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Abstract. In this paper, we give a new approach to solving the 2-variable subnormal

completion problem (SCP for short). To this aim, we extend the notion of recursively

generated weighted shifts, introduced by R. Curto and L. Fialkow, to 2-variable case. We

next provide ”concrete” necessary and sufficient conditions for the existence of solutions to

the 2-variable SCP with minimal Berger measure. Furthermore, a short alternative proof

to the propagation phenomena, for the subnormal weighted shifts in 2-variable, is given.

1. Introduction and Results

The notion of recursively generated weighted shifts, largely studied in the liter-
ature, is employed to solve various questions in operator theory. R. Curto and L.
Fialkow [3, 4] have used this concept to solve the Subnormal Completion Problem
(SCP for short) in one variable. In this paper, we extend this notion to 2-variables,
and we use it to provide a new approach to solve the open problem of 2-variable
SCP. A concrete solution to the minimal 2-variable SCP (see Section 4) is given as
well as an alternative proof for the propagation phenomena for subnormal 2-variable
weighted shifts.

First we recall some definitions and notations. A bounded linear operator T ∈
B(H) on a complex Hilbert space H is normal if TT ∗ = T ∗T , subnormal if T =
N |H, where N is normal and N(H) ⊆ H, and hyponormal if T ∗T − TT ∗ ≥ 0. The
n-tuple T ≡ (T1, . . . , Tn) is said to be normal if T is commuting and each Ti is
normal, and T is subnormal if T is the restriction of a normal n-tuple to a common
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invariant subspace.
For α ≡ {αn}∞n=0 a bounded sequence of positive real numbers (called weights),

let Wα : l2(Z+) → l2(Z+) be the associated unilateral weighted shift, defined by
Wαen := αnen+1, where {en}∞n=0 is the canonical orthonormal basis in l2(Z+).
Given k ∈ Z+, the moments of α of order k is given by

γk ≡ γk(α) := ∥wk
αe0∥2 =

{
1 if k = 0,

α2
0 . . . α

2
k−1 if k ≥ 1.

It is easy to see that Wα is never normal. In the case where Wα is subnormal,
Stampfli showed in [13] that a propagation phenomenon occurs which forces the
flatness of Wα, that is, if αk = αk+1 for some k ≥ 0, then αn = αn+1 for every
n ≥ 0.

Consider double-indexed positive bounded sequences α ≡ {αk}k∈Z2
+

and β ≡
{βk}k∈Z2

+
. We define in a similar way the 2-variable weighted shift T ≡ (T1, T2) act-

ing on the Hilbert space l2(Z2
+), associated with, α ≡ {αk}k∈Z2

+
and β ≡ {βk}k∈Z2

+

by

T1ek := αkek+ϵ1 and T2ek := βkek+ϵ2 ,

where ϵ1 := (1, 0) and ϵ2 := (0, 1). We recall here that, the vector space l2(Z2
+) is

canonically isometrically isomorphic to l2(Z+)⊗l2(Z+), equipped with its canonical
orthonormal basis {ek}k∈Z2

+
.

Clearly,

(1.1) T1T2 = T2T1 ⇔ βk+ϵ1αk = αk+ϵ2βk( for all k ∈ Z2
+).

Given k ≡ (k1, k2) ∈ Z2
+, the moment of (α, β) of order k is

(1.2)

γk := ∥T k1
1 T k2

2 e0∥2 =


1 if k = 0,

α2
(0,0) . . . α

2
(k1−1,0) if k1 ≥ 1 and k2 = 0,

β2
(0,0) . . . β

2
(0,k2−1) if k1 = 0 and k2 ≥ 1,

α2
(0,0) . . . α

2
(k1−1,0).β

2
(k1,0)

. . . β2
(k1,k2−1) if k1 ≥ 1 and k2 ≥ 1.

Conversely, one can recover the weights from the moments, by using the following
relations:

(1.3) αk =

√
γk+ϵ1

γk
and βk =

√
γk+ϵ2

γk
.

The presence of consecutive equal weights, of a 2-variable subnormal weighted
shift, leads to horizontal or vertical flatness (see Definition 3.4). Explicitly, if, for
some k1, k2 ≥ 1, α(k1,k2) = α(k1+1,k2) (resp. β(k1,k2) = β(k1,k2+1)), then α(k1,k2) =
α(1,1) (resp. β(k1,k2) = β(1,1)) for all k1, k2 ≥ 1. This result is known as propagation
phenomena. We give new short proof of this fact in Theorem 3.4.
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A characterization of subnormality for multivariable weighted shifts is given in
[10]. More precisely, T admits a commuting normal extension if and only if there
is a probability measure µ, which we call the Berger measure of T, defined on the
2-dimensional rectangle R = [0, ∥T1∥2]× [0, ∥T2∥2] such that

(1.4) γk =

∫
R

xk1yk2dµ(x, y), for all k ≡ (k1, k2) ∈ Z2
+.

