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SUBNORMALITY OF Ss(a,b, c,d)
AND ITS BERGER MEASURE

YONGJIANG DUAN AND JIAQI NI

ABSTRACT. We introduce a 2-variable weighted shift, denoted by Sa(a, b,
¢,d), which arises naturally from analytic function space theory. We
investigate when it is subnormal, and compute the Berger measure of
it when it is subnormal. And we apply the results to investigate the
relationship among 2-variable subnormal, hyponormal and 2-hyponormal
weighted shifts.

1. Introduction

Let H be a complex separable Hilbert space and let B(H) denote the Banach
space of bounded linear operators on H, an operator T' € B(H) is called normal
if T*T = TT*, it is called subnormal if there is a Hilbert space K O H and
a normal operator N on K such that NH C H and T = N|g, and it is
called hyponormal if T*T > TT*. Clearly, one sees that 1" is normal =—> T is
subnormal = T is hyponormal. The weighted shift operator is often used to
investigate the relationship among these types of operators.

Recall that if « : g, 1, ... is a bounded sequence of positive numbers, the
unilateral weighted shift W, associated with « (called weight sequence) is the
operator on [%(Z,) defined by Wye, = anenii(n = 0), where {e,}5° is the
canonical orthonormal basis for I2(Z ). Given weighted sequence a : ag, a, . . .,
the weighted shift W, is also denoted by shift(ag, aq, .. .).

The following result gives an elegant and simple condition to determine when
a weighted shift is subnormal.

Lemma 1.1 (Berger theorem, cf. [1, 14]). Let W, be a weighted shift with

weight sequence « : ag,aq, ..., and define the moment of Wy, by v0 2 1, v, =
ata?---a?_j(n > 1). Then W, is subnormal if and only if there ezists a
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probability measure v on [0, || Wy, ||?] such that
Yo = / t"dv(t) (n>=1).
[0,[[Wall?]

The probability measure v is called the Berger measure of W,.

In 2005, R. Curto et al. introduced a class of weighted shifts with weight

sequence «, = ?Z_tdb (n > 0), which is denoted by S(a,b,c,d). Using the

technique of Schur products of matrixes, they showed that

Lemma 1.2 (cf. [6]). Let a,b,c,d > 0 satisfy ad —bc > 0. Then S(a, b, c,d) is
subnormal.

The method in [6] can not be used to compute the Berger measure of
S(a,b,c,d) and the authors posed the problem of finding out it in the same
paper. Note that the Berger measure is intimately related to a subnormal
weighted shift through the Berger theorem and is essential in the computation
of subnormal backward extension theorem. Cui and Duan (cf. [3]) completely
answered this problem through the analytic function space theory.

Lemma 1.3 (cf. [3]). Let a,b,c,d > 0 satisfy ad —bc > 0. Then S(a,b,c,d) is
subnormal with the Berger measure

r(4 t
LG ey,
NONCEEY “

c a

Qe

dg(t) = ()

which is defined on [0, %].

c
a

Classes of weighted shift operator in S(a,b,c,d) are used to handle many
kinds of problems such as investigating the relationship of operator pair between
the boundary of its Taylor spectrum and its essential spectrum (cf. [7]), between
its hyponormality and weak 1-hyponormality (cf. [10]), investigating propaga-
tion phenomena (cf. [9]), Aluthge transforms of weighted shifts (cf. [11]), etc.
It is interesting to consider the generalization of this type of weighted shift in
the 2-variable case and we will do it in this paper.

Before proceeding, let us recall some necessary definitions and facts about
2-variable weighted shifts.

Let Ty,T> € B(H) be a commuting operator pair, T = (T1,Tz) is called
normal if 77 and T3 are both normal, T is called subnormal if there is a Hilbert
space K DO H and a normal operator pair N on K such that NH C H and

T = N|y, and T is called hyponormal if [T*, T] = G%i:;j gz:’;j) > 0, where
[S,T) £ ST — TS (cf. [4, 8]).

Let Z3 = Z, x Z., a 2-variable weighted shift T = (7}, T%) is a commuting
operator pair defined on [*(Z2) as follows:

A A
Tiex = akerye,, 1ok = Prlhie,,
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where {ex : k € Z3 } is the canonical basis for the Hilbert space (*(Z2), e1 =
(1,0), &2 = (0,1), and o, Bk > 0, for each k € Z3 (o, P are called the weight
sequence of T).

