ON THE 2-VARIABLE SUBNORMAL COMPLETION PROBLEM

Jun Ik Lee* and Sang Hoon Lee**

Abstract

In this note we give a connection between the truncated moment problem and the 2 -variable subnormal completion problem.

1. Preliminaries

Let \mathcal{H} be a complex Hilbert space and let $\mathcal{B}(\mathcal{H})$ denote the algebra of bounded linear operators on \mathcal{H}. Recall that a bounded linear operator $T \in \mathcal{B}(\mathcal{H})$ is normal if $T^{*} T=T T^{*}$, and subnormal if $T=\left.N\right|_{\mathcal{H}}$, where N is normal and $N(\mathcal{H}) \subseteq \mathcal{H}$. An operator T is said to be hyponormal if $T^{*} T \geq T T^{*}$. For $S, T \in \mathcal{B}(\mathcal{H})$, let $[S, T]:=S T-T S$. An n-tuple $\mathbf{T}:=\left(T_{1}, \cdots, T_{n}\right)$ of operators on \mathcal{H} is said to be (jointly) hyponormal if the operator matrix

$$
\left[\mathbf{T}^{*}, \mathbf{T}\right]:=\left(\begin{array}{cccc}
{\left[T_{1}^{*}, T_{1}\right]} & {\left[T_{2}^{*}, T_{1}\right]} & \cdots & {\left[T_{n}^{*}, T_{1}\right]} \\
{\left[T_{1}^{*}, T_{2}\right]} & {\left[T_{2}^{*}, T_{2}\right]} & \cdots & {\left[T_{n}^{*}, T_{2}\right]} \\
\vdots & \vdots & \ddots & \vdots \\
{\left[T_{1}^{*}, T_{n}\right]} & {\left[T_{2}^{*}, T_{n}\right]} & \cdots & {\left[T_{n}^{*}, T_{n}\right]}
\end{array}\right)
$$

is positive semidefinite on the direct sum of n copies of \mathcal{H} (cf. [1], [9]). For instance, if $n=2$,

$$
\left[\mathbf{T}^{*}, \mathbf{T}\right]:=\left(\begin{array}{cc}
{\left[T_{1}^{*}, T_{1}\right]} & {\left[T_{2}^{*}, T_{1}\right]} \\
{\left[T_{1}^{*}, T_{2}\right]} & {\left[T_{2}^{*}, T_{2}\right]}
\end{array}\right) .
$$

Received May 27, 2009; Accepted August 14, 2009.
2000 Mathematics Subject Classification: Primary 47B20, 47B37; Secondary 30E05, 47A57.

Key words and phrases: The truncated moment problem, representing measure, 2 -variable weighted shifts, subnormal completion problem.

Correspondence should be addressed to Sang Hoon Lee, shlee@math.cnu.ac.kr.
**This work was supported by research fund of Chungnam National University in 2008.

The n-tuple $\mathbf{T} \equiv\left(T_{1}, T_{2}, \cdots, T_{n}\right)$ is said to be normal if \mathbf{T} is commuting and each T_{i} is normal, and \mathbf{T} is subnormal if \mathbf{T} is the restriction of a normal n-tuple to a common invariant subspace. In particular, a commuting pair $\mathbf{T} \equiv\left(T_{1}, T_{2}\right)$ is said to be k-hyponormal $(k \geq 1)([10])$ if

$$
\mathbf{T}(k):=\left(T_{1}, T_{2}, T_{1}^{2}, T_{2} T_{1}, T_{2}^{2}, \cdots, T_{1}^{k}, T_{2} T_{1}^{k-1}, \cdots, T_{2}^{k}\right)
$$

is hyponormal, or equivalently

$$
\left[\mathbf{T}(k)^{*}, \mathbf{T}(k)\right]=\left(\left[\left(T_{2}^{q} T_{1}^{p}\right)^{*}, T_{2}^{m} T_{1}^{n}\right]\right)_{\substack{1 \leq n+m \leq k \\ 1 \leq p+q \leq k}} \geq 0
$$

Clearly, normal \Rightarrow subnormal $\Rightarrow k$-hyponormal. We now review results for one variable subnormal completion. For $\alpha \equiv\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ a bounded sequence of positive real numbers (called weights), let $W_{\alpha}: \ell^{2}\left(\mathbb{Z}_{+}\right) \rightarrow$ $\ell^{2}\left(\mathbb{Z}_{+}\right)$be the associated unilateral weighted shift, defined by $W_{\alpha} e_{n}:=$ $\alpha_{n} e_{n+1}$ (all $n \geq 0$), where $\left\{e_{n}\right\}_{n=0}^{\infty}$ is the canonical orthonormal basis in $\ell^{2}\left(\mathbb{Z}_{+}\right)$. For a weighted shift W_{α}, the moments of α are given as

$$
\gamma_{k} \equiv \gamma_{k}(\alpha):=\left\{\begin{array}{cc}
1, & \text { if } k=0 \\
\alpha_{0}^{2} \cdots \alpha_{k-1}^{2}, & \text { if } k>0
\end{array}\right.
$$

