Ordinary Smooth Topological Spaces

Pyung Ki Lim, Byeong Guk Ryoo and Kul Hur*

Division of Mathematics and Informational Statistics, and Nanoscale Science and Technology Institute, Wonkwang University, Iksan, Chonbuk, Korea 570-749

Abstract

In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Also we introduce the concepts of a base and a subbase in an ordinary smooth topological space and study their properties. Finally, we investigate some properties of an ordinary smooth subspace.

Key words : ordinary smooth (co)topological space, r-level and strong r-level, ordinary smooth [resp. weak and strong] continuity, ordinary smooth open [resp. closed] mapping, ordinary smooth subspace, ordinary smooth base [resp. sub-base].

1. Introduction and Preliminaries

Chang [1] introduce the concept of fuzzy topology on a set X by axiomatizing a collection of fuzzy sets in X. After that, Pu and Liu [7] and Lowen [5] advanced it. However, they did not consider the gradation of openness [resp. closedness] of fuzzy sets in X.

In 1992, Hazra et al.[4] have attempted to introduce a concept of gradation of openness of fuzzy sets in X by a mapping $\tau : I^X \to I$ satisfying the following axioms :

(i)
$$\tau(\mathbf{0}) = \tau(\mathbf{1}) = 1$$
,
(ii) $\tau(A_i) > 0$ $i = 1, 2$ implie

(ii)
$$\tau(A_i) > 0, i = 1, 2$$
, implies $\tau(A_1 \cap A_2) > 0$,
(iii) $\tau(A_\alpha) > 0, \alpha \in \Gamma$, implies $\tau(\bigcup_{\alpha \in \Gamma} A_\alpha) > 0$.

On the other hand, chattopadhyay et al.[2] modified the notion of gradation of openness of fuzzy sets in X by a mapping $\tau : I^X \to I$ satisfying the following axioms :

(i)
$$\tau(\mathbf{0}) = \tau(\mathbf{1}) = \mathbf{1}$$
,
(ii) $\tau(A \cap B) \ge \tau(A) \land \tau(B), \forall A, B \in I^X$,
(iii) $\tau(\bigcup_{\alpha \in \Gamma} A_\alpha) \ge \bigwedge_{\alpha \in \Gamma} \tau(A_\alpha), \forall \{A_\alpha\}_{\alpha \in \Gamma} \subset I^X$.

After then, some work has been done in this field by Ramadan [8], Chattopadhyay and Samanta [3], and Peeters [6]. In particular, Ying [9] introduced the concept of the topology considering the degree of openness of an ordinary subset of a set and studied some of it's properties.

In this paper, we introduce the concept of ordinary smooth topology on a set X by considering the gradation of

openness of ordinary subsets of X. And we obtain the result [Corollary 2.13] : An ordinary smooth topology is fully determined its decomposition in classical topologies. Also we introduce the notion of ordinary smooth [resp. strong and weak] continuity and study some its properties. Finally, we investigate some properties of an ordinary smooth subspace.

Throughout this paper, let I = [0, 1] be the unit interval, let I^X denote the set of all fuzzy sets in a set X, and we will write $I_0 = (0, 1]$ and $I_1 = [0, 1)$.

2. Definitions and general properties

Let $2 = \{0, 1\}$ and let 2^X denote the set of all ordinary subsets of X.

Definition 2.1. Let X be a nonempty set. Then a mapping $\tau : 2^X \to I$ is called an *ordinary smooth topology* (in short, *ost*) on X or a *gradation of openness of ordinary subsets* of X if τ satisfies the following axioms :

$$\begin{aligned} &(\text{OST}_1) \ \tau(\emptyset) = \tau(X) = 1. \\ &(\text{OST}_2) \ \tau(A \cap B) \ge \tau(A) \land \tau(B), \forall A, B \in 2^X. \\ &(\text{OST}_3) \ \tau(\bigcup_{\alpha \in \Gamma} A_\alpha) \ge \bigwedge_{\alpha \in \Gamma} \tau(A_\alpha), \forall \{A_\alpha\} \subset 2^X. \end{aligned}$$

The pair (X, τ) is called an *ordinary smooth topological space* (in short, *osts*). We will denote the set of all ost's on X as OST(X).

Manuscript received August 31, 2011; revised March 15, 2012; accepted March 20, 2012;

^{*}Corresponding Author : Kul Hur(kulhur@wonkwang.ac.kr)

²⁰⁰⁰ Mathematics Subject Classification. 54A40.

[©] The Korean Institute of Intelligent Systems. All rights reserved.

Remark 2.2. Ying [9] called the mapping $\tau : 2^X \to I$ [resp. $\tau : I^X \to 2$ and $\tau : I^X \to I$] satisfying the axioms in Definition 2.1 as a fuzzyfying topology [resp. fuzzy topology and bifuzzy topology] on X.

Example 2.3. (a) Let $X = \{a, b, c\}$. Then $2^X =$ $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, X\}.$

We define the mapping $\tau : 2^X \to I$ as follows :

 $\tau(\emptyset) = \tau(X) = 1, \, \tau(\{a\}) = 0.7, \, \tau(\{b\}) = 0.4,$ $\tau(\{c\}) = 0.5,$

 $\tau(\{a, b\}) = 0.6, \tau(\{a, c\}) = 0.3, \tau(\{b, c\}) = 0.8.$ Then we can easily see that $\tau \in OST(X)$.

(b) Let X be a nonempty set. We define the mapping $\tau_{\emptyset}: 2^X \to I$ as follows: For each $A \in 2^X$,

$$\tau_{\emptyset}(A) = \begin{cases} 1, & \text{if } A = \emptyset \text{ or } A = X, \\ 0, & \text{otherwise.} \end{cases}$$

Then we can easily see that $\tau_{\emptyset} \in OST(X)$. In this case, τ_{\emptyset} will be called the ordinary smooth indiscrete topology on X.

(c) Let X be a nonempty set. We define the mapping $\tau_X: 2^X \to I$ as follows : For each $A \in 2^X$,

$$\tau_X(A) = 1.$$

Then clearly $\tau_X \in OST(X)$. In this case, τ_X will be called the ordinary smooth discrete topology on X.

(d) Let X be a set and let $r \in I_1$ be fixed. We define the mapping $\tau: 2^X \to I$ as follows : For each $A \in 2^X$,

$$\tau(A) = \begin{cases} 1, & \text{if } A = \emptyset \text{ or } A^c \text{ is finite,} \\ r, & \text{otherwise.} \end{cases}$$

Then it can be easily seen that $\tau \in OST(X)$. In this case, τ will be called the *r*-ordinary smooth finite comple*ment topology* on X and will be denoted by OSCof(X). OSCof(X) is of interest only when X is an infinite set because if X is finite, OSCof(X) coincides with τ_X defined in (c).

(e) Let X be a set and let $r \in I_1$ be fixed. We define the mapping $\tau: 2^X \to I$ as follows : For each $A \in 2^X$,

$$\tau(A) = \begin{cases} 1, & \text{if } A = \emptyset \text{ or } A^c \text{ is countable,} \\ r, & \text{otherwise.} \end{cases}$$

Then we can easily see that $\tau \in OST(X)$. In this case, τ will be called the r-ordinary smooth countable complement topology on X and will be denoted by OSCoc(X).

Remark 2.4. If I = 2, then Definition 2.1 coincides with the known definition of classical topology.

Definition 2.5. Let X be a nonempty set. Then a mapping $\mathcal{C}: 2^X \to I$ is called an *ordinary smooth cotopology* (in short, osct) on X or a gradation of closedness of ordinary subsets of X if C satisfies the following axioms :

 $(OSCT_1) \mathcal{C}(\emptyset) = \mathcal{C}(X) = 1.$ $(OSCT_2) \mathcal{C}(A \cup B) \ge \mathcal{C}(A) \land \mathcal{C}(B), \forall A, B \in 2^X.$ $(OSCT_3) \mathcal{C}(\bigcap_{\alpha \in \Gamma} A_{\alpha}) \ge \bigwedge_{\alpha \in \Gamma} \mathcal{C}(A_{\alpha}), \forall \{A_{\alpha}\} \subset 2^X.$ The pair (X, \mathcal{C}) is called an *ordinary smooth cotopo*-

logical space (in short, oscts). We will denote the set of all osct's on X as OSCT(X).

