 5 € OST(X), and letB; and%,
be ordinary smooth bases for andr,, respectively. Then
B, andB, areequivalentf 7, = 7.

Theorem 4.8. Let 7, 5 € OST(X), and letB; and5,
be ordinary smooth bases for andr, respectively. Then
79 is finer thanry, i.e., 71 < 7 if and only if for each
r € X and eachB € 2%, if 2 € B, then®,(B) <

\/ BB
reB'CB
Proof. (=) : Supposer; < 7,. For eachz € X, let

B € 2% such that: € B. Then

B1(B) <m(B)
[Since B, is an ordinary smooth base for 71]

< 79(B) [By the hypothesis]
{Ba}aerc2X, B = U B,

acl’

/\ B2(Ba).

acl

[Since B3 is an ordinary smooth base for 7o]

Sincex € B, if B = U B,, then there existay € T’

ael
such thatr € B,,. Thus

/\ B2(Ba) <Ba(Bay) <\ Ba(B).
acl x€B'CB
So
B(B)< \/ BaAB).
xeB’'CB

(<) : Suppose the necessary condition holds. ALet 2

and let\;_ be the ordinary smooth neighborhood system

ofx € X w.rt. 4. Then

Ordinary Smooth Topological Spaces

n(A) = A M, (A) By Definition 4.1 and Result 4.A]

€A
< /\ \/ B1(B) [By Theorem 4.3]
z€ATEBCA

< /\ \/ \/ B, (B’) [By hypothesis]

r€AxeBCAzeB'CB

=V AB®)

r€B'CAzeA

= V N\ B2(B.)
{BypltacaC2X A= U B, veA
T€EA
= TQ(A).
Thust; < 75. This completes the proof. O

The following is the immediate result of Definition 4.5
and Theorem 4.6.

Corollary 4.9. Let %; andB, be two ordinary smooth
bases for ordinary smooth topologies on a Xetrespec-
tively. Then®; andB, are equivalent if and only if

(@) For eachB; € 2% and eachr € B;,B:(B;) <
\/  Ba(By).

rEB>C By
(b) For eachB, € 2% and eachr € By, By(By) <
\/ BB

z€B1CB2

Itis clear that the ordinary smooth topology itself forms
an ordinary smooth base. Then every ordinary smooth
topology has an ordinary smooth base. The following pro-
vides a condition for one to check to see if a mapping
B : 2%X — [ such thatB < 7 is an ordinary smooth
base forr, wherer € OST(X).

Proposition 4.10. Let (X, 7) be an ordinary smooth topo-
logical space, e : 2X — I a mapping such th& < r,
and for eachr € X and eachd € 2% with 2 € A, let
T(A) < \/ B(B). Then®B is an ordinary smooth base

T€EBCA
for .
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Proof.

V /\ B(Ba)

(Bataercex, X = | J B "

ael
< \V /\ 7(Ba) [Since B < 7]
{Bataerc2X, X = U B, a€el
acl
< V (U Ba)
(Bateerc2, X = | Ba %"
ael
[By the axiom (OST3)]
= 7(X)
= A \V 7(B)[ByResult44]
r€AxeEBCX

< /\ \/ \/ B(C) [By the hypothesis]

r€AxzeBCX z€CCB

=V A30©

zeCCX z€A

= \/ /\ %(Ba)
{Bz}me.XCQXvX = U B, o€t
acl
Then
T(X) = V N B(B.).

acl

{Ba}aeFC2X7X = U Ba
acl

Sincer € OST(X), 7(X) = 1. Thus

\/ /\ sB(‘Boz) =1.
{Ba}aerc2X, X = U B, ael

ael

So the condition (a) of Theorem 4.5 holds.
Now let A;, A, € 2% and letz € A; N A5. Then

T(A1) A 7(Az) [Since B < 7]
7(A1 N As) [By the axiom (OST2)]

<V

TEACAINAS

Thus the condition (b) of Theorem 4.5 holds. So, by The-

orem 4.5 is an ordinary smooth base for This com-
pletes the proof. O
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B(A). [By the hypothesis]

Definition 4.11. Let (X, 7) be an ordinary smooth topo-
logical space, letp : 2X — I a mapping. Thenp is
called anordinary smooth subbader 7 if ¢ is an ordi-
nary smooth base for, wherep™ : 2% — I'is the mapping
defined as follows : For each ¢ 2%,

©(4) = \V}
{Ba}neFEQXvA - ﬂ B(y
acl’

A B(B.),

ael

with C standing for “ a finite subset of .

Example 4.12.Letr € I, be fixed. We define the mapping
¢ : 28 — I as follows : For eachtl € 2%,

L
7',

wherea, b € R such that: < b. Then we can easily see that
@ is an ordinary smooth subbase for therdinary smooth
usual topology/, onR. O

if A= (a,00)0r—o0,bor(a,b);
otherwise.

Result 4.B. [9, Theorem 4.3Let  : 2¥ — I a mapping.
Theny is an ordinary smooth subbase for some ordinary
smooth topology- on X if and only if

V N ¢(Ba) = 1.
{Ba}acrc2X, X = U B, ael
ael

In this casey is called the ordinary smooth topologgn-
eratedby o.