It is easy to see that W_{α} is never normal, and that it is hyponormal if and only if $\alpha_{0} \leq \alpha_{1} \leq \cdots$. C. Berger's characterization of subnormality for unilateral weighted shifts (cf. [4], [2, II.6.10]) states that W_{α} is subnormal if and only if there exists a Borel probability measure (so called Berger measure) μ supported in $\left[0,\left\|W_{\alpha}\right\|\right]$, with $\left\|W_{\alpha}\right\| \in \operatorname{supp} \mu$, such that

$$
\gamma_{n}=\int t^{2 n} d \mu(t) \quad \text { for all } n \geq 0
$$

In 1966, Stampfli [16] explicitly exhibited for a subnormal weighted shift A_{0} its minimal normal extension

$$
N:=\left(\begin{array}{cccc}
A_{0} & B_{1} & & 0 \\
& A_{1} & B_{2} & \\
& & A_{2} & \ddots \\
0 & & & \ddots
\end{array}\right)
$$

where A_{n} is a weighted shift with weights $\left\{a_{0}^{(n)}, a_{1}^{(n)}, \cdots\right\}, B_{n}:=\operatorname{diag}\left\{b_{0}^{(n)}\right.$, $\left.b_{1}^{(n)}, \cdots\right\}$, and these entries satisfy:
(I) $\left(a_{j}^{(n)}\right)^{2}-\left(a_{j-1}^{(n)}\right)^{2}+\left(b_{j}^{(n)}\right)^{2} \geq 0\left(b_{j}^{(0)}=0\right.$ for all $\left.j\right)$;
(II) $b_{j}^{(n)}=0 \Longrightarrow b_{j+1}^{(n)}=0$;
(III) there exists a constant M such that $\left|a_{j}^{(n)}\right| \leq M$ and $\left|b_{j}^{(n)}\right| \leq M$ for $n=0,1, \cdots$ and $j=0,1, \cdots$.

Here $b_{j}^{(n+1)}:=\left[\left(a_{j}^{(n)}\right)^{2}-\left(a_{j-1}^{(n)}\right)^{2}+\left(b_{j}^{(n)}\right)^{2}\right]^{\frac{1}{2}} \quad$ and $\quad a_{j}^{(n+1)}:=a_{j}^{(n)} \frac{b_{j+1}^{(n+1)}}{b_{j}^{(n+1)}}$
(if $b_{j_{0}}^{(n)}=0$, then $a_{j_{0}}^{(n)}$ is taken to be 0).
Thus, we have W_{α} is subnormal if and only if conditions (I), (II), (III) hold for W_{α}.

Given an initial segment of weights $\alpha: \alpha_{0}, \cdots \alpha_{m}$, a sequence $\widehat{\alpha} \in$ $\ell^{\infty}\left(\mathbb{Z}_{+}\right)$such that $\widehat{\alpha}_{i}=\alpha_{i}(i=0, \cdots, m)$ is said to be recursively generated by α if there exist $r \geq 1$ and $\varphi_{0}, \cdots, \varphi_{r-1} \in \mathbb{R}$ such that $\gamma_{n+r}=\varphi_{0} \gamma_{n}+\cdots+\varphi_{r-1} \gamma_{n+r-1}($ all $n \geq 0)$, where $\gamma_{0}:=1, \gamma_{n}:=$ $\alpha_{0}^{2} \cdots \alpha_{n-1}^{2}(n \geq 1)$; in this case $W_{\widehat{\alpha}}$ is said to be recursively generated. If the associated recursively generated weighted shift $W_{\widehat{\alpha}}$ is subnormal, then its Berger measure is a finitely atomic measure of the form $\mu:=\rho_{0} \delta_{s_{0}}+\cdots+\rho_{r-1} \delta_{s_{r-1}}$. Let $\alpha: \alpha_{0}, \cdots, \alpha_{m}(m \geq 0)$ be an initial segment of positive weights and let $\omega=\left\{\omega_{n}\right\}_{n=0}^{\infty}$ be a bounded sequence of positive numbers. We say that W_{ω} is a completion of α if $\omega_{n}=\alpha_{n}$ $(0 \leq n \leq m)$, and we write $\alpha \subset \omega$. The completion problem for a property (P) entails finding necessary and sufficient conditions on α to ensure the existence of a weight sequence $\omega \supset \alpha$ such that W_{ω} satisfies (P). In [2, Theorem 3.5], the following criterion was established.

Theorem 1. (Subnormal Completion Criterion) If $\alpha: \alpha_{0}, \cdots, \alpha_{n}$ ($n \geq 0$) is an initial segment of positive weights then the following are equivalent:
(i) α has a subnormal completion;
(ii) α has a recursively generated subnormal completion;
(iii) the Hankel matrices $H(l)$ and $H_{x}(m-1)$ are both positive $(l:=$ $\left[\frac{n+1}{2}\right]$ and $\left.m:=\left[\frac{n}{2}\right]+1\right)$ and the vector

$$
\left.\left(\begin{array}{c}
\gamma_{l+1} \\
\vdots \\
\gamma_{2 l+1}
\end{array}\right) \quad \text { (resp. }\left(\begin{array}{c}
\gamma_{m+1} \\
\vdots \\
\gamma_{2 m}
\end{array}\right)\right)
$$

is in the range of $H(l)$ (resp. $\left.H_{x}(m-1)\right)$ when n is even (resp. odd). Here
$H(j):=\left(\begin{array}{cccc}\gamma_{0} & \gamma_{1} & \cdots & \gamma_{j} \\ \gamma_{1} & \gamma_{2} & \cdots & \gamma_{j+1} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{j} & \gamma_{j+1} & \cdots & \gamma_{2 j}\end{array}\right), H_{x}(j):=\left(\begin{array}{cccc}\gamma_{1} & \gamma_{2} & \cdots & \gamma_{j+1} \\ \gamma_{2} & \gamma_{3} & \cdots & \gamma_{j+2} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{j+1} & \gamma_{j+2} & \cdots & \gamma_{2 j+1}\end{array}\right)$.