A measure µ satisfies (1.4) is also known as representing measure for {γk}k∈Z2
+
.

With a given bi-sequence γ(2n) ≡ {γi}i∈Z2
+,|i|≤2n ≡ {γij}i+j≤2n, we associate

the moment matrix M(n) ≡ M(n)(γ2n), introduced by R. Curto and L. Fialkow
[5, 6], build as follows.

(1.5) M(n) =


M [0, 0] M [0, 1] . . . M [0, n]
M [1, 0] M [1, 1] . . . M [1, n]

...
...

. . .
...

M [n, 0] M [n, 1] . . . M [n, n]

 ,

where

(1.6) M [i, j] =


γi+j,0 γi+j−1,1 . . . γi,j

γi+j−1,1 γi+j−2,2 . . . γi−1,j−1

...
...

. . .
...

γi,j γi−1,j+1 . . . γ0,i+j

 .

Considering the following lexicographic order, to denote rows and columns of the
moment matrix M(n),

(1.7) 1, X, Y,X2, XY, Y 2, . . . , Xn, Xn−1Y, . . . ,XY n−1, Y n.

The matrix M(n) detects the positivity of the Riesz functional

Λγ(2n) : p(x, y) ≡
∑

0≤i+j≤2n

aijx
iyj −→

∑
0≤i+j≤2n

aijγij

on the cone generated by {p2 : p ∈ Rn[x, y]}, the sum of squares of polynomials
(sometimes abbreviated as SOS), where Rn[x, y] is the vector space of polynomials
in two variables with real coefficients and total degree less than or equal to n.

For reason of simplicity, we identify a polynomial p(x, y) ≡
∑

aijx
iyj with

its coefficient vector p = (aij) with respect to the basis of monomials of Rn[x, y]
in degree-lexicographic order (see (1.7)). Clearly M(n) acts on these coefficient
vectors as follows:

(1.8) < M(n)p, q >= qTM(n)p = Λγ(2n)(pq), p, q ∈ Rn[x, y].
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Furthermore, let g ∈ R[x, y] be with coefficient vector {gβ} and let g ∗ γ denote

the shifted vector in RZ2
+ whose α-th entry is (g ∗ γ)α :=

∑
β

gβγβ+α. The moment

matrix M(n)(g ∗ γ) = Mg(n+ [ 1+deg g
2 ]) is called the localizing matrix with respect

to γ and g. For example, given γ(4) ≡ {γij}i+j≤4, then

M(1) =

γ00 γ10 γ01
γ10 γ20 γ11
γ01 γ11 γ02

 ,M(2) =


γ00 γ10 γ01 γ20 γ11 γ02
γ10 γ20 γ11 γ30 γ21 γ12
γ01 γ11 γ02 γ21 γ12 γ03
γ20 γ30 γ21 γ40 γ31 γ22
γ11 γ21 γ12 γ31 γ22 γ13
γ02 γ12 γ03 γ22 γ13 γ04

 ,

Mx(2) =

γ10 γ20 γ11
γ20 γ30 γ21
γ11 γ21 γ12

 and My(2) =

γ01 γ11 γ02
γ11 γ21 γ12
γ02 γ12 γ03

 .

In the one variable case, the SCP was stated and solved abstractly by J. Stampfli
in [13]:

Problem 1.(One-Variable Subnormal Completion Problem)
Given m ≥ 0 and a finite collection of positive numbers Ωm = {αk}mk=0, find nec-
essary and sufficient conditions on Ωm to guarantee the existence of a subnormal
weighted shift whose initial weights are given by Ωm.

When m = 0 or m = 1 the solution can be given by the canonical completion

α0, α0, α0, . . . and α0 < α1, α1, . . ., with Berger measure µ := δα2
0
and µ :=

α2
0

α2
1
δα2

1
,

respectively. In [13], J. Stampfli showed that given α :
√
a,
√
b,
√
c with a < b < c,

there always exists a subnormal completion of α (this solves the case m = 2), but
for α :

√
a,
√
b,
√
c,
√
d, with a < b < c < d, such a subnormal completion may not

exist. The complete solution of the SCP in one variable was given by R. curto and
L. Fialkow [3], the explicit calculation requires recursively generated weighted shifts
(such shifts have finite atomic Berger measures).

We now state the 2-variable SCP:

Problem 2.(2-Variable Subnormal Completion Problem)
Given m ≥ 0 and a finite collection of pairs of positive numbers Ωm =
{(αk;βk)}|k|≤m satisfying (1.1) for all | k |≤ m (where | k |:= k1 + k2), find neces-
sary and sufficient conditions to guarantee the existence of a subnormal 2-variable
weighted shift whose initial weights are given by Ωm.