Remark 2.6. If I = 2, then Definition 2.2 also coincides with the known definition of classical topology.

The following is the immediate result of Definition 2.1 and 2.5.

Proposition 2.7. Let X be a nonempty set. We define two mappings $f : OST(X) \rightarrow OSCT(X)$ and g : $OSCT(X) \rightarrow OST(X)$ as follows, respectively :

 $[f(\tau)](A) = \tau(A^c), \forall \tau \in OST(X), \forall A \in 2^X$ and

 $[g(\mathcal{C})](A) = \mathcal{C}(A^c), \forall \mathcal{C} \in OSCT(X), \forall A \in 2^X.$ Then f and g are well-defined. Furthermore $g \circ f =$ $id_{OST(X)}$ and $f \circ g = id_{OSCT(X)}$.

Remark 2.8. Let $f(\tau) = C_{\tau}$ and $g(\mathcal{C}) = \tau_{\mathcal{C}}$. Then, Proposition 2.3, we can easily see that $\tau_{C_{\tau}} = \tau$ and $C_{\tau_{C}} = C$.

Definition 2.9. Let (X, τ) be an osts and let $r \in I$. Then we define two ordinary subsets of X as follows :

 $[\tau]_r = \{ A \in 2^X : \tau(A) \ge r \}$ and

 $[\tau]_r^* = \{A \in 2^X : \tau(A) > r\}.$ We call these the *r*-level set and the *strong r*-level set of τ , respectively.

It is clear that $[\tau]_0 = 2^X$, the classical discrete topology on X and $[\tau]_1^* = \emptyset$. Also it can be easily seen that $[\tau]_r^* \subset [\tau]_r$ for each $r \in I$.

Proposition 2.10. Let (X, τ) be an osts. Then :

(a) $[\tau]_r \in \mathbf{T}(X), \forall r \in I.$

(a)' $[\tau]_r^* \in \mathbf{T}(X), \forall r \in I_1.$

(b) For any $r, s \in I$, if $r \leq s$, then $[\tau]_s \subset [\tau]_r$ and $[\tau]_s^* \subset [\tau]_r^*.$

(c)
$$[\tau]_r = \bigcap_{s < r} [\tau]_s, \forall r \in I_0.$$

(c)' $[\tau]_r^* = \bigcup_{s > r} [\tau]_s^*, \forall r \in I_1.$

Proof. The proofs of (a), (a)' and (b) are obvious from Definitions 2.1 and 2.9.

(c) From (b), it is obvious that $\{[\tau]_r : r \in I\}$ is a descending family of classical topologies on X.

Let $r \in I_0$. Then clearly $[\tau]_r \subset \bigcap [\tau]_s$. Assume that $A \notin [\tau]_r$. Then $\tau(A) < r$. Thus $\exists s \in I_0$ such that $\tau(A) < s < r$. So $A \notin [\tau]_s$ for some s < r, i.e., $A \notin \bigcap [\tau]_s$. Hence $\bigcap [\tau]_s \subset [\tau]_r$. Therefore $[\tau]_r = \bigcap_{s \in T} [\tau]_s.$ s < r

International Journal of Fuzzy Logic and Intelligent Systems, vol. 12, no. 1, March 2012

(c)' From (b), it is also clear that $\{[\tau]_r^* : r \in I\}$ is a descending family of classical topologies on X.

Let $r \in I_1$. Then $[\tau]_r^* \supset \bigcup_{s>r} [\tau]_s^*$. Assume that $A \notin [\tau]_r^*$. Then $\tau(A) \leq r$. Thus $\exists s \in I_1$ such that $\tau(A) \leq r < s$. So $A \notin [\tau]_s^*$ for some r < s, i.e., $A \notin \bigcup_{s>r} [\tau]_s^*$. Hence $\bigcup_{s>r} [\tau]_s^* \subset [\tau]_r^*$. Therefore $[\tau]_r^* = \bigcup_{s>r} [\tau]_s^*$. This completes the proof.

Proposition 2.11. Let X be a nonempty set and let $\{T_r : r \in I\}$ be a nonempty descending family of classical topologies on X such that T_0 is the classical discrete topology.

(a) We define the mapping $\tau : 2^X \to I$ as follows : For each $A \in 2^X$,

$$\tau(A) = \bigvee \{ r \in I : A \in T_r \}.$$

Then $\tau \in OST(X)$.

(b) For each $r \in I_0$, if $T_r = \bigcap_{s < r} T_s$, then $[\tau]_r = T_r$.

(b)' For each
$$r \in I_1$$
, if $T_r = \bigcup_{s>r} T_s$, then $[\tau]_r^* = T_r$.

In this case, τ is called the ordinary smooth topology *generated* by $\{T_r : r \in I\}$.

Proof. (a) From the definition of τ , it is clear that

 $\tau(\emptyset) = \tau(X) = 1.$

Thus τ satisfies the axiom (OST₁).

For any $A_i \in 2^X$, let $\tau(A_i) = k_i$, i = 1, 2. Suppose $k_i = 0$ for some *i*. Then clearly

 $\tau(A_1 \cap A_2) \ge \tau(A_1) \cap \tau(A_2).$

Thus, without loss of generality, suppose $k_i > 0$ for i = 1, 2. Let $\epsilon > 0$. Then

 $\exists r_i \in I_0 \text{ such that } k_i - \epsilon < r_i < k_i \text{ and } A_i \in T_{r_i}, i = 1, 2.$

Let $r = r_1 \wedge r_2$ and let $k = k_1 \wedge k_2$. Since $\{T_r : r \in I_0\}$ is a descending family and $A_i \in T_{r_i}, A_1, A_2 \in T_r$. Thus $A_1 \cap A_2 \in T_r$. So, by the definition of τ ,

 $\tau(A_1 \cap A_2) \ge r > k - \epsilon.$

Since $\epsilon > 0$ is arbitrary, it follows that

 $\tau(A_1 \cap A_2) \ge k = k_1 \wedge k_2 = \tau(A_1) \wedge \tau(A_2).$ Hence τ satisfies the axiom (OST₂).

$$\tau(\bigcup_{\alpha\in\Gamma}A_{\alpha}) \ge \bigwedge_{\alpha\in\Gamma}\tau(A_{\alpha})$$

Suppose l > 0 and let $l > \epsilon > 0$. Then $0 < l - \epsilon < l_d$ for each $\alpha \in \Gamma$. Since $A_\alpha \in T_{l_\alpha}$ for each $\alpha \in \Gamma$ and $\{T_r : r \in I_0\}$ is a descending family, $A_\alpha \in T_{l-\epsilon}$ for each $\alpha \in \Gamma$. Since $T_{l-\epsilon}$ is a classical topology on X, $\bigcup_{\alpha \in \Gamma} A_\alpha \in T_{l-\epsilon}$. Thus, by the definition of τ ,

$$\begin{split} \tau(\bigcup_{\substack{\alpha\in\Gamma\\0\text{ is arbitrary,}}} A_{\alpha}) &\geq l-\epsilon.\\ \text{Since } \epsilon &> 0 \text{ is arbitrary,}\\ \tau(\bigcup_{\alpha\in\Gamma} A_{\alpha}) \geq l = \bigwedge_{\alpha\in\Gamma} \tau(A_{\alpha}) \end{split}$$

So τ satisfies the axiom (OST₃). Hence $\tau \in OST(X)$.

(b) Suppose $T_r = \bigcap_{s < r} T_s$ for each $r \in I_0$ and let $A \in T_r$. Then clearly $\tau(A) \ge r$. Thus $A \in \tau_r$. So $T_r \subset \tau_r$ for each $r \in I_0$. Let $A \in \tau_r$. Then $\tau(A) \ge r$. Thus, by the definition of τ ,

$$\tau(A) = \bigvee_{A \in \mathcal{T}_{i}} = s \ge r.$$

Let $\epsilon > 0$. Then $\exists k \in I_0$ such that $s - \epsilon < k$ and $A \in T_k$. Thus

 $r - \epsilon \leq s - \epsilon < k \text{ and } A \in T_k.$

So $A \in T_{r-\epsilon}$. Since $\epsilon > 0$ is arbitrary, by the hypothesis, $A \in T_r$. Hence $\tau_r \subset T_r$. Therefore $\tau_r = T_r$ for each $r \in I_0$.