We now consider double-indexed positive bounded sequences $\alpha_{\mathbf{k}}, \beta_{\mathbf{k}} \in$ $\ell^{\infty}\left(\mathbb{Z}_{+}^{2}\right), \mathbf{k} \equiv\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}$. Define the 2 -variable weighted shift $W_{(\alpha, \beta)} \equiv\left(T_{1}, T_{2}\right)$ by

$$
T_{1} e_{\mathbf{k}}:=\alpha_{\mathbf{k}} e_{\mathbf{k}+\varepsilon_{1}} \quad \text { and } \quad T_{2} e_{\mathbf{k}}:=\beta_{\mathbf{k}} e_{\mathbf{k}+\varepsilon_{2}}
$$

where $\varepsilon_{1}:=(1,0)$ and $\varepsilon_{2}:=(0,1)$. Clearly,

$$
\begin{equation*}
T_{1} T_{2}=T_{2} T_{1} \Longleftrightarrow \beta_{\mathbf{k}+\varepsilon_{1}} \alpha_{\mathbf{k}}=\alpha_{\mathbf{k}+\varepsilon_{2}} \beta_{\mathbf{k}} \quad\left(\text { all } \mathbf{k} \in \mathbb{Z}_{+}^{2}\right) \tag{1.1}
\end{equation*}
$$

In an entirely similar way one can define multivariable weighted shifts. Given $\mathbf{k} \in \mathbb{Z}_{+}^{2}$, the moments of (α, β) of order \mathbf{k} is

$$
\begin{aligned}
\gamma_{\mathbf{k}} & \equiv \gamma_{\mathbf{k}}(\alpha, \beta) \\
& := \begin{cases}1 & \text { if } \mathbf{k} \equiv\left(k_{1}, k_{2}\right)=(0,0) \\
\alpha_{(0,0)}^{2} \cdots \alpha_{\left(k_{1}-1,0\right)}^{2} & \text { if } k_{1} \geq 1 \text { and } k_{2}=0 \\
\beta_{(0,0)}^{2} \cdots \beta_{\left(0, k_{2}-1\right)}^{2} & \text { if } k_{1}=0 \text { and } k_{2} \geq 1 \\
\alpha_{(0,0)}^{2} \cdots \alpha_{\left(k_{1}-1,0\right)}^{2} \cdot \beta_{\left(k_{1}, 0\right)}^{2} \cdots \beta_{\left(k_{1}, k_{2}-1\right)}^{2} & \text { if } k_{1} \geq 1 \text { and } k_{2} \geq 1\end{cases}
\end{aligned}
$$

We remark that, due to the commutativity condition (1.1), $\gamma_{\mathbf{k}}$ can be computed using any nondecreasing path from $(0,0)$ to $\left(k_{1}, k_{2}\right)$. We then recall basic results for 2 -variable weighted shifts. The following is a criterion on hyponormality for 2 -variable weighted shifts.

Lemma 2. ([3])(Six-point Test (see Figure 1-(i))) Let $\mathbf{T} \equiv\left(T_{1}, T_{2}\right)$ be a 2 -variable weighted shift, with weight sequences α and β. Then

$$
\begin{aligned}
& {\left[\mathbf{T}^{*}, \mathbf{T}\right] \geq 0 \Leftrightarrow\left(\left(\left[T_{j}^{*}, T_{i}\right] e_{\mathbf{k}+\varepsilon_{j}}, e_{\mathbf{k}+\varepsilon_{i}}\right)\right)_{i, j=1}^{2} \geq 0\left(\text { all } \mathbf{k} \in \mathbb{Z}_{+}^{2}\right)} \\
& \Leftrightarrow\left(\begin{array}{cc}
\alpha_{\mathbf{k}+\varepsilon_{1}}^{2}-\alpha_{\mathbf{k}}^{2} & \alpha_{\mathbf{k}+\varepsilon_{2}} \beta_{\mathbf{k}+\varepsilon_{1}}-\alpha_{\mathbf{k}} \beta_{\mathbf{k}} \\
\alpha_{\mathbf{k}+\varepsilon_{2}} \beta_{\mathbf{k}+\varepsilon_{1}}-\alpha_{\mathbf{k}} \beta_{\mathbf{k}} & \beta_{\mathbf{k}+\varepsilon_{2}}^{2}-\beta_{\mathbf{k}}^{2}
\end{array}\right) \geq 0\left(\text { all } \mathbf{k} \in \mathbb{Z}_{+}^{2}\right)
\end{aligned}
$$

We now recall a well known characterization of subnormality for multivariable weighted shifts [14], due to C. Berger (cf. [2, II.6.10]) and independently established by Gellar and Wallen [13]) in the single variable case:

Figure 1. Weight diagram used in the Six-point Test

Theorem 3 (Berger's Theorem). $W_{\alpha, \beta} \equiv\left(T_{1}, T_{2}\right)$ is subnormal if and only if there is a probability measure μ (which we call the Berger measure of $W_{\alpha, \beta}$) defined on the 2-dimensional rectangle $R=\left[0,\left\|T_{1}\right\|^{2}\right] \times$ $\left[0,\left\|T_{2}\right\|^{2}\right]$ such that

$$
\gamma_{\mathbf{k}}=\int_{R} s^{k_{1}} t^{k_{2}} d \mu(s, t), \quad \text { for all } \mathbf{k} \equiv\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2} .
$$