Definition 1.4 (cf. [13]). Given a 2-variable weighted shift W, 3 with weight
sequence ay, Bk, and k € Zi, the moment for W, g of order k is defined as
follows:

1 k=0,
2 2 _
e (Wag) = aéo,o) e a2(k171,0) ki >1,ky =0,
’ Blo.0) " Bloks-1) k= 0,ks > 1,
04%0’0) o a%k17170)/8(2k170) T /B(le,szl) kl 2 17 k2 2 1

The following results describe the subnormality and hyponormality of a 2-
variable weighted shift.

Lemma 1.5 (2-variable Berger theorem, cf. [13]). A 2-variable weighted shift
T = (T, T») is subnormal if and only if there is a probability measure p defined
on the rectangle R = [0, || Ty ||?] x [0, || Tz ||?] such that

Wk(T):/ sPtk2dp(s,t), Yk = (k1, ko) € Z2..
R

The probability measure p is called the Berger measure of T.
Lemma 1.6 (Six-point test, cf. [4]). Let T = (T1,T%) be a 2-variable weighted
shift with weight sequences ay, Bx. Then T is hyponormal if and only if

AR T
Ak te, BkJrsl - akﬁk Bk+€2 - ﬂk

WV

0

for allk € Z3 .

The rest of this paper is organized as follows: In Section 2, based on the
computation about the Berger measure of the 2-variable weighted shift deter-
mined by the coordinate multiplication operators on the weighted Bergman
space over the unit ball in C? (which is well-known subnormal), we consider
its generalization and introduce the definition of Ss(a, b, ¢,d), and investigate
when it is subnormal and determine its Berger measure when it is subnor-
mal. In Section 3, we will give some application in considering the relationship
between different types of the 2-variable weighted shifts.

2. Subnormality of Sa(a,b,c,d) and its Berger measure

First we will recall the definition of the weighted Bergman space over the
unit ball in C2. This is the start point of our computation.

Definition 2.1 (cf. [15]). Let By be the open unit ball in C?, if v > 2, the
weighted Bergman space is defined as follows:

A2(By) £ {f € H(By) || f |2= / FERAA(2) < +oo),
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where dA\")(2) = O, (1 — |2]2)*73d\(z), C, = (1'71)2&, A is the normalized
Lebesgue measure on C? such that A\(By) = 1. Let m be the Lebesgue measure

on C?, then A\(E) = Zm(E) for any measurable subset of By.

It is well-known that A2%(B2) has a canonical orthonormal basis {ey : k €
Zi}, where ey = [aud%]%zk, k| = k1 + ko, k! = E1lks!, and a9 = 1, a,, =

% > 0(n > 1). Then || 2 |1P= a\kwl% - V-"(V-ﬁlfik\—l) £ wic (cf. [12]).

Example 2.2. Let T = (T1,T2) = (M,,,M.,), M., denotes the coordinate
multiplication operator on A%(By). Then

K|!
k'L ek apg 1t ky +1
_ "\ _ K! _ 1
Tle(khkz) - Zl(a“‘\ k! )2211222 = (k= 1)! Cktey = v+ |k|ek+€1a
' Jk|+1 (1) et
K|!
k'L ek ap ko +1
_ V5 k1 k2 _ k! _ 2
Tae(k, kz) = 22(apk| Kl )22 2" = (k411 Ckte2 = vt |k|ek+62'
: Q| +1 (hy+ 1) Ty

k141 _ ko1
o Br =/ VD

is a 2-variable weighted shift (cf. [3]).

Let af, =

then Tlek = OkCk+eqy Tgek = ﬂk6k+52, so T

It is well-known that the weighted shift T in the above example determined
by the multiplication operator on A% (B5) is subnormal, in the following theorem
we will compute the Berger measure for it.

Recall that the Gamma function I'(z) and Beta function B(z,y) is defined
as follows (cf. [2]):

I(z) = / t*Le~tdt,z > 0,
0

1
B(z,y) = / t" 1 — )Y tdt, x,y > 0.
0

Moreover, it holds that B(z,y) = FF(Z;)E_SJ)), whenever x,y > 0 (cf. [2]).

Set A = {(z,y) e R?: 0 < 2,y < 1,0 <z +y < 1}. We have the following
result.