In [8], R. Curto, S. H. Lee and J. Yoon have introduced an approach to the
2-variable SCP based on positivity and rank-preserving extension of the moment
matrix, developed in [5, 6, 7]. Although this lead to an explicit criterion for SCP
with quadratic moment data (i.e., m = 1), the 2-Variable Subnormal Completion
Problem remains open. Recently, S. H. Lee and J. Yoon [11] found, by using the
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recursiveness, a necessary and sufficient conditions for the existence of 2-Variable
subnormal completion with minimal Berger measure for the case m = 2 ( i.e.,
rank M(1)-atomic Berger measure). We will provide , in Theorem 4.2, a complete
(and concrete) solution for the 2-Variable SCP with minimal Berger measure.

In the present paper, we will show that if a given, finite, collection of weights
Ωm admits a subnormal completion in 2-variable, then there exists a 2-variable sub-
normal weighted shift (solution of the SCP for Ωm) with moment sequence obey
to some recurrence relations, we shall refer to such shifts as 2-variable recursively
generated weighted shifts (see Definition 2.5). In Theorem 3.1, we will provide nec-
essary and sufficient conditions for the existence of 2-variable recursively generated
weighted shift completion, and thus a solution to the SCP in 2-variable. As ap-
plication, we provide a generalization of a recent result of S. H. Lee and J. Yoon
[11, Theorem 2.2]. More precisely, in Theorem 4.2 we give a concrete necessary
and sufficient conditions for the existence of a subnormal completion with minimal
Berger measure.

This paper is organized as follows. In Section 2, we introduce the recursively
generated weighted shifts and we exhibit some useful results. We devote Section 3
to provide a solution to the 2-Variable Subnormal Completion Problem (Theorem
3.1 ) and the phenomena propagation for subnormal weighted shifts. In section 4,
we solve the minimal SCP in 2-variable.

2. The 2-variable Recursively Weighted Shifts

We introduce below the notion of 2-variable weighted shifts, which will play a
central role in this paper, and we give some useful properties.

Definition 2.1. Let T ≡ (T1, T2) be a 2-variable weighted shift and let γ ≡
{γij}i,j∈Z+ be its associated moment sequence. A polynomial p(x, y) =

∑
i,j

pijx
iyj ∈

R[x, y] is said to be characteristic polynomial associated with T, or with γ, if

(2.1)
∑
i,j

pi,jγi+n,j+m = 0, for all n,m ∈ Z+.

Remark 2.2. If p is a characteristic polynomial associated with γ, then, for every
q ∈ R[x, y], the polynomial pq is also a characteristic polynomial. In particular, the
set of all characteristic polynomials associated with γ is an ideal in R[x, y].

The following proposition is an immediate consequence of relations (1.8) and
(2.1).

Proposition 2.3. Let γ ≡ {γij}i,j∈Z+ be a bi-indexed sequence and let p(x, y) ∈
R[x, y]. Then p is a characteristic polynomial of γ if and only if M(∞)(γ)p = 0.

Definition 2.4. A sequence γ ≡ {γij}i,j∈Z+ is said to be recursive double indexed
sequence (RDIS in short) if it has two characteristic polynomials p1, p2 ∈ R[x, y],
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with

(2.2)


p1(x, y) = xr+1 −

∑
i+j≤r

aijx
iyj

p2(x, y) = ys+1 −
∑

i+j≤s+1,j ̸=s+1

bi,jx
iyj ,

or in the symetric form

(2.3)


p1(x, y) = xr+1 −

∑
i+j≤r+1,i ̸=r+1

aijx
iyj

p2(x, y) = ys+1 −
∑

i+j≤s

bi,jx
iyj .

Without loss of generality, throughout this paper, we assume that the pair of
characteristic polynomials of the RDIS γ ≡ {γij}i,j∈Z+ is given in the form (2.2).

Definition 2.5. A 2-variable weighted shift is said to be recursively generated if
its associated moment sequence is a RDIS.

Let us show that RDIS are well defined. Consider a RDIS γ ≡ {γij}i,j≥0

associated with a pair of characteristic polynomials as in (2.2), that is, for all
n,m, e ∈ Z+ with n ≥ r and m ≥ s,

(2.4) γn+1,e =
∑

i+j≤r

aijγn−r+i,e+j and γe,m+1 =
∑

l+k≤s

blkγe+l,n−s+k.

A direct computation shows that

(2.5)

γn+1,m+1 =
∑

i+j≤r

aijγn−r+i,m+1+j (=
∑

l+k≤s

blkγn+1+l,m−s+k)

=
∑

i+j≤r,l+k≤s

aijblkγn−r+i+l,m−s+j+k.