In this paper we consider the following problem.
Problem 4. (2-variable Subnormal Completion Problem) Given $m \geq 0$ and a finite collection of pairs of positive numbers $\Omega_{m} \equiv\left\{\left(\alpha_{\mathbf{k}}\right.\right.$, $\left.\left.\beta_{\mathbf{k}}\right)\right\}_{|\mathbf{k}| \leq m}$ satisfying (1.1) for all $|\mathbf{k}| \leq m$ (where $|\mathbf{k}|:=k_{1}+k_{2}$), find necessary and sufficient conditions to guarantee the existence of a subnormal 2 -variable weighted shift whose initial weights are given by Ω_{m}.

Problem 4 is closely related to the truncated real moment problems.
Problem 5. Given real numbers

$$
\begin{equation*}
\gamma \equiv \gamma^{(2 n)}:=\gamma_{00}, \gamma_{10}, \gamma_{01}, \gamma_{20}, \gamma_{11}, \gamma_{02}, \cdots, \gamma_{2 n, 0}, \cdots, \gamma_{0,2 n} \tag{1.2}
\end{equation*}
$$

with $\gamma_{00}>0$, the truncated real moment problem for γ entails finding conditions for the existence of a positive Borel measure μ, supported in \mathbb{R}^{2}, such that

$$
\gamma_{i j}=\int x^{i} y^{j} d \mu, \quad 0 \leq i+j \leq n
$$

Given the truncated moment sequence γ in (2) and $0 \leq i, j \leq n$, we define the $(i+1) \times(j+1)$ matrix $M[i, j]$ whose entries are the moments of order $i+j$:

$$
M[i, j](\gamma) \equiv M[i, j]:=\left(\begin{array}{cccc}
\gamma_{i+j, 0} & \gamma_{i+j-1,1} & \cdots & \gamma_{i, j} \\
\gamma_{i+j-1,1} & \gamma_{i+j-2,2} & \cdots & \gamma_{i-1, j+1} \\
\vdots & \vdots & \ddots & \vdots \\
\gamma_{j, i} & \gamma_{j-1, i+1} & \cdots & \gamma_{0, i+j}
\end{array}\right)
$$

where we note that $M[i, j]$ has the Hankel-like property of being constant on each skew-diagonal; in particular, $M[i, i]$ is a self-adjoint Hankel matrix. We now define the moment matrix $M(n) \equiv M(n)(\gamma)$ via the block decomposition $M(n):=(M[i, j])_{0 \leq i, j \leq n}$. For example, if $n=1$, the quadratic moment problem for $\gamma: \gamma_{00}, \gamma_{10}, \gamma_{01}, \gamma_{20}, \gamma_{11}, \gamma_{02}$ corresponds to

$$
M(1)=\left(\begin{array}{cc}
M[0,0] & M[0,1] \\
M[1,0] & M[1,1]
\end{array}\right)=\left(\begin{array}{lll}
\gamma_{00} & \gamma_{10} & \gamma_{01} \\
\gamma_{10} & \gamma_{20} & \gamma_{11} \\
\gamma_{01} & \gamma_{11} & \gamma_{02}
\end{array}\right)
$$

and if $n=2$, the quartic moment problem for
$\gamma: \gamma_{00}, \gamma_{10}, \gamma_{01}, \gamma_{20}, \gamma_{11}, \gamma_{02}, \gamma_{30}, \gamma_{21}, \gamma_{12}, \gamma_{03}, \gamma_{40}, \gamma_{31}, \gamma_{22}, \gamma_{13}, \gamma_{04}$
corresponds to

$$
\begin{aligned}
M(2) & =\left(\begin{array}{lll}
M[0,0] & M[0,1] & M[0,2] \\
M[1,0] & M[1,1] & M[1,2] \\
M[2,0] & M[2,1] & M[2,2]
\end{array}\right) \\
& =\left(\begin{array}{llllll}
\gamma_{00} & \gamma_{10} & \gamma_{01} & \gamma_{20} & \gamma_{11} & \gamma_{02} \\
\gamma_{10} & \gamma_{20} & \gamma_{11} & \gamma_{30} & \gamma_{21} & \gamma_{12} \\
\gamma_{01} & \gamma_{11} & \gamma_{02} & \gamma_{21} & \gamma_{12} & \gamma_{03} \\
\gamma_{20} & \gamma_{30} & \gamma_{21} & \gamma_{40} & \gamma_{31} & \gamma_{22} \\
\gamma_{11} & \gamma_{21} & \gamma_{12} & \gamma_{31} & \gamma_{22} & \gamma_{13} \\
\gamma_{02} & \gamma_{12} & \gamma_{03} & \gamma_{22} & \gamma_{13} & \gamma_{04}
\end{array}\right) .
\end{aligned}
$$

(For basic results about truncated moment problems we refer to [4] and [6].)