(b)' By the similar arguments of the proof of (b), we can prove that $[\tau]_r^* = T_r$ for each $r \in I_1$. This completes the proof.

Since every mapping $t : 2^X \to I$ is greater than or equal to 0 on all elements on which it is defined, note that indeed an extra requirement here is that T_0 is the classical discrete topology 2^X . Thus from now on we take this supplementary condition for granted.

The following is the immediate result of Propositions 2.5 and 2.6.

Corollary 2.12. Let X be a nonempty set, let $\tau \in OST(X)$ and let $\{[\tau]_r : r \in I\}$ be the family of all r-level classical topologies with respect to τ . We define the mapping $\tau_1 : 2^X \to I$ as follows : For each $A \in 2^X$,

 $\tau_1(A) = \bigvee \{ r \in I : A \in [\tau]_r \}.$

Then $\tau_1 = \tau$.

The fact that an ordinary smooth topological space is fully determined by its decomposition in classical topologies is restated in the following result.

Corollary 2.13. Let X be a nonempty set and let $\tau_1, \tau_2 \in OST(X)$. Then $\tau_1 = \tau_2$ if and only if $[\tau_1]_r = [\tau_2]_r$ for each $r \in I$, or alternatively, if and only if $[\tau_1]_r^* = [\tau_2]_r^*$ for each $r \in I$.

Remark 2.14. In a similar way, we study the levels of an ordinary smooth cotopology C on a nonempty set X: For each $r \in I$,

$$[\mathcal{C}]_r = \{A \in 2^X : \mathcal{C}(A) \ge r\}$$

and

 $[\mathcal{C}]_r^* = \{A \in 2^X : \mathcal{C}(A) > r\}.$

Definition 2.15. Let X be a nonempty set, let T be a classical topology and let $\tau \in OST(X)$. Then τ is said to be *compatible with* T if $T = S(\tau)$, where $S(\tau) = \{A \in 2^X : \tau(A) > 0\}$.

Example 2.16. (a) Let τ_{\emptyset} be the ordinary smooth indiscrete topology on a nonempty set X and let l be the classical indiscrete topology on X. Then clearly

 $S(\tau_{\emptyset}) = \{A \in 2^X : \tau_{\emptyset}(A) > 0\} = \{\emptyset, X\} = l.$ Thus τ_{\emptyset} is compatible with l.

(b) Let τ_X be the ordinary smooth discrete topology on a nonempty set X and let \mathfrak{D} be the classical discrete topology on X. Then

 $S(\tau_X) = \{A \in 2^X : \tau_X(A) > 0\} = 2^X = \mathfrak{D}.$ Thus τ_X is compatible with \mathfrak{D} .

(c) Let X be a nonempty set and let $r \in (0,1)$ be fixed. We define the mapping $\tau : 2^X \to I$ as follows : For each $A \in 2^X$,

$$\tau(A) = \begin{cases} 1, & \text{if } A = \emptyset \text{ or } A = X \\ r, & \text{otherwise.} \end{cases}$$

Then clearly $\tau \in OST(X)$ and τ is compatible with D. \Box

From the following result, every classical topology can be considered as an ordinary smooth topology.

Proposition 2.17. Let T be a classical topology on a nonempty set X and let $r \in I_0$. Then $\exists T^r \in OST(X)$ such that T^r is compatible with T. Moreover $(T^r)_r = T$. In this case, T^r is called an *r*-th ordinary smooth topology on X and (X, T^r) is called an *r*-th ordinary smooth topological space.

Proof. Let $r \in (0,1)$ be fixed and we define the mapping $T^r: 2^X \to I$ as follows : For each $A \in 2^X$,

$$T^{r}(A) = \begin{cases} 1, & \text{if } A = \emptyset \text{ or } A = X, \\ r, & \text{if } A \in T \setminus \{\emptyset, X\}, \\ 0, & \text{otherwise.} \end{cases}$$

Then we can easily see that $T^r \in OST(X)$ and $(T^r)_r = T$. On the other hand, by the definition of T^r ,

 $S(T^r) = \{A \in 2^X : T^r(A) > 0\} = T.$ So T^r is compatible with T. \Box

Proposition 2.18. Let T be a classical topology on a nonempty set X and let C(T) be the set of all ordinary smooth topologies on X compatible with T. Then there is a one-to-one correspondence between C(T) and the set $I_0^{\tilde{T}}$, where $\tilde{T} = T \setminus \{\emptyset, X\}$.

Proof. We define two mappings $F : C(T) \to I_0^{\tilde{T}}$ and $G: I_0^{\tilde{T}} \to C(T)$ as follows, respectively :

$$[F(\tau)](A) = f_{\tau}(A) = \tau(A), \forall \tau \in C(T), \forall A \in \tilde{T}$$
 and

$$\begin{split} & [G(f)](A) \\ = & \tau_f(A) = \left\{ \begin{array}{ll} 1, & \text{if } A = \emptyset \text{ or } A = X, \\ f(A), & \text{if } A \in \tilde{T}, \\ 0, & \text{otherwise, } \forall f \in I_0^{\tilde{T}}, \forall A \in 2^X. \end{array} \right. \end{split}$$

Then, by the definition of F, it is clear that $F(\tau) = f_{\tau} \in I_0^{\tilde{T}}, \forall \tau \in C(T)$. Thus F is well-defined. Also, by the definition of G, we can easily see that $G(f) = \tau_f \in OST(X)$ such that τ_f is compatible with $T, \forall f \in I_0^{\tilde{T}}$. So G is well-defined.

Now let $\tau \in C(T)$. Then

 $(G\circ F)(\tau)=G(F(\tau))=G(f_{\tau})=\tau_{f_{\tau}}.$ Thus, for each $A\in 2^X,$

$$\tau_{f_{\tau}}(A) = \begin{cases} 1 = \tau(A), & \text{if } A = \emptyset \text{ or } A = X, \\ f_{\tau}(A) = \tau(A), & \text{if } A \in \tilde{T}, \\ 0, & \text{otherwise.} \end{cases}$$

So $\tau_{f_{\tau}} = \tau$. Hence $G \circ F = id_{C(T)}$.

Similarly, it can be proved that $(F \circ G)(f) = f$, $\forall f \in I_0^{\tilde{T}}$. Thus $F \circ G = id_{I_0^{\tilde{T}}}$. This completes the proof.

3. Ordinary smooth continuous mappings

It is well-known that for any classical topological spaces (X, T_1) and (Y, T_2) a mapping $f : (X, T_1) \rightarrow (Y, T_2)$ is continuous if and only if $f^{-1}(A) \in T_1$ for each $A \in T_2$.

Definition 3.1. Let (X, τ_1) and (Y, τ_2) be ordinary smooth topological spaces. Then a mapping $f : X \to Y$ is said to be :

(i) [10] ordinary smooth continuous if $\tau_2(A) \leq \tau_1(f^{-1}(A)), \forall A \in 2^Y$.

(ii) ordinary smooth weakly continuous if
$$\tau_2(A) > 0 \Rightarrow \tau_1(f^{-1}(A)) > 0, \forall A \in 2^Y$$
.

(iii) ordinary smooth strongly continuous if $\tau_2(A) = \tau_1(f^{-1}(A)) > 0, \forall A \in 2^Y$.

In this manner, we obtain an obvious generalization of the known concept of classical continuity. It is clear that ordinary smooth strong continuity \Rightarrow ordinary smooth continuity \Rightarrow ordinary smooth weak continuity. However, the converse is not necessarily true.

Example 3.2. (a) Let $X = \{a, b, c, d\}$, let $A = \{b, d\}$ and let $B = \{a, c\}$. For each i = 1, 2, we define a mapping $\tau_i : 2^X \to I$ as follows : For each $C \in 2^A$, $\tau_i(\emptyset) = \tau_i(X) = 1$,

$$\tau_1(C) = \begin{cases} 1, & \text{if } C = A \text{ or } C = B, \\ 0, & \text{otherwise} \end{cases}$$

$$\tau_2(C) = \begin{cases} \frac{1}{2}, & \text{if } C = A \text{ or } C = B, \\ 0, & \text{otherwise.} \end{cases}$$

Then it is clear that $\tau_1, \tau_2 \in OST(X)$. Consider the identity mapping $id : (X, \tau_2) \to (X, \tau_1)$. Then we can easily

see that *id* is ordinary smooth weakly continuous, but it is not ordinary smooth continuous.