Theorem 2.3. When v > 2, T in Example 2.2 is subnormal with the Berger
measure
du(s,t) = (v —1)(v —2)(1 — s — )" 3xa(s, t)dsdt.

Proof. First we will show that yi(T) =|| 2% ||2, where k = (k1, ko) € Z2.
In fact, when k1 > 1, ko > 1, for i = 0,1,2, ..., we have

2 z“‘l /W(i+1,0) W(i41,0
le €(,0) = le ! = ! - = ( )€(i+1,0)-
V(3,00 /W(+1,0) /W(i,0) W(i,0)

_  [wat10)
Then, a0y = m
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Similarly,
- PR B 28 W D) Wk i)
MzQe(kl,i) = Mz, = = €(ky,i+1)-
VOkii)  VWlkait1) v/ W(kyi) Wk i)
_ (Wit
Then 5("7171) - U)(il;t)l .
Thus,
2 2 2 2
M (T) = 0,0y ¥y -1,0)B0k1.0) " Blier ska—1)
_ W0  Wki,0) Wkil)  Wikika)
W,0)  Wk1=1,0) W(k1,0)  W(k1,k2—1)
_ Wlkaka) _ e
W(0,0) | 20 |2
Note that || 20 ||?= 1, we have 1 (T) =|| 2* ||2.
When k1 =0, ko > 1, being similar to the proof above, we have
) i+1 -
Z Z v W(0,i4+1 W(0,i+1
M.,ew, = M., 2 = 2 ( ) - Dot )6(0,i+1)'
VW(0,4) VW(0,i+1)  /W(0,5) W(0,4)
Then, B = /iy
Thus,
W, W(0,k2) W(0.k2) k|2
’ykT :ﬁ2 ...52 _ = e = = z .
(1) = Blagy +Blasamr) = o el = 08 )
When k1 > 1, ko = 0, using the result of the case that k1 > 1, ko > 1, we get
2 2 w0 W(ki1,0) W(k1,0) k |2
’Yk T EXe BN - — e = =\ 2 .
(T) = 0,0y "+ Ak, 1,0 W00 W10 Woo [N
Finally, it is obvious that 71 (T) = 1 =|| 2% ||> when k = 0.
To summarize, we conclude that for all k € Z2, % (T) =|| 2¥ ||.
In the following, we will compute || z¥ ||2.
Note that
v—1)(vr—2 _
2 2= DV ZD bk a2 o) ~tam(e).

B2
Let 21 = 1€, 29 = r9e2, then we have

I 2K 1= 4(v — 1) (v — 2)/ r%klrgkz(l —r? —r2)3rirodridry,

1
where Ay = {(x,y) € R? : 2,y > 0,0 < 22 +¢% < 1}.
Let s =72t = r3, we get

” Zk ||2: (I/ _ 1)(1/ _ 2)/ sk)ltk)z(l —s— t)y_?’dsdt.
A
Let

du(s,t) = (v = 1) (v —2)(1 — s — )" 3xa(s, t)dsdt,
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then
() =|| 2% |*= / o k2 dps, ).
[0,1]2

Then it follows from Berger theorem that when v > 2, T is subnormal with
the Berger measure du(s,t) = (v —1)(v — 2)(1 — s — )" 3xa(s, t)dsdt. d

Based on the computations on the weighted Bergman space A2%(By) and
the l-variable case, we introduce a new kind of operator pairs Sa(a, b, c,d) as
following.

Definition 2.4. Let a,b, c,d > 0 satisfy ad—2bc # 0. We denote the 2-variable

weighted shift with weight sequences ay = %7 Bk =/ % by
Sa(a,b, ¢, d).

In the following, we will investigate the subnormality of S3(a, b, ¢, d) and its
Berger measure. Generalizing Theorem 2.3, we have:

Theorem 2.5. The 2-variable weighted shift W, g with weight sequences ax =

kllil;:;ipy Bk = kllff,:;qﬂ) (p > 2q > 0) is subnormal with the Berger measure
s97 19711 — 5 — t)P7247 1 A (5, t)dsdt
di(p,g)(s,t) = B B .
(¢:p— @) B(g,p — 2q9)
Proof. Let
S99 (1 — 5 — t)P=247 1y £ (s, t)dsdt
dhi(p,q)(5:1) = B B 9
(¢:p —a)B(a,p — 2q)
Since

) fol ds fol—s Sq*ltqfl(l —s— t)p72q71dt
/ dprgy, gy (5,1) = ,
o2 B(q,p — q)B(q,p — 2q)
let ¢ = (1 — s)u, then,
1 1 B o
/ d,u’ (S t): fo dsfo s4 1[(1—8)11,]‘1 1[(1_5)(1_u)]p 2q 1(1—s)du
oz PO B(g,p — )B(a,p — 29)
o st = )P ds ) wt (1= )Py
B(q,p —q)B(q,p — 2q)

=1.