We conclude this section some notations. For $n \geq 1$, let $m \equiv$ $m(n):=\frac{(n+1)(n+2)}{2}$. For $A \in M_{m}(\mathbb{R})$ (the set of $m \times m$ real matrices), we denote the successive rows and columns according to the following lexicographic- functional ordering :

$$
\mathbf{1}, X, Y, X^{2}, X Y, Y^{2}, \cdots, X^{n}, \cdots, Y^{n}
$$

For A a positive $N \times N$ matrix, if $1 \leq n_{1}<\cdots<n_{k} \leq N$ we let

$$
[A]_{\left\{n_{1}, \ldots, n_{k}\right\}}
$$

denote the compression of A to the rows and columns indexed by $\left\{n_{1}, \ldots\right.$, $\left.n_{k}\right\}$. We let $\mathcal{C}_{\left\{n_{1}, \cdots, n_{k}\right\}}$ and $\mathcal{R}_{\left\{n_{1}, \cdots, n_{k}\right\}}$ denote the column space and the row space, respectively of A, i.e., the subspaces of \mathbb{R}^{N} spanned by the columns and the rows indexed by $\left\{n_{1}, \cdots, n_{k}\right\}$ of A, respectively. We also denote the entry of $A \in M_{m(n)}(\mathbb{R})$ in row $X^{k} Y^{l}$ and column $X^{i} Y^{j}$ by $A_{(k, l)(i, j)}$. Then it is easy to see that $M(n)_{(k, l)(i, j)}=\gamma_{k+i, l+j}$.

2. Main results

We start this section recalling the main results in [10]. In [10], it was shown:

Theorem 6. [10] $\mathbf{T} \equiv\left(T_{1}, T_{2}\right)$ is subnormal if and only if $\mathbf{T} \equiv$ (T_{1}, T_{2}) is k-hyponormal for all $k \geq 1$.

Theorem 7. [10] For a 2-variable weighted shift $W_{\alpha, \beta}$, the following are equivalent:
(a) $W_{\alpha, \beta}$ is k-hyponormal;
(b) $\left(\gamma_{\mathbf{k}} \gamma_{\mathbf{k}+(n, m)+(p, q)}-\gamma_{\mathbf{k}+(n, m)} \gamma_{\mathbf{k}+(p, q)}\right)_{\substack{1 \leq n+m \leq k \\ 1 \leq p+q \leq k}} \geq 0, \quad \forall \mathbf{k} \in \mathbb{Z}_{+}^{2}$;
(c) $M_{\mathbf{k}}(k):=\left(\gamma_{\mathbf{k}+(n, m)+(p, q)}\right)_{\substack{0 \leq n+m \leq k \\ 0 \leq p+q \leq k}} \geq 0, \quad \forall \mathbf{k} \in \mathbb{Z}_{+}^{2}$.

We thus obtain:
Corollary 8. $W_{\alpha, \beta}$ is subnormal if and only if

$$
M_{\mathbf{k}}(\infty):=\left(\gamma_{\mathbf{k}+(m, n)+(p, q)}\right)_{\substack{m+n \geq 0 \\ p+q \geq 0}} \geq 0
$$

for $\mathbf{k}=(0,0),(1,0),(0,1),(1,1)$.
Proof. From Theorems 6 and 7, we can see that $W_{\alpha, \beta}$ is subnormal if and only if $M_{\mathbf{k}}(\infty):=\left(\gamma_{\mathbf{k}+(m, n)+(p, q)}\right)_{p+n \geq 0} \geq 0$ for all $\mathbf{k} \in \mathbb{Z}_{+}^{2}$. But since $M_{\mathbf{u}}(\infty)$ is a principal submatrix of one of $M_{\mathbf{k}}(\infty)$ for $\mathbf{k}=$ $(0,0),(1,0),(0,1),(1,1)$, it follows from well-known result in the matrix analysis which states that a principal submatrix of a positive matrix is positive.

Corollary 8 provide a solution of the Stieltjes full power moment problem. Recall one variable Stieltjes full power moment problem. In 1894 Thomas Jan Stieltjes (1856-1894) published an extremely influential paper: Recherches sur les fractions continues, Ann. Fac. Sci. Toulouse, 8, 1-122; 9, 5-47. He introduced what is now known as the Stieltjes integral with respect to an increasing function ϕ, the latter describing
a distribution of mass (a measure μ) via the convention that the mass in an interval $[a, b]$ is $\mu([a, b])=\phi(b)-\phi(a)$. This integral was used to solve the following problem which he called the moment problem:

Problem 9. Given $\gamma \equiv\left\{\gamma_{n}\right\}_{n=0}^{\infty}$, find necessary and sufficient conditions on γ for the existence of positive measure μ with supp $\mu \subset \mathbb{R}^{+}$ such that

$$
\begin{equation*}
\gamma_{n}=\int x^{n} d \mu(x) \quad(\forall n \geq 0) \tag{2.1}
\end{equation*}
$$

The number γ_{n} is called the nth moment of μ, and the sequence $\left\{\gamma_{n}\right\}$ is called the moment sequence of μ. Stieltjes was led to the Stieltjes moment problem above via a study of continued fractions. But now we can give an answer to the Problem 9 using Theorem 1.

Proposition 10. The following statements are equivalent:
(i)There exists positive measure μ on \mathbb{R}^{+}such that $\gamma_{n}=\int x^{n} d \mu(x) \quad(\forall n$ $\geq 0)$.
(ii) $\Lambda(p) \geq 0$ for all $p \geq 0$ on \mathbb{R}^{+}where $\Lambda(p):=\sum_{i=0}^{n} a_{i} \gamma_{i}$ for $p(x)=$ $\sum_{i=0}^{n} a_{i} x^{i}$.
(iii) $H(\infty):=\left(\begin{array}{ccc}\gamma_{0} & \gamma_{1} & \cdots \\ \gamma_{1} & \gamma_{2} & \cdots \\ \vdots & \vdots & \ddots\end{array}\right) \geq 0, H_{x}(\infty):=\left(\begin{array}{ccc}\gamma_{1} & \gamma_{2} & \cdots \\ \gamma_{2} & \gamma_{3} & \cdots \\ \vdots & \vdots & \ddots\end{array}\right) \geq 0$.