(b) Let O be the set of all odd number in \mathbb{N} and let $A_n = \{1, 3, \cdots, 2n-1\}$ for each $n \in \mathbb{N}$. For each i = 1, 2. We define a mapping $\tau_i : 2^{\mathbb{N}} \to I$ as follows : For each $A \in 2^{\mathbb{N}}$,

$$\tau_i(A) = \begin{cases} \frac{1}{i}, & \text{if } A = O, \\ \max\{\frac{1}{i}, \frac{1}{2n-1}\}, & \text{if } A = A_n, \\ 1, & \text{otherwise.} \end{cases}$$

Then clearly $\tau_1, \tau_2 \in OST(X)$. Consider the identity mappings $id : (X, \tau_2) \to (X, \tau_1)$ and $id : (X, \tau_1) \to (X, \tau_2)$. Then we can easily see that $id : (X, \tau_2) \to (X, \tau_1)$ is ordinary smooth weakly continuous, but not ordinary smooth continuous and $id : (X, \tau_1) \to (X, \tau_2)$ is ordinary smooth continuous, but not ordinary smooth strongly continuous.

The following is the immediate result of Theorem 2.6 and Definition 3.1.

Theorem 3.3. Let (X, τ_1) and (Y, τ_2) be two osts's. Then (a) f is ordinary smooth continuous if and only if $C_{\tau_2}(A) \leq C_{\tau_1}(f^{-1}(A)), \forall A \in 2^Y$.

(b) f is ordinary smooth weakly continuous if and only if $\mathcal{C}_{\tau_2}(A) > 0 \Rightarrow \mathcal{C}_{\tau_1}(f^{-1}(A)) > 0, \forall A \in 2^Y$.

(c) f is ordinary smooth strongly continuous if and only if $C_{\tau_2}(A) = C_{\tau_1}(f^{-1}(A)), \forall A \in 2^Y$.

The following are the immediate results of Definition 3.1.

Proposition 3.4. (See Lemma 2.1 in [10]) Let $(X, \tau_1), (Y, \tau_2)$ and (Z, τ_3) be osts's. If $f : X \to Y$ and $g : Y \to Z$ are ordinary smooth continuous, then so is $g \circ f$.

Proposition 3.5. Let (X, τ) be an osts. Then the identity mapping $id : X \to X$ is ordinary smooth continuous.

Theorem 3.6. Let (X, τ) and (Y, τ') be two osts's and let $f: X \to Y$ be a mapping. Then f is ordinary smooth continuous if and only if $f: (X, [\tau]_r) \to (Y, [\tau']_r)$ is classical continuous for each $r \in I_0$.

Proof. (\Rightarrow) : Suppose f is ordinary smooth continuous and let $r \in I_0$. Let $A \in \tau'_r$. Then

 $r \leq \tau'(A) \leq \tau(f^{-1}(A)).$ Thus $f^{-1}(A) \in \tau_r$. So $f: (X, [\tau]_r) \to (Y, [\tau']_r)$ is classical continuous.

 (\Leftarrow) : Suppose the necessary condition holds and let $A\in I^Y.$

If $\tau'(A) = 0$, then clearly $\tau'(A) \le \tau(f^{-1}(A))$.

If $\tau'(A) = r \in I_0$, then $A \in [\tau']_r$. Thus, by the hypothesis, $f^{-1}(A) \in [\tau]_r$. So $\tau'(A) = r \leq \tau(f^{-1}(A))$. Hence $f : (X, \tau) \to (Y, \tau')$ is ordinary smooth continuous. This completes the proof. **Theorem 3.7.** Let (X, T_1) and (Y, T_2) be two classical topological spaces and let $f : X \to Y$ be a mapping. Then $f : (X, T_1) \to (Y, T_2)$ is classical continuous if and only if $f : (X, T_1^r) \to (Y, T_2^r)$ is ordinary smooth continuous for each $r \in I_0$.

Proof. (\Rightarrow) : Suppose $f : (X, T_1) \to (Y, T_2)$ is classical continuous and let $A \in 2^Y$. Then we have the following possibilities :

(i)
$$A = \emptyset$$
 or Y ,

(ii) $A \in T_2$,

(iii) $A \notin T_2$.

In case (i), $f^{-1}(\emptyset) = \emptyset$ and $f^{-1}(y) = X$. By Proposition 2.16, $T_1^r \in OST(X)$ and $T_2^r \in OST(Y)$ for each $r \in I_0$. Thus

 $T_1^r(f^{-1}(A)) = 1 \ge T_2^r(A).$

In case (ii), $T_2^r(A) = r$, by Proposition 2.16. Since $f: (X, T_1) \to (Y, T_2)$ is classical continuous and $A \in T_2$, $f^{-1}(A) \in T_1$. Thus

 $T_1^r(f^{-1}(A)) = r$. So $T_2^r(A) \le T_1^r(f^{-1}(A))$. In case (iii), $T_2^r(A) = 0$, by Proposition 2.16. Thus $0 = T_2^r(A) \le T_1^r(f^{-1}(A))$.

Hence $f: (X, T_1^r) \to (Y, T_2^r)$ is ordinary smooth continuous for each $r \in I_0$.

 (\Leftarrow) : Suppose the necessary condition holds. Then it follows from Proposition 2.16 and Theorem 3.6.

Theorem 3.8. Let (X, τ) be an osts and let $f : X \to Y$ be a mapping. Let $\{T'_r : r \in I_0\}$ be a descending family of classical topologies on Y and let τ' be the ost on Y generated by this family. For each $r \in I_0$, let \mathfrak{B}_r be a base and \mathfrak{s}_r be a subbase for T'_r . Then

(a) $f: (X, \tau) \to (Y, \tau')$ is ordinary smooth continuous if and only if $r \leq \tau(f^{-1}(A)), \forall A \in T'_r, \forall r \in I_0$.

(b) $f: (X, \tau) \to (Y, \tau')$ is ordinary smooth continuous if and only if $r \leq \tau(f^{-1}(A)), \forall A \in \mathfrak{B}_r, \forall r \in I_0$.

(c) $f: (X, \tau) \to (Y, \tau')$ is ordinary smooth continuous if and only if $r \leq \tau(f^{-1}(A)), \forall A \in \mathfrak{s}_r, \forall r \in I_0$.

Proof. (a) (\Rightarrow) : Suppose $f: (X, \tau) \to (Y, \tau')$ is ordinary smooth continuous. Let $r \in I_0$ and let $A \in T'_r$. Then $r \leq \tau'(A) \leq \tau(f^{-1}(A))$.

 (\Leftarrow) : Suppose the necessary condition holds. Let $A \in 2^Y$ and let $\tau'(A) = r > 0$. Then clearly $A \in T'_r$. Thus

 $\tau'(A) = r \le \tau(f^{-1}(A)).$

Arguing as above and using the definition of base and subbase for a classical topology, we have (b) and (c). \Box

Definition 3.9. [10] Let $\tau_1 \in OST(X)$, $C_1 \in OSCT(X)$, $\tau_2 \in OST(Y)$ and $C_2 \in OSCT(Y)$. Then a mapping $f: X \to Y$ is said to be :

(i) ordinary smooth open if $\tau_1(A) \leq \tau_2(f(A)), \forall A \in 2^X$.

(ii) ordinary smooth closed if $C_1(A) \leq C_1(f(A))$, $\forall A \in 2^X$. **Definition 3.10.** [10] Let $\tau_1 \in OST(X)$ and let $\tau_2 \in OST(Y)$. Then a mapping $f : X \to Y$ is called an *ordinary smooth homeomorphism* if f is bijective, and f and f^{-1} are ordinary smooth continuous.

The following is the immediate result of Definitions 3.1, 3.9 and Theorem 3.3 (a).

Theorem 3.11. Let (X, τ_1) and (Y, τ_2) be two osts's and let $f : X \to Y$ be a mapping. Then the following are equivalent :

(a) f is an ordinary smooth homeomorphism.

(b) f is ordinary smooth open and ordinary smooth continuous.

(c) f is ordinary smooth closed and ordinary smooth continuous.