Equation (2.5) gives the compatibility condition of the two relations in (2.4). Hence
the sequence γ ≡ {γij}i,j≥0 is well defined. The other case (i.e., when the charac-
teristic polynomial are defined as in (2.3)) is treated similarly.

Different pair of characteristic polynomials can be associated with the same
RDIS, as shown in the following example.

Example 1. Let us consider the bi-sequence γ ≡ {γij}i,j∈Z+ defined by γn,m =
a2n + b3m, where a and b are real numbers. The polynomials x2 − 4x− 1

2y+
9
2 and

y + 2x− 5 are two characteristic polynomials of γ. Indeed,

γn+2,m − 4γn+1,m − 1

2
γn,m+1 +

9

2
γn,m = a2n+2 + b3m − 4a2n+1 − 4b3m

− 1

2
a2n − 1

2
b3m+1 +

9

2
a2n +

9

2
b3m

= 0,
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and

γn,m+1 + 2γn+1,m − 5γm,n = a2n + b3m+1 + 2a2n+1 + 2b3m − 5a2n − 5b3m = 0.

On the other hand, we have

γn+2,m − 3γn+1,m + 2γn,m = a2n+2 + b3m − 3a2n+1 − 3b3m + 2a2n + 2b3m

= 0,

γn,m+2 − 4γn,m+1 + 3γn,m = a2n + b3m+2 − 4a2n − 4b3m+1 + 3a2n + 3b3m

= 0.

Hence (x2−3x+2; y2−4y+3) is, also, a pair of characteristic polynomials associated
with γ. (The last characteristic polynomials are analytic, i.e., (x2 − 3x + 2; y2 −
4y + 3) ∈ R[X]× R[Y ]).

Let γ ≡ {γij}i,j∈Z+ be a RDIS, we denote by Pγ (⊆ R[x, y] × R[x, y]) the
set of pair of characteristic polynomials associated with γ and we denote by Aγ

(⊆ R[X]×R[Y ]) the family of analytic, monic, characteristic polynomials associated
with γ.

Remark 2.6. The pair of characteristic polynomials (p1, p2) ∈ Pγ , together with
the initial conditions {γij} 0 ≤ i ≤ deg p1 − 1,

0 ≤ j ≤ deg p2 − 1.

, are said to define the sequence γ.

We use structural properties of moment matrices to get the following interesting
lemma.

Lemma 2.7. Let γ ≡ {γij}i,j∈Z+ be a bi-indexed sequence and let f, g, h ∈ R[x, y],
then

(2.6) fTM(∞)(γ)(gh) = (fg)TM(∞)(γ)h.

Proof. We write f =
∑
i1,i2

f(i1,i2)x
i1yi2 , g =

∑
j1,j2

g(j1,j2)x
j1yj2 and h =

∑
k1,k2

h(k1,k2)x
k1yk2 .

As the entry, of the infinite moment matrix M(∞)(γ), corresponding to the column
XnY m and the line X lY k is γn+l,m+k, we obtain

fTM(γ)(gh) = (
∑
i1,i2

f(i1,i2)x
i1yi2)TM(∞)(γ)(

∑
j1,j2,k1,k2

g(j1,j2)h(k1,k2)x
j1+k1yj2+k2)

=
∑

i1,i2,j1,j2,k1,k2

f(i1,i2)g(j1,j2)h(k1,k2)γi1+j1+k1,i2+j2+k2

= (fg)TM(γ)h,

which is the required result. 2

It follows that
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Proposition 2.8. Let γ ≡ {γij}i,j≥0 be a bi-indexed sequence and let M(∞)(γ) be
the associated infinite moment matrix. If M(∞)(γ) ≥ 0, Then, for any polynomial
p ∈ R[x, y] and any integer n ≥ 1, we have

(2.7) M(∞)(γ)pn = 0 =⇒ M(∞)(γ)p = 0.

Proof. If M(∞)(γ)p2 = 0, then 0 = M(∞)(γ)p2 = 1TM(∞)(γ)p2 = pTM(∞)(γ)p,
from (2.6); since M(∞)(γ) ≥ 0, we obtain M(∞)(γ)p = 0 and hence (2.7) holds for
n = 2. By induction, (2.7) remains valid for any power of 2. Now, ifM(∞)(γ)pn = 0
we choose r in such a way that r + k is a power of 2 to ensure that

M(∞)(γ)pn+r = (pr)TM(∞)(γ)pn = 0.

Which gives M(∞)(γ)p = 0. 2

Before continuing our investigations on RDIS, we recall the next result on
weighted r-generalized Fibonacci sequences {yA(n)}+∞

n=0 where the initial conditions
A ≡ {αn}r−1

n=0 ⊂ C are given and the sequence is associated with the characteristic
polynomial p(x) = xr−a1x

r−1− . . .−ar ∈ C[x]. It is also is the sequence generated
by the difference equation with initial values:

(2.8)

{
yA(n) = αn; n = 0, 1, . . . , r − 1,

yA(n+ r) = a1yA(n+ r − 1) + . . .+ aryA(n); n = r, r + 1, . . . .