Proof. (i) \Longrightarrow (ii): Suppose there exist a positive measure μ with supp $\mu \subset \mathbb{R}_{+}$satisfying (2.1). Then we have

$$
\Lambda(p)=\sum_{i} a_{i} \gamma_{i}=\sum_{i} a_{i} \int x^{i} d \mu(x)=\int p(x) d \mu(x) \geq 0
$$

for all $p(x) \geq 0$ on \mathbb{R}_{+}.
(ii) \Longrightarrow (iii): Suppose $\Lambda(p) \geq 0$ for all $p \geq 0$ on \mathbb{R}^{+}. Let $p(x):=$ $\left|a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right|^{2}$ and $q(x):=x\left|a_{0}+a_{1} x+\cdots+a_{n} x^{n}\right|^{2}$. Then $p(x) \geq 0$ and $q(x) \geq 0$ on \mathbb{R}^{+}. Thus, $\Lambda(p)=\sum_{i, j}^{n} a_{i} \overline{a_{j}} \gamma_{i+j} \geq 0$ and $\Lambda(q)=\sum_{i, j}^{n} a_{i} \overline{a_{j}} \gamma_{i+j+1} \geq 0$. Since n and a_{i} are arbitrary, it follows that $H(\infty) \geq 0$ and $H_{x}(\infty) \geq 0$.
(iii) \Longrightarrow (i): Suppose $H(\infty) \geq 0$ and $H_{x}(\infty) \geq 0$. Since $H(\infty) \geq 0$, we can see that $\gamma_{0}>0$. Let $\gamma^{\prime} \equiv\left\{\gamma_{n}^{\prime}\right\}_{n=0}^{\infty}$ with $\gamma_{n}^{\prime}:=\frac{\gamma_{n}}{\gamma_{0}}$. Then $H(\infty) \geq 0$ and $H_{x}(\infty) \geq 0$ for γ^{\prime}. Now we can reproduce the weight sequence α form γ^{\prime} via $\alpha_{n}:=\sqrt{\frac{\gamma_{n+1}^{\prime}}{\gamma_{n}^{\prime}}}$. From Theorem 1, we can see that W_{α} is subnormal. Hence γ^{\prime} has a Berger measure ν. Therefore $\mu=\gamma_{0} \nu$.

The two-variable Stieltjes power moment problem states that:

Problem 11. Given $\gamma \equiv\left\{\gamma_{\mathbf{k}}\right\}_{\mathbf{k} \in \mathbb{Z}_{+}^{2}}$, find necessary and sufficient conditions on γ for the existence of positive measure μ with supp $\mu \subset \mathbb{R}_{+}^{2}$ such that

$$
\gamma_{\mathbf{k}}=\int x^{k_{1}} y^{k_{2}} d \mu(x, y) \quad\left(\forall \mathbf{k}:=\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}\right) .
$$

For given $\gamma \equiv\left\{\gamma_{\mathbf{k}}\right\}_{\mathbf{k} \in \mathbb{Z}_{+}^{2}}$, define a linear functional Γ_{γ} on $\mathbb{R}[x, y]$ by

$$
\Gamma_{\gamma}(p):=\sum_{i, j} a_{i j} \gamma_{i j},
$$

where $p(x, y)=\sum_{i, j} a_{i j} x^{i} y^{j}$. Then, from Corollary 8 , we have an answer to the two-variable Stieltjes power moment problem.

Proposition 12. Given $\gamma \equiv\left\{\gamma_{\mathbf{k}}\right\}_{\mathbf{k} \in \mathbb{Z}_{+}^{2}}$, the following statements are equivalent:
(i)There exists positive measure μ with supp $\mu \subset \mathbb{R}_{+}^{2}$ such that

$$
\begin{equation*}
\gamma_{\mathbf{k}}=\int x^{k_{1}} y^{k_{2}} d \mu(x, y) \quad\left(\forall \mathbf{k}:=\left(k_{1}, k_{2}\right) \in \mathbb{Z}_{+}^{2}\right) . \tag{2.2}
\end{equation*}
$$

(ii) $\Gamma_{\gamma}(p) \geq 0$ for all $p(x, y) \geq 0$ on \mathbb{R}_{+}^{2}.
(iii) $M_{\mathbf{k}}(\infty):=\left(\gamma_{\mathbf{k}+(m, n)+(p, q)}\right)_{\substack{m+n \geq 0 \\ p+q \geq 0}} \geq 0$ for $\mathbf{k}=(0,0),(1,0),(0,1)$, $(1,1)$.