The following is the immediate result of Proposition 2.11 and Definitions 3.1 and 3.9.

Proposition 3.12. Let X and Y be two sets, let $\{T_r : r \in I_0\}$ and $\{T'_r : r \in I_0\}$ be descending families of ordinary topologies on X and Y, respectively. Let τ and τ' be ost's on X and Y, respectively generated by the families $\{T_r : r \in I_0\}$ and $\{T'_r : r \in I_0\}$, and let $f : X \to Y$ be a mapping. For each $r \in I_0$, if $f : (X, T_r) \to (Y, T'_r)$ is classical continuous [resp. classical open and classical closed], then $f : (X, \tau) \to (Y, \tau')$ is ordinary smooth continuous [resp. ordinary smooth open and ordinary smooth closed].

4. Bases for an ordinary smooth topology

Definition 4.1. [9] Let (X, τ) be an osts and let $x \in X$. Then \mathcal{N}_x is called the ordinary smooth neighborhood system (in short, osns) of x if $\mathcal{N}_x : 2^X \to I$ is the mapping defined as follows : For each $A \in 2^X$,

$$\mathcal{N}_x(A) = \bigvee_{x \in B \subset A} \tau(B).$$

Result 4.A. [9, Lemma 3.1] Let (X, τ) be an osts and let $x \in X$. Then

$$\tau(A) = \bigwedge_{x \in A} \bigvee_{x \in B \subset A} \tau(B), \ \forall A \in 2^X.$$

Definition 4.2. Let (X, τ) be an ordinary smooth topological spaces and let $\mathfrak{B} : 2^X \to I$ be a mapping such that $\mathfrak{B} \leq \tau$. Then \mathfrak{B} is called an ordinary smooth base for τ if for each $A \in 2^X$,

$$\tau(A) = \bigvee_{\{B_{\alpha}\}_{\alpha \in \Gamma} \subset 2^{X}, A} = \bigcup_{\alpha \in \Gamma} B_{\alpha} \bigwedge^{\alpha \in \Gamma} \mathfrak{B}(B_{\alpha}).$$

Example 4.3. (a) Let X be a set and let $\mathfrak{B} : 2^X \to I$ be the mapping defined by $\mathfrak{B}(\{x\}) = 1$ for each $x \in X$. Then \mathfrak{B} is an ordinary smooth base for the ordinary smooth discrete topology τ_X on X.

(b) Let $X = \{a, b, c\}$, let $r \in I_1$ be fixed and let $\mathfrak{B} : 2^X \to I$ be the mapping defined as follows : For each $A \in 2^X$,

$$\mathfrak{B}(A) = \begin{cases} 1, & A = \{a, b\} \text{ or } \{b, c\} \text{ or } X;\\ r, & \text{otherwise.} \end{cases}$$

Then \mathfrak{B} is not an ordinary smooth base for an ordinary smooth topology on X.

Assume that \mathfrak{B} is an ordinary smooth base for an ordinary smooth topology τ on X. Then clearly $\mathfrak{B} \leq \tau$. Moreover, $\tau(\{a, b\}) = \tau(\{b, c\}) = 1$. Thus

$$\begin{split} \tau(\{b\}) &= \tau(\{a,b\} \cap \{b,c\}) \\ &\geq \tau(\{a,b\}) \wedge \tau(\{b,c\}) \\ &-1 \end{split}$$

So $\tau(\{b\}) = 1$. On the other hand, by the definition of an ordinary smooth base,

$$\tau(\{b\}) = \bigvee_{\{A_{\alpha}\}_{\alpha \in \Gamma} \subset 2^{X}, \{x\}} = \bigcup_{\alpha \in \Gamma} A_{\alpha} \bigwedge_{\alpha \in \Gamma} \mathfrak{B}(A_{\alpha})$$
$$= r$$

This is a contradiction. Hence \mathfrak{B} is not an ordinary smooth base for an ordinary smooth topology on X.

Theorem 4.4. Let (X, τ) be an ordinary smooth topological space and let $\mathfrak{B} : 2^X \to I$ be a mapping such that $\mathfrak{B} \leq \tau$. Then \mathfrak{B} is an ordinary smooth base for τ if and only if $\mathcal{N}_x(A) \leq \bigvee_{x \in B \subset A} \mathfrak{B}(B)$, for each $x \in X$ and each $A \in 2^X$.

Proof. (\Rightarrow) : Suppose \mathfrak{B} is an ordinary smooth base for τ . Let $x \in X$ and let $A \in 2^X$. Then

$$\mathcal{N}_{x}(A) = \bigvee_{x \in B \subset A} \tau(B) \text{ [By Definition 4.1]}$$
$$= \bigvee_{x \in B \subset A} \bigvee_{\{B_{\alpha}\}_{\alpha \in \Gamma} \subset 2^{X}, B} = \bigcup_{\alpha \in \Gamma} B_{\alpha} \bigwedge_{\alpha \in \Gamma} \mathfrak{B}(B_{\alpha}).$$
$$\text{[By Definition 4.2]}$$

If $x \in B \subset A$ and $B = \bigcup_{\alpha \in \Gamma} B_{\alpha}$, then there exists $\alpha_0 \in \Gamma$ such that $x \in B_{\alpha_0}$. Thus $\bigwedge_{\alpha \in \Gamma} \mathfrak{B}(B_{\alpha}) \leq \mathfrak{B}(B_{\alpha_0}) \leq \bigvee_{x \in B \subset A} \mathfrak{B}(B)$. So $\mathcal{N}_x(A) \leq \bigvee_{x \in B \subset A} \mathfrak{B}(B)$. (\Leftarrow): Suppose the necessary condition holds. Let

 $A \in 2^X$. Suppose $A = \bigcup_{\alpha \in \Gamma} B_{\alpha}$ and $\{B_{\alpha}\}_{\alpha \in \Gamma} \subset 2^X$. Then

$$\tau(A) \geq \bigwedge_{\alpha \in \Gamma} \tau(B_{\alpha}) \text{ [By the condition(OST_3)]}$$
$$\geq \bigwedge_{\alpha \in \Gamma} \mathfrak{B}(B_{\alpha}). \text{ [Since } \mathfrak{B} \leq \tau \text{]}$$

Thus

$$\tau(A) \ge \bigvee_{\{B_{\alpha}\}_{\alpha \in \Gamma} \subset 2^{X}, A} = \bigcup_{\alpha \in \Gamma} B_{\alpha} \bigwedge_{\alpha \in \Gamma} \mathfrak{B}(B_{\alpha})$$
(4.1)

On the other hand,

$$\begin{split} \tau(A) &= \bigwedge_{x \in X} \bigvee_{x \in B \subset A} \tau(B) \text{ [By Result 4.A]} \\ &= \bigwedge_{x \in X} \mathcal{N}_x(A) \text{ [By Definition 4.1]} \\ &= \bigwedge_{x \in X} \bigvee_{x \in B \subset A} \mathfrak{B}(B) \text{ [By the hypothesis]} \\ &= \bigvee_{f \in \prod_{x \in A} \mathfrak{B}_x} \bigwedge_{x \in A} \mathfrak{B}(f(x)), \end{split}$$

where $\mathfrak{B}_x = \{B \in 2^X : x \in B \subset A\}$. Moreover, $A = \bigcup_{x \in A} f(x)$ for each $f \in \prod_{x \in A} \mathfrak{B}_x$. Thus

$$\bigvee_{f \in \prod_{x \in A} \mathfrak{B}_x} \bigwedge_{x \in A} \mathfrak{B}(f(x)) = \bigvee_{\{B_\alpha\}_{\alpha \in \Gamma} \subset 2^X, A} = \bigcup_{\alpha \in \Gamma} B_\alpha \bigwedge_{\alpha \in \Gamma} \mathfrak{B}(B_\alpha)$$

So

$$\tau(A) \leq \bigvee_{\{B_{\alpha}\}_{\alpha \in \Gamma} \subset 2^{X}, A} = \bigcup_{\alpha \in \Gamma} B_{\alpha} \bigwedge^{\alpha \in \Gamma} \mathfrak{B}(B_{\alpha})$$
(4.2)

Hence, by (4.1) and (4.2),

$$\tau(A) = \bigvee_{\{B_{\alpha}\}_{\alpha \in \Gamma} \subset 2^{X}, A} = \bigcup_{\alpha \in \Gamma} B_{\alpha} \bigwedge_{\alpha \in \Gamma} \mathfrak{B}(B_{\alpha})$$

 \mathfrak{B} is an ordinary smooth base for τ .