Therefore, d,u’(p g lsa probability measure on [0, 1]2.

On the other hand, let fyl((p’q) = f[o 12 skitks dyuf,, (s, 1), then,

1 1—s _ B o
’Y(p7q) _ fO ds fO Skltkzsq ltq 1(1 s t)p 2¢g 1dt
‘ B(q,p — q)Bla,p — 2q)
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let t = (1 — s)u, then,

Jo ds [y M1 = )] (1 — s)(1 — w)P27 (1 - s)du
B(q,p—q)B(¢;p — 2q)

_ fol skita=1(1 — g)katr—a-lgs fol uP2ta=1(1 — y)P=20"1qy,

B B(g,p — q)B(g,p — 2q)

_ B(ki+q,k2a+p—q)B(ka +q,p — 29)

B B(g,p — q)B(g,p — 29)

_ L(p)T(k1 4+ ¢)T (k2 + q)

- T2(Q)T (k1 + k2 +p)

,yl((p,q) _

In the following, we will prove that *yl((p’Q) = w(Wa,p).
In fact, when k; > 1, ko > 1,

D) _ ()T (k1 + @)T (k2 + q)
8 T2(q)T (k1 + k2 +p)
_ lg---(g+ ki —Dlg--- (g + k2 —1)]
[p--(pt+ki—Dp+k) - (p+ ki + k2 —1)]
= 0‘%0,0) T a(2k1—1,o)5(2k1,o) T 5(2k1,k2—1)
’Yk(Wa,B)-
When k; =0, ks > 1,
wa) _ T@T(kat+q) g (gthka—1) . (W
) Ttk 4 ) p (ot b= 1) P00 Ploka-yy = mlWap)
When kl > 1, ]{?2 = 0,
wao_ P@Tki+q g --(gtki-1)  » (W
K STk 4p)  p b 1) 00 10 = (W)

Finally, it is obvious that 'yl({p D — 1 when k = 0.

To summarize, we get that 'yl({p’q) = (Wa.g).
Combing the above computation with the 2-variable Berger theorem, we

conclude that the 2-variable weighted shift W, g is subnormal with the Berger

, ST (15— )P 297 Iy £ (s,t)dsdt
measure di, (s, t) = B(qyp*q)B(qyp*ﬁ) ) D

Proposition 2.6. If 2-variable weighted shift Wo g = (T1,Ts) with weight se-
quences oy, By is subnormal with the Berger measure ji, and Wc’v,ﬁ = (T1,T3) is
a 2-variable weighted shift with weight sequences o, By.. Furthermore, suppose
that | Ty ||=|| Tz ||= 1 and 3IM > 0 such that o} = VMay, By, = vV Mp.
Then WC;’B is subnormal with the Berger measure dp/(s,t) = du(sy, 47), which
is defined on [0, M]?.

Proof. Obviously, || T{ ||=|| T4 ||= VA1, and (W, ;) = M*+525 (W, 5).
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Since W, 3 is subnormal with the Berger measure p, from the 2-variable
Berger theorem, we get

Tk(Wa,5) =/ s* L2 dp(s, t).
[0,1]2
Therefore,

’

t
WWop) =Mt [ (s = [ du
’ [0,1]2 [0,M]2

M’ M)
Let d/(s,t) = du(3y, 17), then we see that ’yk(W(;ﬂ):f[o M) skithzdy’ (s, t),

and it follows from the 2-variable Berger theorem that the 2-variable weighted
shift WC; 5 1s subnormal with the Berger measure W O

Now we can obtain the main result of this section.