Proof. (i) \Longrightarrow (ii): Suppose there exist a positive measure μ with supp $\mu \subset \mathbb{R}_{+}^{2}$ satisfying (2.2). Then we have

$$
\Gamma_{\gamma}(p)=\sum_{i, j} a_{i j} \gamma_{i j}=\sum_{i, j} a_{i j} \int x^{i} y^{j} d \mu(x, y)=\int p(x, y) d \mu(x, y) \geq 0
$$

for all $p(x, y) \geq 0$ on \mathbb{R}_{+}^{2}.
(ii) \Longrightarrow (iii): Suppose $\Gamma_{\gamma}(p) \geq 0$ for all $p(x, y) \geq 0$ on \mathbb{R}_{+}^{2}. Let $p(x, y):=$ $\left|a_{00}+a_{10} x+a_{01} y+\cdots+a_{n 0} x^{n}+a_{n-1,1} x^{n-1} y+\cdots+a_{0 n} y^{n}\right|^{2}$ and $q(x, y):=x p(x, y)$ and $r(x, y):=y p(x, y)$ and $s(x, y):=x y p(x, y)$. Then $p(x, y), q(x, y), r(x, y), s(x, y) \geq 0$ on \mathbb{R}_{+}^{2}. Thus, $\Gamma_{\gamma}(p)=\sum a_{i j} \overline{a_{k l}} \gamma_{i+k, j+l}$ $\geq 0, \Gamma_{\gamma}(q)=\sum a_{i j} \overline{a_{k l}} \gamma_{i+k+1, j+l} \geq 0, \Gamma_{\gamma}(r)=\sum a_{i j} \overline{a_{k l}} \gamma_{i+k, j+l+1} \geq 0$ and $\Gamma_{\gamma}(s)=\sum a_{i j} \overline{a_{k l}} \gamma_{i+k+1, j+l+1} \geq 0$. Thus, it follows that $M_{\mathbf{k}}(\infty) \geq 0$ for $\mathbf{k}=(0,0),(1,0),(0,1),(1,1)$.
(iii) \Longrightarrow (i): If $M_{\mathbf{k}}(\infty) \geq 0$ for $\mathbf{k}=(0,0),(1,0),(0,1),(1,1)$, then by Corollary 8 , we can construct a 2 -variable weighted shift $W_{\alpha, \beta}$ which is subnormal. Thus, it has the Berger measure μ with supp $\mu \subset \mathbb{R}_{+}^{2}$ satisfying (2.2).

For the truncated moment problem, the direct analogue of the equivalence $(i) \Longleftrightarrow(i i)$ above proposition need not hold. For example, let $\gamma: \gamma_{00}=\gamma_{10}=\gamma_{01}=\gamma_{20}=\gamma_{11}=1$ and $\gamma_{02}=2$. Then
(1) $\Gamma_{\gamma}(p) \geq 0$ for all $p(x, y) \geq 0$ with $\operatorname{deg} p \leq 2$.
(2) γ has no representing measure.
(3) $M(1)=\left(\begin{array}{lll}\gamma_{00} & \gamma_{10} & \gamma_{01} \\ \gamma_{10} & \gamma_{20} & \gamma_{11} \\ \gamma_{01} & \gamma_{11} & \gamma_{02}\end{array}\right)=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 2\end{array}\right) \geq 0$.

Next we consider the main theorem in [6]. Although [6, Theorem 1.6] deals with truncated complex moment problems, there is an entirely equivalent version for the case of two real variables, which we now state. Let $K_{\mathcal{P}}:=\left\{(x, y) \in \mathbb{R}^{2}: p_{i}(x, y) \geq 0, \forall p_{i} \in \mathcal{P}\right\}$ for $\mathcal{P} \equiv\left\{p_{1}, \cdots, p_{m}\right\} \subseteq$ $\mathbb{R}[x, y]$ and define k_{i} by $\operatorname{deg} p_{i}=2 k_{i}$ or $\operatorname{deg} p_{i}=2 k_{i}-1(1 \leq i \leq m)$.

In [6], Curto and Fialkow showed that the following statements are equivalent:
(i) There exists a rank $M(n)$-atomic representing measure μ for $\gamma^{(2 n)}$ with $\operatorname{supp} \mu \subseteq K_{\mathcal{P}}$.
(ii) $M(n) \geq 0$ and there is some flat (i.e., rank-preserving) extension $M(n+1)$ for which $M_{p_{i}}\left(n+k_{i}\right) \geq 0(1 \leq i \leq m)$.
In this case, the representing measure for $M(n+1)$ is rank $M(n)$ atomic, supported in $K_{\mathcal{P}}$, and with precisely $\operatorname{rank} M(n)-\operatorname{rank} M_{p_{i}}\left(n+k_{i}\right)$ atoms in $\mathcal{Z}\left(p_{i}\right):=\left\{(x, y) \in \mathbb{R}^{2}: p_{i}(x, y)=0\right\}(1 \leq i \leq m)$.

If we let $p_{1}(x, y):=x$ and $p_{2}(x, y):=y$, then $K_{\mathcal{P}}=\mathbb{R}_{+}^{2}, M_{p_{1}}\left(n+k_{1}\right)=$ $M_{x}(n+1)$ and $M_{p_{2}}\left(n+k_{2}\right)=M_{y}(n+1)$. Thus, we have an abstract solution of Problem 4(Odd case):

Theorem 13. If m is odd, then the following statements are equivalent:
(i) Ω_{m} has a subnormal completion.
(ii) There exists a rank $M(k)$-atomic representing measure μ for $\gamma\left(\Omega_{m}\right)$ supported in \mathbb{R}_{+}^{2} where $k:=\left[\frac{m+1}{2}\right]$.
(iii) $M\left(\Omega_{m}\right)=M(k) \geq 0$ and Ω_{m} admits a commutative extension $\widehat{\Omega}_{m+2}$ such that the moment matrix $M\left(\widehat{\Omega}_{m+2}\right)=M(k+1)$ is a flat extension of $M(k), M_{x}(k+1) \geq 0$ and $M_{y}(k+1) \geq 0$.