We have

Theorem 2.9.([9, Theorem 1]) Let {yA(n)}+∞
n=0 be a RDIS and p(x) be the asso-

ciated polynomial as above, with p(x) =
k∏

i=1

(x− λi)
mi , (m1 + . . .+mk = r). Then

the difference equation (2.8) has r independent solution njλn
l (j = 0, . . . ,ml−1; l =

1, . . . , k). Moreover, any solution of (2.8) is of the form

yA(n) =
k∑

l=1

ml−1∑
j=0

el,jn
jλn

l ,

where el,j are solutions of the following system of r-equations

k∑
l=1

ml−1∑
j=0

el,jn
jλn

l = yA(n), n = 0, . . . , r − 1.

As observed in [2, Proposition 2.1], among all characteristic polynomials defining
S, there exists a unique monic characteristic polynomial p0 of minimal degree,
called the minimal characteristic polynomial, and which, moreover, divides every
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characteristic polynomial. The next proposition gives a generalization of this result
to the 2-variable case.

Proposition 2.10. For every RDIS γ ≡ {γij}i,j≥0, with Aγ ̸= ∅, there ex-
ists a unique pair of characteristic polynomials (pγ1 , p

γ
2) ∈ Aγ with minimal degree.

Moreover, for every (Q1, Q2) ∈ Aγ , the polynomials pγ1 and pγ2 divide Q1 and Q2,
respectively.

Proof. Let (Q1, Q2) ∈ Aγ , with Q1(x) = xr+1 − a0x
r − . . . − ar and Q2(y) =

ys+1 − b0y
s − . . .− bs.

Given an integer j ∈ Z+. Since, for all i ∈ Z+,

γi+r+1,j = a0γi+r,j + . . .+ arγi,j ,

then Q1 is a characteristic polynomial of the Fibonacci sequence γj ≡ {γij}i∈Z+ :

i → γij , hence there exists a minimal characteristic polynomial Q
(j)
1 , which divides

Q1. Thus Qγ
1 =

∧
j≥0

Q
(j)
1 , the smallest common multiple of {Q(j)

1 ; j ∈ Z+}, divides

Q1 and is a characteristic polynomial of γ.
Similarly, Given an integer i ≥ 0. Q2 is a characteristic polynomial for the

Fibonacci sequence γi ≡ {γij}j∈Z+ : j → γij , then there exists a minimal character-

istic polynomial Q
(i)
2 of γi, and hence Qγ

2 =
∧
i≥0

Q
(i)
2 is a characteristic polynomial

of γ, which divides Q2. We conclude that the pair of analytic characteristic poly-
nomials (Qγ

1 , Q
γ
2) provides a positive answer to the proposition. 2

In the following proposition, as well as in the remainder of this paper, we asso-
ciate every RDIS γ (with Aγ ̸= ∅) with its pair of minimal polynomials. The next
theorem, of independent interest, is a crucial point in our approach.

Theorem 2.11. Let γ ≡ {γij}i,j∈Z+ be a RDIS and let (p1, p2) = (pγ1 , p
γ
2) ∈ Aγ .

If M(∞)(γ) ≥ 0, then the polynomials p1 and p2 have distinct roots.

Proof. Let l = 1, 2 and let pl(x) =
m∏
i=1

(x−λi)
di , where λi ∈ C. We notice that since

pl(x) ∈ R[x, y], then if λi ̸∈ R, for some i, hence there exists j ̸= i such that λi = λj

and di = dj . Setting M =
m

max
i=1

di. Since pl is a characteristic polynomial of γ, then,

from Proposition 2.3,M(∞)(γ)
m∏
i=1

(x−λi)
di = 0 and henceM(∞)(γ)

m∏
i=1

(x−λi)
M =

0. By using Proposition 2.8, it follows that M(∞)(γ)
m∏
i=1

(x − λi) = 0. Hence, via

Proposition 2.3, the polynomial
m∏
i=1

(x−λi) is a characteristic polynomial of γ, which

divides pl. As pl is minimal, we deduce that pl(x) =
m∏
i=1

(x− λi), as desired. 2

In the next, we give an extension of Theorem 2.9 to 2-variables.
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Lemma 2.12. Let γ ≡ {γij}i,j∈Z+ be a RDIS and let (P1, P2) ∈ Aγ , with P1(x) =
k1∏
l=1

(x− λl)
ml and P2(y) =

k2∏
l=1

(y − βl)
nl , (λl, βl ∈ C). Then

(2.9) γij =

k1∑
a=1

ma−1∑
b=0

k2∑
c=1

nc−1∑
d=0

ea,b,c,di
bjdλi

aβ
j
c ,

where ea,b,c,d are determined by using the initial condition {γij}0≤i≤r−1,0≤j≤s−1.

