• Title/Summary/Keyword: subnormal

검색결과 83건 처리시간 0.021초

JOINT WEAK SUBNORMALITY OF OPERATORS

  • Lee, Jun Ik;Lee, Sang Hoon
    • 충청수학회지
    • /
    • 제21권2호
    • /
    • pp.287-292
    • /
    • 2008
  • We introduce jointly weak subnormal operators. It is shown that if $T=(T_1,T_2)$ is subnormal then T is weakly subnormal and if f $T=(T_1,T_2)$ is weakly subnormal then T is hyponormal. We discuss the flatness of weak subnormal operators.

  • PDF

SUBNORMALITY OF S2(a, b, c, d) AND ITS BERGER MEASURE

  • Duan, Yongjiang;Ni, Jiaqi
    • 대한수학회보
    • /
    • 제53권3호
    • /
    • pp.943-957
    • /
    • 2016
  • We introduce a 2-variable weighted shift, denoted by $S_2$(a, b, c, d), which arises naturally from analytic function space theory. We investigate when it is subnormal, and compute the Berger measure of it when it is subnormal. And we apply the results to investigate the relationship among 2-variable subnormal, hyponormal and 2-hyponormal weighted shifts.

ON GROUPS SATISFYING THE MAXIMAL AND THE MINIMAL CONDITIONS FOR SUBNORMAL SUBGROUPS OF INFINITE ORDER OR INDEX

  • Russo, Alessio
    • 대한수학회보
    • /
    • 제47권4호
    • /
    • pp.687-691
    • /
    • 2010
  • In this article we will prove that a generalized radical group satisfying the maximal condition for subnormal subgroups of infinite order (the minimal condition for subnormal subgroups of infinite index, respectively) is soluble-by-finite. Such result generalizes that obtained by D. H. Paek in [5].

SUBNORMAL WEIGHTED SHIFTS WHOSE MOMENT MEASURES HAVE POSITIVE MASS AT THE ORIGIN

  • Lee, Mi Ryeong;Kim, Kyung Mi
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제16권4호
    • /
    • pp.217-223
    • /
    • 2012
  • In this note we examine the effects on subnormality of adding a new weight or changing some weights for a given subnormal weighted shift. We consider a subnormal weighted shift with a positive point mass at the origin by means of continuous functions. Finally, we introduce some methods for evaluating point mass at the origin about moment measures associated with weighted shifts.

A Cyclic Subnormal Completion of Complex Data

  • Jung, Il Bong;Li, Chunji;Park, Sun Hyun
    • Kyungpook Mathematical Journal
    • /
    • 제54권2호
    • /
    • pp.157-163
    • /
    • 2014
  • For a finite subset ${\Lambda}$ of $\mathbb{N}_0{\times}\mathbb{N}_0$, where $\mathbb{N}_0$ is the set of nonnegative integers, we say that a complex data ${\gamma}_{\Lambda}:=\{{\gamma}_{ij}\}_{(ij){\in}{\Lambda}}$ in the unit disc $\mathbf{D}$ of complex numbers has a cyclic subnormal completion if there exists a Hilbert space $\mathcal{H}$ and a cyclic subnormal operator S on $\mathcal{H}$ with a unit cyclic vector $x_0{\in}\mathcal{H}$ such that ${\langle}S^{*i}S^jx_0,x_0{\rangle}={\gamma}_{ij}$ for all $i,j{\in}\mathbb{N}_0$. In this note, we obtain some sufficient conditions for a cyclic subnormal completion of ${\gamma}_{\Lambda}$, where ${\Lambda}$ is a finite subset of $\mathbb{N}_0{\times}\mathbb{N}_0$.

SOLVABILITY OF SYLVESTER OPERATOR EQUATION WITH BOUNDED SUBNORMAL OPERATORS IN HILBERT SPACES

  • Bekkar, Lourabi Hariz;Mansour, Abdelouahab
    • Korean Journal of Mathematics
    • /
    • 제27권2호
    • /
    • pp.515-523
    • /
    • 2019
  • The aim of this paper is to present some necessary and sufficient conditions for existence of solution of Sylvester operator equation involving bounded subnormal operators in a Hilbert space. Our results improve and generalize some results in the literature involving normal operators.

Multivariable Recursively Generated Weighted Shifts and the 2-variable Subnormal Completion Problem

  • Idrissi, Kaissar;Zerouali, El Hassan
    • Kyungpook Mathematical Journal
    • /
    • 제58권4호
    • /
    • pp.711-732
    • /
    • 2018
  • In this paper, we give a new approach to solving the 2-variable subnormal completion problem (SCP for short). To this aim, we extend the notion of recursively generated weighted shifts, introduced by R. Curto and L. Fialkow, to 2-variable case. We next provide "concrete" necessary and sufficient conditions for the existence of solutions to the 2-variable SCP with minimal Berger measure. Furthermore, a short alternative proof to the propagation phenomena, for the subnormal weighted shifts in 2-variable, is given.