In this case, the Berger measure μ of a subnormal completion $\widehat{\Omega}_{\infty}$ of Ω_{m} has $\operatorname{rank} M(k)-\operatorname{rank} M_{x}(k+1)$ atoms in $\{0\} \times \mathbb{R}_{+}(\operatorname{resp} . \operatorname{rank} M(k)-$ $\operatorname{rank} M_{y}(k+1)$ atoms in $\left.\mathbb{R}_{+} \times\{0\}\right)$. We remark that the Theorem 13 resembles the Corollary 8 in the sense that $M=M_{00}, M_{x}=M_{10}, M_{y}=$ M_{01}.

In 1966, Stampfli [16] showed that $\alpha: \alpha_{0}<\alpha_{1}<\alpha_{2}$ has always subnormal completions, directly constructing the normal extension. It was highly nontrivial that time. But it is easy now from Theorem 1.

Similarly, we can give a a concrete criterion of the Problem 4 for the case $m=1$.

Theorem 14. Given $\Omega_{1}:=\left\{\left(\alpha_{\mathbf{k}}, \beta_{\mathbf{k}}\right):|\mathbf{k}| \leq 1\right\}$ satisfying $\beta_{10} \alpha_{00}=$ $\alpha_{01} \beta_{00}$, the following statement are equivalent:
(i) Ω_{1} has a subnormal completion;
(ii) Ω_{1} has a hyponormal completion;
(iii) $\left(\alpha_{10}^{2}-\alpha_{00}^{2}\right)\left(\beta_{01}^{2}-\beta_{00}^{2}\right) \geq\left(\alpha_{01} \beta_{10}-\alpha_{00} \beta_{00}\right)^{2}$;
(iv) $M(1):=\left(\begin{array}{lll}\gamma_{00} & \gamma_{01} & \gamma_{10} \\ \gamma_{01} & \gamma_{02} & \gamma_{11} \\ \gamma_{10} & \gamma_{11} & \gamma_{20}\end{array}\right)=\left(\begin{array}{ccc}1 & \alpha_{00}^{2} & \beta_{00}^{2} \\ \alpha_{00}^{2} & \alpha_{00}^{2} \alpha_{10}^{2} & \alpha_{00}^{2} \beta_{10}^{2} \\ \beta_{00}^{2} & \alpha_{00}^{2} \beta_{10}^{2} & \beta_{00}^{2} \beta_{01}^{2}\end{array}\right) \geq 0$.

Proof. See [12].

References

[1] A. Athavale, On joint hyponormality of operators, Proc. Amer. Math. Soc. 103 (1988), 417-423.
[2] J. Conway, The Theory of Subnormal Operators, Mathematical Surveys and Monographs, vol. 36, Amer. Math. Soc., Providence, 1991.
[3] R. Curto, Joint hyponormality: A bridge between hyponormality and subnormality, Proc. Symposia Pure Math. 51 (1990), 69-91.
[4] R. Curto and L. Fialkow, Solution of the truncated complex moment problem with flat data, Memoirs Amer. Math. Soc. no. 568, Amer. Math. Soc., Providence, 1996.
[5] R. Curto and L. Fialkow, Recursively generated weighted shifts and the subnormal completion problem, Integral Equations Operator Theory 17 (1993), 202-246.
[6] R. Curto and L. Fialkow, The truncated complex K-moment problem, Trans. Amer. Math. Soc. 352 (2000), 2825-2855.
[7] R. Curto and L. Fialkow, Flat extensions of positive moment matrices: Relations in analytic or conjugate terms, Oper. Theory Adv. Appl. 104 (1998), 59-82.
[8] R. Curto and L. Fialkow, Solution of the singular quartic moment problem, J. Operator Theory 48 (2002), 315-354.
[9] R. Curto, P. Muhly and J. Xia, Hyponormal pairs of commuting operators, Operator Theory: Adv. Appl. 35 (1988), 1-22.
[10] R. Curto, S.H. Lee and J. Yoon, k-hyponormality of multivariable weighted shifts, J. Funct. Anal. 229 (2005), 462-480.
[11] R. Curto, S.H. Lee and J. Yoon, Hyponormality and subnormality for powers of commuting pairs of subnormal operators, J. Funct. Anal. 245 (2007), 390-412.
[12] R. Curto, S.H. Lee and J. Yoon, A new approach to the 2-variable subnormal completion problem, submitted.
[13] Gellar and Wallen, Subnormal weighted shifts and the Halmos-Bram criterion, Proc. Japan Acad. 46 (1970), 375-378.
[14] N.P. Jewell and A.R. Lubin, Commuting weighted shifts and analytic function theory in several variables, J. Operator Theory 1 (1979), 207-223.
[15] J. Shohat and J. Tamarkin, The Problem of Moments, Math. Surveys I, Amer. Math. Soc., Providence, 1943.
[16] J. Stampfli, Which weighted shifts are subnormal?, Pacific J. Math. 17 (1966), 367-379.
*
Department of Mathematics Education
Sangmyung University
Seoul 110-743, Republic of Korea
E-mail: jilee@smu.ac.kr
**
Department of Mathematics
Chungnam University
Daejeon 305-764, Republic of Korea
E-mail: shlee@math.cnu.ac.kr