The following is the restatement of Theorem 4.3.

Theorem 4.5. Let $\mathfrak{B}: 2^X \to I$ be a mapping. Then \mathfrak{B} is an ordinary smooth base for some ordinary smooth topology τ on X if and only if it satisfies the following conditions :

(a)
$$\bigvee_{\{B_{\alpha}\}_{\alpha\in\Gamma}\subset 2^{X}, X} = \bigcup_{\alpha\in\Gamma} B_{\alpha} \overset{\alpha\in\Gamma}{\overset{\alpha\in\Gamma}{\overset{}}}$$

(b) For any $A_{1}, A_{2} \in 2^{X}$ and each $x \in A_{1} \cap A_{2}, \mathfrak{B}(A_{1}) \wedge \mathfrak{B}(A_{2}) \leq \bigvee_{x\in A\subset A_{1}\cap A_{2}} \mathfrak{B}(A)$
In fact $\tau: 2^{X} \to I$ is the mapping defined as follows : For

In fact, $\tau: 2^X \to I$ is the mapping defined as follows : For each $A \in 2^X$,

$$\tau(A) = \begin{cases} 1, & \text{if } A = \emptyset; \\ \bigvee & \bigwedge_{\{B_{\alpha}\}_{\alpha \in \Gamma} \subset 2^{X}, A = \bigcup_{\alpha \in \Gamma} B_{\alpha}} \bigwedge_{\alpha \in \Gamma} \mathfrak{B}(B_{\alpha}), \text{otherwise} \end{cases}$$

In this case, τ is called the ordinary smooth topology on X generated by \mathfrak{B} .

Proof. Since the proof is similar to that of Theorem 4.2 in [9], we omit it. \Box

Example 4.6. (a) Let $X = \{a, b, c\}$ and let $r \in I_1$ be fixed. We define the mapping $\mathfrak{B} : 2^X \to I$ as follows : For each $A \in 2^X$,

$$\mathfrak{B}(A) = \begin{cases} 1, & \text{if } A = \{b\} \text{ or } \{a, b\} \text{ or } \{b, c\};\\ r, & \text{otherwise.} \end{cases}$$

Then we can easily see that \mathfrak{B} satisfies the conditions (a) and (b) in Theorem 4.3. Thus \mathfrak{B} is an ordinary smooth base for an ordinary smooth topology τ on X. In fact, $\tau : 2^X \to I$ be the mapping defined as follows : For each $A \in 2^X$,

$$\tau(A) = \begin{cases} 1, & \text{if } A \in \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\}; \\ r, & \text{otherwise.} \end{cases}$$

(b) Let $r \in I_1$ be fixed. We define the mapping $\mathfrak{B}: 2^{\mathbb{R}} \to I$ as follows : For each $A \in 2^{\mathbb{R}}$,

$$\mathfrak{B}(A) = \begin{cases} 1, & \text{if } A = (a, b); \\ r, & \text{otherwise.} \end{cases}$$

Then it can be easily seen that \mathfrak{B} satisfies the conditions (a) and (b) in Theorem 2.3. Thus \mathfrak{B} is an ordinary smooth base for an ordinary smooth topology \mathcal{U}_r on \mathbb{R} . In this case, \mathcal{U}_r will be called the *r*-ordinary smooth usual topology.

(c) Let $r \in I_1$ be fixed. We define the mapping $\mathfrak{B}: 2^{\mathbb{R}} \to I$ as follows : For each $A \in 2^{\mathbb{R}}$,

$$\mathfrak{B}(A) = \begin{cases} 1, & \text{if } A = [a, b); \\ r, & \text{otherwise.} \end{cases}$$

Then we can see that \mathfrak{B} satisfies the conditions (a) and (b) in Theorem 4.5. Thus \mathfrak{B} is an ordinary smooth base for an ordinary smooth topology \mathcal{U}_l on X. Furthermore, $\mathcal{U} \lneq \mathcal{U}_l$. In this case, \mathcal{U}_l will be called the *r*-ordinary smooth lower-limit topology on \mathbb{R} .

Definition 4.7. Let $\tau_1, \tau_2 \in OST(X)$, and let \mathfrak{B}_1 and \mathfrak{B}_2 be ordinary smooth bases for τ_1 and τ_2 , respectively. Then \mathfrak{B}_1 and \mathfrak{B}_2 are *equivalent* if $\tau_1 = \tau_2$.

Theorem 4.8. Let $\tau_1, \tau_2 \in OST(X)$, and let \mathfrak{B}_1 and \mathfrak{B}_2 be ordinary smooth bases for τ_1 and τ_2 , respectively. Then τ_2 is finer than τ_1 , i.e., $\tau_1 \leq \tau_2$ if and only if for each $x \in X$ and each $B \in 2^X$, if $x \in B$, then $\mathfrak{B}_1(B) \leq \bigvee_{x \in B' \subset B} \mathfrak{B}_2(B')$.

Proof. (\Rightarrow) : Suppose $\tau_1 \leq \tau_2$. For each $x \in X$, let $B \in 2^X$ such that $x \in B$. Then

 $\begin{array}{ll} \mathfrak{B}_1(B) &\leq \tau_1(B) \\ & [\text{Since } \mathfrak{B}_1 \text{ is an ordinary smooth base for } \tau_1] \\ &\leq \tau_2(B) \ [\text{By the hypothesis}] \end{array}$

$$= \bigvee_{\{B_{\alpha}\}_{\alpha \in \Gamma} \subset 2^{X}, B} = \bigcup_{\alpha \in \Gamma} B_{\alpha} \bigwedge_{\alpha \in \Gamma} \mathfrak{B}_{2}(B_{\alpha}).$$

[Since \mathfrak{B}_2 is an ordinary smooth base for τ_2]

Since $x \in B$, if $B = \bigcup_{\alpha \in \Gamma} B_{\alpha}$, then there exists $\alpha_0 \in \Gamma$ such that $x \in B_{\alpha_0}$. Thus

$$\bigwedge_{\alpha \in \Gamma} \mathfrak{B}_2(B_\alpha) \leq \mathfrak{B}_2(B_{\alpha_0}) \leq \bigvee_{x \in B' \subset B} \mathfrak{B}_2(B').$$

So

=

$$\mathfrak{B}_2(B) \le \bigvee_{x \in B' \subset B} \mathfrak{B}_2(B')$$

 (\Leftarrow) : Suppose the necessary condition holds. Let $A \in 2^X$ and let \mathcal{N}_{1_x} be the ordinary smooth neighborhood system of $x \in X$ w.r.t. τ_1 . Then

$$\begin{aligned} \mathbf{f}_{1}(A) &= \bigwedge_{x \in A} \mathcal{N}_{1_{x}}(A) \text{ [By Definition 4.1 and Result 4.A]} \\ &\leq \bigwedge_{x \in A} \bigvee_{x \in B \subset A} \mathfrak{B}_{1}(B) \text{ [By Theorem 4.3]} \\ &\leq \bigwedge_{x \in A} \bigvee_{x \in B \subset A} \bigvee_{x \in B' \subset B} \mathfrak{B}_{2}(B') \text{ [By hypothesis]} \\ &= \bigvee_{x \in B' \subset A} \bigwedge_{x \in A} \mathfrak{B}_{2}(B') \\ &= \bigvee_{\{B_{x}\}_{x \in A} \subset 2^{x}, A} = \bigcup_{x \in A} B_{x} \bigwedge_{x \in A} \mathfrak{B}_{2}(B_{x}) \\ &= \tau_{2}(A). \end{aligned}$$

Thus $\tau_1 \leq \tau_2$. This completes the proof.

The following is the immediate result of Definition 4.5 and Theorem 4.6.