Theorem 2.7. Sy(a,b,c,d) is subnormal if and only if ad — 2bc > 0. When
Sa(a, b, c,d) is subnormal, it has the Berger measure

1t7—1(1_§_g)%—%—1
dﬂ(&t) = (g)%bB(Q d _ Q)B(Q d_ %)XQ(SJ)deta

which is defined on [0, 2], where

a a
Q={(z.,y) eR*:0<zy< —,0<z+y< )
[ _kit? ko2
Proof. Note that oge = /2 klikzli’ =< kljszﬁ

Let \/% =M, g =gq, % = p. On the one hand, when ad — 2bc > 0, we
have p — 2¢ > 0. From Theorem 2.5, it follows that the 2-variable weighted

. . . kl—‘rE / kg—‘rg .
shift with weight sequences o), = / ——2— = 4/ ——=—2— is subnormal
& 4 k ki+ko+2° 61‘ ki+ko+2

with the Berger measure

4__2b
c a

el (1 — s — 1)~ % Iy a(s, t)dsdt
B(é d_Q)B(Q 4_24») ’

a’c a’c a

duy (s, t) =

Combining the above result with Proposition 2.6, we conclude that Sz (a, b,
¢,d) is subnormal with the Berger measure

’_1t’_1(1 _es g)g—% 1
du(s,t) = (%)%B(g, T byp(k,d %b)xg(s,t)dsdt
On the other hand, when ad — 2bc < 0, since
9 9 acks + ad — be
Qpye, — Ok

" [elky + ko) + dljc(kr + k2 + 1) + d]’

B (aky + b)(aks + b)c?
ek + ko) + dPP[e(ky 4 ko + 1) + d]?

(akJrEz ﬂk+€1 - akﬁk)2
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B2, — B2 = acky 4 ad — be
k+eo k™ [C(kl + k2) + d] [C(k‘l + ko + 1) + d]v
then,
d+ ac(ky + ks)](ad — 2b
det(Hsg,(q,p,c,a)(k)) = [ad + ac(ky + k2)](a ¢) o

[e(ky + ko) + d]2[c(k1 + k2 + 1) + d]?

The six-point test shows that Sa(a, b, ¢, d) is not hyponormal, and in particular
it is not subnormal. O

3. Some applications

In this section, we will use the operator pair Ss(a,b,c,d) to give some
examples to show the relationship of subnormality, hyponormality, and k-
hyponormality. First we will recall some definitions and facts that will be
used in the sequel.

Lemma 3.1 (Subnormal backward extension of a 1-variable weighted shift,
cf. [8]). Let T = W, be a weighted shift whose restriction to M = \/{ey,ea,...}
is subnormal, with Berger measure pipg. Then Wy, is subnormal (with associated
measure w) if and only if

(1) 7€ Ll(,u/\/l)

(2) of < (Il 7 2 upe))™ '
In this case, du(t) = ToduM(t) + (1= || 3 I (une))d00(t), where &y denotes
Dirac measure at 0.

Definition 3.2 (cf. [8]). Let u be a probability measure on X x Y = Ry xRy,
and assume that 1 €L (u ) The extremal measure pe;+ on X X Y is given by
do

dtezt(s,1) = (1 — t))tH Iy d,u(s t), where dy denotes Dirac measure at 0.

Obviously, the extremal measure is also a probability measure (cf. [8]).

Definition 3.3 (cf. [8]). Given a measure p on X x Y, the marginal measure
X is given by pX £ Mole, where mx : X XY — X is the canonical projection
onto X.

In fact, for each E C X, uX(E) = u(E x Y), and if p is a probability
measure, so does uX (cf. [8]).

Lemma 3.4 (Subnormal backward extension of a 2-variable weighted shift,
cf. [8]). Consider the 2-variable weighted shift T = W, 3, and let M= span{ex :
ko > 1} be an invariant subspace of T. Assume that Ty = T|a is subnormal
with the Berger measure jpg and that Wy £ shift(cgo, 10, - - .) s subnormal

with Berger measure v. Then T is subnormal if and only if
(1) ¢ € Ll(ﬂ/\/l)
( )500 (” T HLl(;LM)) 1;
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(3) Bo | # 1Lt (uan) (Hr) s S v
Moreover, if B3y || + |li(ua)= 1, then (uam)lee = v. In the case when T is
subnormal, the Berger measure pu of T is given by

dpa(s, t) = Ad(pp)ext (5, 1) + (dv(s) — Ad(ar) i (5))ddo (),
where A = B3, || % 21 (ne) -

As applications of the results in Section 2, we will use the subnormality and
the Berger measure of S(a,b,c,d) and Sa(a,b, ¢, d) to construct an example to
show that there exists a 2-variable weighted shift which is hyponormal but not
subnormal. Our method is some different from [5, 8], where it is the first time
in the literatures to construct such type of examples.