Proof. Given an integer j ∈ Z+, the single sequence γj : i → γij is a general
Fibonacci sequence associated with P1, setting r := degP1. This implies, by virtue
of Theorem 2.9, that

(2.10) γij =

k1∑
a=1

ma−1∑
b=0

ea,b(j)i
bλi

a,

where ea,b are determined uniquely by the initial conditions {γij}0≤i≤r−1.
Since, for every i, the sequence j → γij is a general Fibonacci sequence associ-

ated with P2(x) = xs − p1x
s−1 − . . .− ps, then

γi,j+s − p1γi,j+s−1 − . . .− psγi,j = 0.

Hence, using (2.10), we obtain

(2.11)

k1∑
a=1

ma−1∑
b=0

(ea,b(j + s)− p1ea,b(j + s− 1)− . . .− psea,b(j))i
bλi

a = 0.

As i → ibλi
a (with b = 0, . . . ,ma − 1; a = 1, . . . , k1) are linearly independent, see

Theorem 2.9, then

ea,b(j + s)− p1ea,b(j + s− 1)− . . .− psea,b(j) = 0.

Since j is arbitrary, the sequences j → ea,b(j) (b = 0, . . . ,ma − 1; a = 1, . . . , k1)
are general Fibonacci sequences, associated with the characteristic polynomial P2.
Hence, for all b = 0, . . . ,ma − 1 and a = 1, . . . , k1, we obtain

(2.12) ea,b(j) =

k2∑
c=1

nc−1∑
d=0

ea,b,c,dj
dβj

c ,

where ea,b,c,d are determined by the initial conditions {ea,b(j)}0≤j≤s−1. We con-
clude, from (2.11) and (2.12), that

γij =

k1∑
a=1

ma−1∑
b=0

k2∑
c=1

nc−1∑
d=0

ea,b,c,di
bjdλi

aβ
j
c . 2
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By virtue of Theorem 2.11 and Lemma 2.12, we have the next corollary.

Corollarly 2.13. Let γ ≡ {γij}i,j∈Z+ be a RDIS, with M(∞)(γ) ≥ 0, and let
(P1, P2) ∈ Aγ . Then

(2.13) γij =

r+1∑
a=1

s+1∑
c=1

ea,cλ
i
aβ

j
c ,

where Z(P1) := {z ∈ C such that P (z, z) = 0} = {λ1, . . . , λr+1} and Z(P2) =
{β1, . . . , βs+1}.

The next lemma establishes, for a RDIS γ, a link between the positivity of
infinite moment matrix and that of the finite one.

Lemma 2.14. Let γ ≡ {γij}i,j∈Z+
be a RDIS and let (p1, p2) ∈ Pγ . Then

M(∞)(γ) ≥ 0 ⇐⇒ M(deg p1 + deg p2 − 2)(γ) ≥ 0.

Moreover, rankM(∞)(γ) = rankM(deg p1 + deg p2 − 2)(γ).

Proof. Let (p1, p2) be as in (2.2) and let H ∈ Rv+1[x, y], with v = r + s. First, we

will show that, for every e = 0, . . . , v+1, there exist some real numbers {α(e)
lk ; l, k ∈

Z+ with l + k ≤ v} such that

Λγ(x
eyv+1−eH) =

∑
l+k≤v

α
(e)
lk Λγ(x

lykH).

To this end we distinguish two cases.

(i) When e ≥ r + 1. We have, from Remark 2.2, Λγ(p1x
e−r−1yv+1−eH) = 0,

then Λγ(x
eyv+1−eH −

∑
i+j≤r

aijx
i+e−r−1yj+v+1−eH) = 0.

Hence

Λγ(x
eyv+1−eH) =

∑
i+j≤r

aijΛγ(x
i+e−r−1yj+v+1−eH)

=
∑

l+k≤v

α
(e)
lk Λγ(x

lykH),

with l = i+ e− r − 1, k = j + v + 1− e and al−e+r+1,k−v−1+e = α
(e)
lk .

(ii) When e ≤ r. It follows, from Remark 2.2, that Λ(p2x
eyv−s−eH) = 0. Since

p2 = ys+1 −
s+1∑
f=1

bf,s+1−fx
fys+1−f −

∑
i+j≤s

bijx
iyj , then

Λγ(x
eyv+1−eH−

s+1∑
f=1

bf,s+1−fx
f+eyv+1−e−fH−

∑
i+j≤s

bijx
i+eyj+v+1−eH) = 0.
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Hence,

(2.14)
Λγ(x

eyv+1−eH) = Λγ(
s+1∑
f=1

bf,s+1−fx
f+eyv+1−e−fH)

+Λγ(
∑

i+j≤s

bijx
i+eyj+v+1−eH).