Corollary 4.9. Let \mathfrak{B}_1 and \mathfrak{B}_2 be two ordinary smooth bases for ordinary smooth topologies on a set X, respectively. Then \mathfrak{B}_1 and \mathfrak{B}_2 are equivalent if and only if

(a) For each $B_1 \in 2^X$ and each $x \in B_1, \mathfrak{B}_1(B_1) \leq \bigvee_{x \in B_2 \subset B_1} \mathfrak{B}_2(B_2)$. (b) For each $B_2 \in 2^X$ and each $x \in B_2, \mathfrak{B}_2(B_2) \leq \mathbb{C}$

 $\bigvee_{x \in B_1 \subset B_2} \mathfrak{B}_1(B_1).$

It is clear that the ordinary smooth topology itself forms an ordinary smooth base. Then every ordinary smooth topology has an ordinary smooth base. The following provides a condition for one to check to see if a mapping $\mathfrak{B}: 2^X \to I$ such that $\mathfrak{B} \leq \tau$ is an ordinary smooth base for τ , where $\tau \in OST(X)$.

Proposition 4.10. Let (X, τ) be an ordinary smooth topological space, let $\mathfrak{B} : 2^X \to I$ a mapping such that $\mathfrak{B} \leq \tau$, and for each $x \in X$ and each $A \in 2^X$ with $x \in A$, let $\tau(A) \leq \bigvee_{x \in B \subset A} \mathfrak{B}(B)$. Then \mathfrak{B} is an ordinary smooth base for τ .

International Journal of Fuzzy Logic and Intelligent Systems, vol. 12, no. 1, March 2012

Proof.

$$\bigvee_{\{B_{\alpha}\}_{\alpha\in\Gamma}\subset 2^{X}, X} = \bigcup_{\alpha\in\Gamma} B_{\alpha} \overset{\alpha\in\Gamma}{\mathfrak{B}_{\alpha}} \mathfrak{B}(B_{\alpha})$$

$$\leq \qquad \bigvee_{\{B_{\alpha}\}_{\alpha\in\Gamma}\subset 2^{X}, X} = \bigcup_{\alpha\in\Gamma} B_{\alpha} \overset{\alpha\in\Gamma}{\tau(B_{\alpha})} [\text{Since } \mathfrak{B} \leq \tau]$$

$$\leq \qquad \bigvee_{\{B_{\alpha}\}_{\alpha\in\Gamma}\subset 2^{X}, X} = \bigcup_{\alpha\in\Gamma} B_{\alpha} \overset{\tau(\bigcup B_{\alpha})}{\tau(\bigcup B_{\alpha})}$$

$$[\text{By the axiom (OST3)]}$$

$$= \tau(X)$$

$$= \qquad \bigwedge_{x\in A} \bigvee_{x\in B\subset X} \tau(B) [\text{By Result 4.A}]$$

$$\leq \qquad \bigwedge_{x\in A} \bigvee_{x\in B\subset X} \bigvee_{x\in C\subset B} \mathfrak{B}(C) [\text{By the hypothesis}]$$

$$= \qquad \bigvee_{x\in C\subset X} \bigwedge_{x\in A} \mathfrak{B}(C)$$

$$= \qquad \bigvee_{\{B_{x}\}_{x\in X}\subset 2^{X}, X} = \bigcup_{\alpha\in\Gamma} B_{\alpha} \overset{\alpha\in\Gamma}{\tau} \mathfrak{B}(B_{\alpha})$$

Then

$$\tau(X) = \bigvee_{\{B_{\alpha}\}_{\alpha \in \Gamma} \subset 2^{X}, X} = \bigcup_{\alpha \in \Gamma} B_{\alpha} \bigwedge_{\alpha \in \Gamma} \mathfrak{B}(B_{\alpha})$$

Since $\tau \in OST(X)$, $\tau(X) = 1$. Thus

$$\bigvee_{\{B_{\alpha}\}_{\alpha\in\Gamma}\subset 2^{X}, X} = \bigcup_{\alpha\in\Gamma} B_{\alpha} \stackrel{A}{\longrightarrow} \mathfrak{B}(B_{\alpha}) = 1.$$

So the condition (a) of Theorem 4.5 holds. Now let $A_1, A_2 \in 2^X$ and let $x \in A_1 \cap A_2$. Then

$$\mathfrak{B}(A_1) \wedge \mathfrak{B}(A_2) < \tau(A_1) \wedge \tau(A_2)$$
 [Since $\mathfrak{B} < \tau$]

$$\leq \tau(A_1 \cap A_2) \text{ [By the axiom (OST2)]}$$
$$\leq \bigvee_{x \in A \subset A_1 \cap A_2} \mathfrak{B}(A). \text{ [By the hypothesis]}$$

Thus the condition (b) of Theorem 4.5 holds. So, by Theorem 4.5, \mathfrak{B} is an ordinary smooth base for τ . This completes the proof.

Definition 4.11. Let (X, τ) be an ordinary smooth topological space, let $\varphi : 2^X \to I$ a mapping. Then φ is called an *ordinary smooth subbase* for τ if φ^{\sqcap} is an ordinary smooth base for τ , where $\varphi^{\sqcap} : 2^X \to I$ is the mapping defined as follows : For each $A \in 2^X$,

$$\varphi^{\sqcap}(A) = \bigvee_{\{B_{\alpha}\}_{\alpha \in \Gamma} \sqsubset 2^{X}, A} = \bigcap_{\alpha \in \Gamma} B_{\alpha} \bigwedge_{\alpha \in \Gamma} \mathfrak{B}(B_{\alpha}),$$

with \Box standing for "a finite subset of ".

Example 4.12. Let $r \in I_1$ be fixed. We define the mapping $\varphi : 2^{\mathbb{R}} \to I$ as follows : For each $A \in 2^{\mathbb{R}}$,

1, if
$$A = (a, \infty)$$
 or $-\infty, b$ or (a, b) ;
r, otherwise.

where $a, b \in \mathbb{R}$ such that a < b. Then we can easily see that φ is an ordinary smooth subbase for the *r*-ordinary smooth usual topology \mathcal{U}_r on \mathbb{R} .

Result 4.B. [9, Theorem 4.3] Let $\varphi : 2^X \to I$ a mapping. Then φ is an ordinary smooth subbase for some ordinary smooth topology τ on X if and only if

$$\bigvee_{\{B_{\alpha}\}_{\alpha\in\Gamma}\subset 2^{X}, X} = \bigcup_{\alpha\in\Gamma} B_{\alpha} \bigwedge_{\alpha\in\Gamma} \varphi(B_{\alpha}) = 1.$$

In this case, τ is called the ordinary smooth topology *generated* by φ .

Example 4.13. Let $X = \{a, b, c, d, e\}$ and let $r \in I_1$ be fixed. We define the mapping $\varphi : 2^X \to I$ as follows : For each $A \in 2^X$,

$$\varphi(A) = \begin{cases} 1, & \text{if } A \in \{\{a\}, \{a, b, c\}, \{b, c, d\}, \{c, e\}\}; \\ r, & \text{otherwise.} \end{cases}$$

Then

$$X = \{a\} \cup \{b, c, d\} \cup \{c, e\}$$

and

Thus

$$\varphi(\{a\}) \land \varphi(\{b,c,d\}) \land \varphi(\{c,e\}) = 1$$

$$\bigvee_{\{B_{\alpha}\}_{\alpha\in\Gamma}\subset 2^{X}, X} = \bigcup_{\alpha\in\Gamma} B_{\alpha} \bigwedge_{\alpha\in\Gamma} \varphi(B_{\alpha}) = 1.$$

So, by the result 4.B, φ is an ordinary smooth subbase for some ordinary smooth topology τ on X.

The following is the immediate result of Corollary 4.9 and Result 4.A.

Proposition 4.14. Let $\varphi_1, \varphi_2 : 2^X \to I$ be two mappings such that

$$\bigvee_{\{B_{\alpha}\}_{\alpha\in\Gamma}\subset 2^{X}, X} = \bigcup_{\alpha\in\Gamma} B_{\alpha} \bigwedge_{\alpha\in\Gamma} \varphi_{1}(B_{\alpha}) = 1.$$

and

$$\bigvee_{\{B_{\alpha}\}_{\alpha\in\Gamma}\subset 2^{X}, X} = \bigcup_{\alpha\in\Gamma} B_{\alpha} \bigwedge_{\alpha\in\Gamma} \varphi_{2}(B_{\alpha}) = 1$$

Suppose the two conditions holds :

(a) For each $S_1 \in 2^X$ and each $x \in S_1, \varphi_1(S_1) \leq \bigvee \varphi_2(S_2)$.