Example 4.13. Let X = {a,b,¢,d, e} and letr € I be
fixed. We define the mapping : 2X — I as follows : For
eachA ¢ 2%,

1, if Ae {{a},{a,b,c},{b,c,d}, {c,e}};
#(4) :{ T, otherw?s{e.} { b hieel}
Then
X ={a}uU{b,c,d} U{c,e}
and
e({a}) No({b,c,d}) Np({c.e}) =1
Thus

V N ¢(Ba) = 1.
{Ba}aerc2X, X = U B, ael

acl’

So, by the result 4.Bp is an ordinary smooth subbase for
some ordinary smooth topologyon X. O



The following is the immediate result of Corollary 4.9

and Result 4.A.

Proposition 4.14. Let 1, ¢ : 2X — I be two mappings
such that

\/ /\ (pl(Ba) =1.
{Bo}acrc2X, X = U B, a€el
ael
and
V N @2(Ba) = 1.
ael

{Ba}aeFC2X7X - U Ba
acl

Suppose the two conditions holds :
(@) For eachS; € 2% and eachw € Si,p1(S))

\  ea(S).

€S2 CS1
(b) For eachS, € 2% and eachw € Sy, p2(S2)

Vo ei(s).

r€S1CS2

IN

IN

Ordinary Smooth Topological Spaces

TA(By)
ael
= VI 7(Ca): Coe2¥and(| ] Ca)nA =[] Ba}
acTl’ a€el ael’
< \V{r(lJ Ca): Ca €2 and(|J Ca)n A= | B}
= 7a(|J Bo)-
ael

Hencer, € OST(A).
Now let B € 24. Then

TA(B) = \/{T(C) :C e 2¥andCn A= B}
< 7(B).[SinceB C A,BN A = B

This completes the proof. O

Proposition 5.2. Let (X, ) be an osts, letY, rv) be an
ordinary smooth subspace @X, 7) and letA € 2¥. Then
(@)Cry (A) =V{C(B): B€2XandBNY = A}.

(b)If ZCY c Xthentz = (1v)c.

Theny; andy, are ordinary smooth subbases for the some

ordinary smooth topology o/ .

5. Ordinary smooth subspace

Proposition 5.1. Let (X, 7) be an osts and left C X.

We define a mapping, : 24 — I as follows : For each

B € 24,

7A4(B) = \{7(C) : C € 2X andC N A = B}.
Thenty € OST(A) and7(B) < 74(B). In this case,
(A, 74) is called anordinary smooth subspaaef (X, 7)
andr, is called theinduced ordinary smooth topologyn
Abyr.

Proof. (OSTh) Itis clear thatr4 () = T4(A) = 1.
(OST,) Let By, By € 24, Then
TA(B1) AN Ta(B2)
= (V{r(C)) : €1 € 2¥andC, N A =
(V{T(C2) : 2 € 2XandCy N A = By})
= \V{r(C1) AT(Ca) : C1,Cy € 2% and(Cy N Cy) N
A= B;N By}
< V{7(C1)NTCs) : C1, Oy € 2% and(C1NC2)NA =
Bin BQ}
= TA(Bl M Bg)
(OSTy) Let {Ba}aer C 2%. Then
74(Ba) = V{7(C,) : Co € 2¥ andC,NA = B, },
VYa €T.
Thus

Bi}) A

Proof. (a)

S‘ry (A) = TY(Y - A)
=\/{7(B): Be2XandBNY =Y — A}

=\/{7(B): B°€2¥and B°NY = A}
= \/{8.(B°) : B° € 2Xand B°NY = A}
= \/{%T(C) :Ce2¥andCNY = A}.

(b) LetA € 2Z. Then

(1v)2(A)
\/{TY(B) :Be2YandBNZ = A}

VIV{T(€): Ce2¥and CNY =B} : Be 2¥and BNZ = A]
= V{r(©): Ce2XandCNZ = A}
B Tz(A).

O

Proposition 5.3. (See Lemma 2.2 in [10]) L&tX, 7) and
(Y,7') be two osts’s, leff : X — Y be ordinary smooth
continuous and led C X. Then the restrictiory |4:
(A,74) — (Y,7’) is also ordinary smooth continuous.
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Proof. Let B € 2. Then [7] Pao-Ming Pu and Ying Ming Liu, “Fuzzy topology
1, Neiborhood structure of a fuzzy point and Moore-
Smith convergenceJ.Math.Anal.Appl.vol. 76, pp.

ma(f )71 (B)) 571-599, 1980.
= V{r(©):Ce2XandCNA=(f|a) " (B)}
> 7(fY(B)) [8] A. A. Ramadan, “Smooth topological spaceByizzy
- sets and Systemeol. 48, pp. 371-37, 1992.
> 7'(B).
Sof |4 is ordinary smooth continuous. 0 [9] Mingsheng Ying, “A new approach for fuzzy topol-
ogy (I),” Fuzzy sets and Systerasl. 39, pp. 303-321,
1991.
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