(0.3)

FIGURE 1 AND FIGURE 2. Weight diagram of the 2-variable
weighted shift T in Example 3.5 and weight diagram of the
2-variable weighted shift T'(x) in Example 3.9.

Example 3.5. In Lemma 3.4, we assume that Ty = S2(1,2,1,5), Wy =
S(1,2,1,4) (see Fig. 1), then
(1) T is subnormal if and only if Byo € (0, 3];
(2) T is hyponormal if and only if By € (0, ?]
Proof. (1) From Theorem 2.5, we get
st
B(2,3)B(2,1)

From Lemma 1.3, we get

dum(s,t) = XA (S, t)dsdt = 24stxa(s,t)dsdt.

_ s(1—s)ds

dv(s) = B2.2) = 6s(1 — s)ds.
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Thus,
1 1 1-s
= 2t uan= 24/ sdsdt:24/ ds/ sdt = 4,
A 0 0

and
—%(?) dpm(s,t) =

d(,u'./\/l)ezt(sat) = T 63(1 — 50(t))XA(S,t)det.

Therefore,
1-s
d(pam)X(s) = / 6s(1 — 0o (t))dsdt = 6s(1 — s)ds.
0
According to the theorem of subnormal backward extension of a 2-variable
weighted shift, T is subnormal if and only if

1
Boo < 7k 453065(1 — s)ds <

6s(1 — s)ds,

thus, Bgo € (0, %]
(2) According to the six-point test, we are supposed to give the necessary
and sufficient condition when

& - O‘l2< O‘k+€26k+s1

Mye, - Olkﬁk)

Hr(k) =
(k) (ak+525k+al — akfPk Brre, — B

Since T p4 is subnormal, in particular it is hyponormal, therefore, when ko
we have Hr(k) > 0. Thus, we need only to consider the necessary and sufficient
= (k, 0), k S Z+.

0.

WV

condition when Hr(k) > 0 for k

When k = (k,0), we get
k+2 k+3 k+2
Q(k,0) = mv A(k+1,0) = kJr A(k,1) = k+
4

4
Bw,0) = Boo/ PEwE Bk+1,0) = 500\/ P Bk,1) = k—i—

then
k+3 _ k+2 2BooVE+2  2BoovVEF2
He((k,0)) = (Bﬁ e p g ) :
k+5 k+4 k5  k+4
We obtain that
der(ita((k o)) = L H_LAE DT

0 if and only if

Therefore, Hr((k,0)) >
kE+3 k+ 4(k +4) — (12k + 48)33, -
k+5 k+4/ ’ (k +5)2(k + 4)2 -

thus, Soo € (0, %].



954 YONGJIANG DUAN AND JIAQI NI

It follows that T is hyponormal but not subnormal if and only if Sy €

(3. %)
Before we construct the next example, we will recall some definitions and

results.

Definition 3.6 (cf. [8]). Let Ty,T5,...,T, € B(H), a commuting operator
tuple T = (11,73, ...,T,) is called hyponormal if

[Tl*7 Tl] [T2*7 Tl] e [T'r>:7 Tl]
T*7T T*7T T:vT
o | B B )

where [S,T] £ ST —TS.
In [5], the authors introduced the following definition.

Definition 3.7 (cf. [5]). A commuting pair T = (71,73) is called k-hypo-
normal if

T(k) 2 (T, T, T2, ToTy, T3, ..., TE, ToTF .. TH) (k> 2)
is hyponormal.

Obviously, T is normal = T is subnormal = T is (k + 1)-hyponormal
—> T is k-hyponormal = --- = T is 2-hyponormal = T is hyponormal
(k > 2). Moreover, T is subnormal if and only if T is k-hyponormal, Vk > 1

(ct. [5]).
The following result describes when a 2-variable weighted shift is k-hypo-
normal.

Lemma 3.8 (cf. [5]). Let T = (T1,T3) be a 2-variable weighted shift with
weight sequences ay, Bx. Then T is k-hyponormal if and only if

Mic(k) £ (Nt (mom)+(pra) Jo<m+n,prah = 0

for each k € Zi, where k > 2.