In the first term of the right-hand expression of equation (2.14), the Riesz
functional Λγ is applied to a sum of monomials of total degree v+1 times H. With
the aim of lowering the degree of the associated polynomial, we employ the method
used in the case (i), for the monomials with power of x greater than r + 1 (i.e.,
f + e ≥ r+1). When f + e ≤ r+1, we reapply the technic of the case (ii) in order
to increase strictly the power of x. It follows that each time when applying case (ii)
the minimum power of x, of all monomials, increases strictly. Since we can decrease
the total degree of each monomial with power in x greater than or equal r + 1, by
applying the case (i), we write

Λγ(x
eyv+1−eH) =

∑
l+k≤v

α
(e)
lk Λγ(x

lykH).

Now we construct a m(v) × v-matrix Wv with successive rows defined by the
relation,

Pxeyv+1−e =
∑

l+k≤v

α
(e)
lk e(l,k),

where e = 0, . . . , v + 1 and {e(l,k); k + l ≤ v} the canonical basis of Rm(n).
Therefore, it is easy to show that:

M(v + 1)(γ) =

(
M(v)(γ) B

B∗ C

)
with B = M(v)(γ)Wv and C = B∗Wv. Since M(v)(γ) ≥ 0, then, by using
Smul’jan’s theorem [12] (see also Section 4), M(v + 1)(γ) ≥ 0 and rankM(v) =
rankM(v + 1). In the same way one can show that M(v + 2)(γ) ≥ 0 and
rank(v + 2) = rankM(v + 1) = rankM(v). And thus, by induction, we con-
clude that M(∞)(γ) ≥ 0 and rankM(v)(γ) = rankM(∞)(γ), as desired. 2

3. The 2-variable SCP and the propagation phenomena

In this section we involve the 2-variable recursively generated weighted shifts
to obtain a solution to the SCP in 2-variable. Also, a simple and new proof to the
propagation phenomena, for the 2-variable subnormal weighted shift, is given.

Theorem 3.1. Let Ωn := {(α(k1,k2), β(k1,k2)); k1 + k2 ≤ 2n} be a given collection

of weights obeying (1.1) and γ(2n+1) be the associated moment sequence, given by
(1.2). The following statements are equivalent.
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i) Ωn admits a 2-variable subnormal completion,

ii) Ωn admits a recursively generated 2-variable subnormal completion,

iii) There exists a RDIS γ ≡ {γij}i,j≥0 such that γ(2n+1) ⊂ γ and the matrices
M(deg p1+deg p2−2)(γ), Mx(deg p1+deg p2−1)(γ) and My(deg p1+deg p2−
1)(γ) are positive, where (p1, p2) ∈ Pγ .

Proof. First, let us show that i) ⇒ ii). If Ωn admits a 2-variable subnormal com-
pletion, then there is a Berger’s measure ν, supported in R2

+, such that

(3.1) γij =

∫
xiyjdν, i+ j ≤ 2n+ 1.

A result of C. Bayer and J. Teichmann in [1] states that if a finite bi-sequence of
positive numbers {γij}0≤i+j≤2n has a probability measure verifies (3.1), supported
in R2

+, then it has a finitely atomic positive measure µ verify the same relation
and supported, also, in R2

+. Write suppµ ⊂ {λ1, λ2, . . . , λr} × {β1, β2, . . . , βs},
where λ1, λ2, . . . , λr and β1, β2, . . . , βs are real numbers. It is easy to see that∫
xi+1−ryj

r∏
k=1

(x−λk)dµ =
∫
xiyj+1−s

s∏
k=1

(x−βk)dµ = 0, for all i ≥ r−1 and j ≥

s − 1. Then µ is a representing measure (that is, µ satisfies the relation (1.4)) for
the RDIS γ ≡ {γij}i,j≥0, defined by the initial conditions {γij} 0 ≤ i ≤r − 1,

0 ≤ j ≤s − 1.

and by

the following linear recurrence relations:

(3.2) γi+1,j =

r−1∑
n=0

anγi−n,j and γi,j+1 =

s−1∑
m=0

bmγi,j−m,

for all i ≥ r − 1 and j ≥ s− 1, where

(3.3)


ak−1 = (−1)k−1

∑
1≤i1<i2<...<ik≤r

λi1λi2 . . . λik ,

bk−1 = (−1)k−1
∑

1≤i1<i2<...<ik≤s

βi1βi2 . . . βik .

Remark that xr−
r−1∑
n=0

anx
r−1−n =

r∏
k=1

(x−λk) and xs−
s−1∑
n=0

bnx
s−1−n =

s∏
k=1

(x−βk).