(b) For each $S_2 \in 2^X$ and each $x \in S_2, \varphi_2(S_2) \leq \bigvee \varphi_1(S_1)$.

 $x \in S_1 \subset S_2$

Then φ_1 and φ_2 are ordinary smooth subbases for the some ordinary smooth topology on X.

5. Ordinary smooth subspace

Proposition 5.1. Let (X, τ) be an osts and let $A \subset X$. We define a mapping $\tau_A : 2^A \to I$ as follows : For each $B \in 2^A$,

 $au_A(B) = \bigvee \{ \tau(C) : C \in 2^X \text{ and } C \cap A = B \}.$ Then $au_A \in OST(A)$ and $au(B) \leq au_A(B)$. In this case, (A, au_A) is called an *ordinary smooth subspace* of (X, au) and au_A is called the *induced ordinary smooth topology* on A by au.

$$\begin{array}{l} \textit{Proof.} \ (\text{OST}_1) \text{ It is clear that } \tau_A(\emptyset) = \tau_A(A) = 1. \\ (\text{OST}_2) \text{ Let } B_1, B_2 \in 2^A. \text{ Then} \\ \tau_A(B_1) \wedge \tau_A(B_2) \\ = \ (\bigvee\{\tau(C_1) \, : \, C_1 \, \in \, 2^X \text{ and } C_1 \cap A \, = \, B_1\}) \wedge \\ (\bigvee\{\tau(C_2) \, : \, C_2 \in 2^X \text{ and } C_2 \cap A = B_2\}) \\ = \ \bigvee\{\tau(C_1) \wedge \tau(C_2) \, : \, C_1, C_2 \in 2^X \text{ and } (C_1 \cap C_2) \cap A \\ A = B_1 \cap B_2\} \\ \leq \ \bigvee\{\tau(C_1) \cap \tau C_2) \, : \, C_1, C_2 \in 2^X \text{ and } (C_1 \cap C_2) \cap A \\ = B_1 \cap B_2\} \\ = \tau_A(B_1 \cap B_2). \\ (\text{OST}_3) \text{ Let } \{B_\alpha\}_{\alpha \in \Gamma} \subset 2^A. \text{ Then} \\ \tau_A(B_\alpha) = \ \bigvee\{\tau(C_\alpha) \, : \, C_\alpha \in 2^X \text{ and } C_\alpha \cap A = B_\alpha\}, \\ \forall \alpha \in \Gamma. \end{array}$$

$$\begin{split} & \bigwedge_{\alpha \in \Gamma} \tau_A(B_\alpha) \\ &= \bigvee \{ \bigwedge_{\alpha \in \Gamma} \tau(C_\alpha) : C_\alpha \in 2^X \text{ and } (\bigcup_{\alpha \in \Gamma} C_\alpha) \cap A = \bigcup_{\alpha \in \Gamma} B_\alpha \} \\ &\leq \bigvee \{ \tau(\bigcup_{\alpha \in \Gamma} C_\alpha) : C_\alpha \in 2^X \text{ and } (\bigcup_{\alpha \in \Gamma} C_\alpha) \cap A = \bigcup_{\alpha \in \Gamma} B_\alpha \} \\ &= \tau_A(\bigcup_{\alpha \in \Gamma} B_\alpha). \end{split}$$

Hence $\tau_A \in OST(A)$. Now let $B \in 2^A$. Then

$$\tau_A(B) = \bigvee \{ \tau(C) : C \in 2^X \text{ and } C \cap A = B \}$$

$$\leq \tau(B).[\text{Since} B \subset A, B \cap A = B]$$

This completes the proof.

Proposition 5.2. Let (X, τ) be an osts, let (Y, τ_Y) be an ordinary smooth subspace of (X, τ) and let $A \in 2^Y$. Then (a) $\mathcal{C}_{\tau_Y}(A) = \bigvee \{ \mathcal{C}_{\tau}(B) : B \in 2^X \text{ and } B \cap Y = A \}.$ (b) If $Z \subset Y \subset X$ then $\tau_Z = (\tau_Y)_C$.

Proof. (a)

$$\begin{aligned} \mathfrak{F}_{\tau_Y}(A) &= \tau_Y(Y - A) \\ &= \bigvee \{ \tau(B) : B \in 2^X \text{ and } B \cap Y = Y - A \} \\ &= \bigvee \{ \tau(B) : B^c \in 2^X \text{ and } B^c \cap Y = A \} \\ &= \bigvee \{ \mathfrak{F}_\tau(B^c) : B^c \in 2^X \text{ and } B^c \cap Y = A \} \\ &= \bigvee \{ \mathfrak{F}_\tau(C) : C \in 2^X \text{ and } C \cap Y = A \}. \end{aligned}$$

(b) Let $A \in 2^Z$. Then

$$\begin{aligned} &(\tau_Y)_Z(A) \\ &= \bigvee \{ \tau_Y(B) : B \in 2^Y \text{ and } B \cap Z = A \} \\ &= \bigvee [\bigvee \{ \tau(C) : C \in 2^X \text{ and } C \cap Y = B \} : B \in 2^Y \text{ and } B \cap Z = A] \\ &= \bigvee \{ \tau(C) : C \in 2^X \text{ and } C \cap Z = A \} \\ &= \tau_Z(A). \end{aligned}$$

Proposition 5.3. (See Lemma 2.2 in [10]) Let (X, τ) and (Y, τ') be two osts's, let $f : X \to Y$ be ordinary smooth continuous and let $A \subset X$. Then the restriction $f \mid_A$: $(A, \tau_A) \to (Y, \tau')$ is also ordinary smooth continuous.

Proof. Let $B \in 2^Y$. Then

$$\begin{aligned} &\tau_A((f\mid_A)^{-1}(B)) \\ &= \bigvee \{\tau(C) : C \in 2^X \text{ and } C \cap A = (f\mid_A)^{-1}(B) \} \\ &\ge &\tau(f^{-1}(B)) \\ &\ge &\tau'(B). \end{aligned}$$

So $f \mid_A$ is ordinary smooth continuous.

References

- C. L. Chang, "Fuzzy topological spaces," J.Math.Anal.Appl., vol. 24, pp. 182-190, 1968.
- [2] K.C.Chattopadhyay, R.N.Hazra and S.K.Samanta, "Gradation of openness : fuzzy topology," *Fuzzy sets* and Systems, vol. 49, pp. 237-242, 1992.
- [3] K.C.Chattopadhyay and S.K.Samanta, "Fuzzy topology : fuzzy closure operator, fuzzy compactness and fuzzy connectedness," *Fuzzy sets and Systems*, vol. 54, pp. 207-212, 1993.
- [4] R. N. Hazra, S.K.Samanta and K.C.Chattopadhyay, "Fuzzy topology redefined," *Fuzzy sets and Systems*, vol. 45, pp. 79-82, 1992.
- [5] R. Lowen, "Fuzzy topological spaces and fuzzy compactness," *J.Math.Anal.Appl*, vol. 56, pp. 621-633, 1976.
- [6] W. Peeters, "Subspaces of smooth fuzzy topologies and initial smooth fuzzy structures," *Fuzzy sets and Systems*, vol. 104, pp. 423-433, 1999.

- [7] Pao-Ming Pu and Ying Ming Liu, "Fuzzy topology 1, Neiborhood structure of a fuzzy point and Moore-Smith convergence," *J.Math.Anal.Appl.*, vol. 76, pp. 571-599, 1980.
- [8] A. A. Ramadan, "Smooth topological spaces," *Fuzzy* sets and Systems, vol. 48, pp. 371-37, 1992.
- [9] Mingsheng Ying, "A new approach for fuzzy topology (I)," *Fuzzy sets and Systems*, vol. 39, pp. 303-321, 1991.
- [10] Mingsheng Ying, "A new approach for fuzzy topology (III)," *Fuzzy sets and Systems*, vol. 55, pp. 193-207, 1993.

Pyung Ki Lim

Professor in Wonkwang University His research interests are Category Theory, Hyperspace and Topology. E-mail : pklim@wonkwang.ac.kr

Byeong Guk Ryoo

Graduate student in Wonkwang University E-mail : ryoo1985@naver.com

Kul Hur

Professor in Wonkwang University His research interests are Category Theory, Hyperspace and Topology. E-mail : kulhur@wonkwang.ac.kr