In the following, we will use the operator pairs Sa(a,b,c,d) to construct
an example to show that there are gaps among subnormal, hyponormal and
2-hyponormal 2-variable weighted shifts.

Example 3.9. We change ag and fp to = in S(1,1,1,3), denote the new
operator pair by T(z) (see Fig. 2), then
(1) T(x) is subnormal if and only if z € (0, ?],
(2) T(x) is hyponormal if and only if = € (0, @];
- . - 2,/105
(3) T(x) is 2-hyponormal if and only if x € (0, =5>].




SUBNORMALITY OF Ss(a,b,c,d) AND ITS BERGER MEASURE 955

Proof. Let My = span{ex : ko > 1} and Ms = span{ex : k1 > 1} be invariant
subspaces of T(z), and M3 = span{ex : k1 > 1,ks = 0}.

(1)Obviously, T(z)|m, = S(1,2,1,4) with the Berger measure dpp,(s) =
6s(1 — s)ds, and in this case || 1 21 (upay)= fo (1 —s)ds = 3. According to
the theorem of subnormal backward extension of a 1-variable weighted shift,
T} is subnormal if and only if 22 < %, thus, z € (0, ?] Moreover, T has the
Berger measure

dv(s) = 62%(1 — s)ds + (1 — 32%)ddo(s).

We denote the weighted sequences of S3(1,1,1,3) by «j and S, then it
follows from the 2-variable Berger theorem that T(x)|aq, is subnormal with
the Berger measure duag, (s,t) = ﬁic,)%d,u(s,t) = % = 6txa(s,t)dsdt.
Moreover, || + 1Lt (un, )= f[o,1]2 6xA(s,t)dsdt = 3.

From the definition, we obtain that

1—s
1—0(t
d(prty )t = /0 T‘)()fstdsdt = 2(1 — s)ds.

When z € (0, ?], we have
V3 1 4

BOO =2’ < ? = (H ? ”Ll(#Ml)) )

1
B | Pl IATIv d(ppa,)S, =322 2(1 — s)ds
< 622(1 — s)ds + (1 — 322)ddo(s) = dv,
it follows from the theorem of subnormal backward extension of a 2-variable

weighted shift that T(z) is subnormal.

On the other hand, when = € (?, +00), T1 is not subnormal, in particular,
T (z) is not subnormal.

Thus T(z) is subnormal if and only if z € (0, ?]

(2) According to the six-point test, we need to find out when

o, . —op Okten Prte, — UcBr
Hy(k) = kter — %k +ea ke >0,k € Z2.
T (k) (ak+525k+51 — axfx 5]%+52 - ﬂ}% +

Since T(x)|m, and T(x)|rq, are subnormal, in particular they are hyponormal,
therefore, when k; > 1 or ko > 1, we have Hr(k) > 0. Thus, we need only to
consider the necessary and sufficient condition when Hr(0) > 0.

Since ) - ,
HT(O) = <% —x2 % —x2> )

Z—x E—x

it is easy to see that Hr(0) > 0 if and only if x € (0, %}. Thus T(x) is
hyponormal if and only if z € (0, \[]
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(3) From Lemma 3.8, T(z) is 2-hyponormal if and only if

Mic(2) = (et (mn)+(p.a) JosmeAn.pra<2 2 0,

for each k € Z2%.
Since T(x)|m, and T(x)|am, are subnormal, and hence are 2-hyponormal.
Therefore, when k1 > 1 or ks > 1, we have

Mic(2) = (Yt (m,n)+(p,0) Jo<mtn pta<2 2 0.
Thus, we need only to find out when

Mo(2) = (Vom,n)+(p.g) Jo<m+npra<2 = 0.

Since . Lo
i 7 71 L 1 1
P11 3 1 1
SRR AN
Mo(2)=2*1 4 3 9 1 1|,
P Y oY§ oy
2 10 10 30 20 5
from the matrix theory, we see that Mo(2) > 0 if and only if = € (0, 24%]
using an easy computation.
Then, T(z) is 2-hyponormal if and only if = € (0, 2%05]. O

It follows that T(x) is hyponormal but not 2—hyponormal if and only if
T € (255 %] and T(z) is 2-hyponormal but not subnormal if and only if
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