Hence γ is a RDIS admitting a Berger’s measure, and thus the recursively generated
2-variable subnormal completion associated with γ gives a positive answer to the
SCP associated with Ωn.

To show that ii) ⇒ iii), it suffices to remark that if Ωn admits a recursively gen-
erated 2-variable subnormal completion, then there exists a finite Berger’s measure
µ and a RDIS γ ≡ {γij} such that γ(2n) ⊂ γ and

∫
xiyjdµ = γij , for all i, j ∈ Z+.

Hence, for every Q ∈ R[x, y] with degQ ≤ deg p1 + deg p2 − 2, we have

QTM(p1 + deg p2 − 2)(γ)Q =

∫
Q2dµ ≥ 0.
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Therefore M(p1 + deg p2 − 2)(γ) ≥ 0. Similarly, let H ∈ R[x, y] be with degH ≤
deg p1 + deg p2 − 2, since µ is a positive measure supported in R2

+, we get

HTMx(p1 + deg p2 − 1)(γ)H =

∫
xH2dµ ≥ 0

and

HTMy(p1 + deg p2 − 1)(γ)H =

∫
yH2dµ ≥ 0.

Hence Mx(p1 + deg p2 − 1)(γ) and My(p1 + deg p2 − 1)(γ) are positive.
It remains to prove the implication iii) ⇒ i). From Lemma 2.14 it follows that

M(∞)(γ) has finite rank, then there exists an integer n (resp., an integer m) such
that, in the matrix M(∞)(γ), the column Xn+1 (resp., the column Y m+1) is a
linearly combination of the columns 1, X, . . . ,Xn (resp., the columns 1, Y, . . . , Y m).
So we write

Xn+1 = α0X
n + . . .+ an1 and Y m+1 = β0Y

m + . . .+ bm.

Hence, for every i, j ∈ Z+, we have{
(XiY j)TM(∞)(γ)Xn+1 = (XiY j)M(∞)(γ)(a0X

n + . . .+ an1)

(XiY j)TM(∞)(γ)Y m+1 = (XiY j)M(∞)(γ)(b0Y
m + . . .+ bm1),

that is, {
γi+n+1,j = a0γi+n,j + . . .+ anγi,j

γi,j+m+1 = b0γi,j+m + . . .+ bmγi,j .

Setting Q1(x) = a0x
n+. . .+an and Q2(y) = b0y

m+. . .+bm, we have (Q1, Q2) ∈ Aγ .
Since M(deg p1 + deg p2 − 2)(γ) ≥ 0, then, via Lemma 2.14, M(∞)(γ) ≥ 0 and
thus there exits, by using Theorem 2.11, a pair of minimal analytic characteristic

polynomials (H1,H2) ∈ Aγ with distinct roots, writing H1(x) =
r+1∏
l=1

(x − λl) and

H2(x) =
s+1∏
l=1

(y − βl), where λl, βl ∈ C.

Hence, via Corollary 2.13,

γij =

r+1∑
a=1

s+1∑
c=1

ea,cλ
i
aβ

j
c , for all i, j ∈ Z+,

and thus the measure µ =
r+1∑
a=1

s+1∑
c=1

ea,cδ(λa,βc) (Here, δ(λa,βc) is the Dirac measure at

(λa, βc) ∈ R2, having mass (λa, βc) at x and mass 0 elsewhere) verifies

γij =

∫
xiyjdµ, for all i, j ∈ Z+.
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We will show that µ is a Berger measure, that is, µ is a positive measure
supported in R2

+, which implies that γ is a moment sequence of some 2-variable
subnormal weighted shifts, so that Ωn admits a 2-variable subnormal completion.

Let Iµ = {(a, b) such that ea,c ̸= 0} and let

(3.4) L(λi,βj)(x, y) =
∏

0 ≤ l ≤ r + 1
l ̸= i

(
x− λi

λl − λi
)

∏
0 ≤ k ≤ s + 1

k ̸= j

(
y − βj

λk − λj
)

Clearly

(3.5) L(λi,βj)(x, y) =

{
1 if (i, j) = (l, k),

0 if (i, j) ̸= (l, k).

Thus, for every (a, b) ∈ Iµ, we have

ea,c =

∫
| L(λa,βc) |

2 dµ = LT
(λa,βc)

M(∞)(γ)L(λa,βc) ≥ 0.

and then ea,c > 0, because ea,c ∈ Iµ. Therefore, µ is a positive measure.
It remains to show that (λa, βb) ∈ R2

+, for all (a, b) ∈ Iµ. To this aim, let
(a, b) ∈ Iµ, we have

ea,cλa =

∫
| L(λa,βc) |

2 xdµ = LT
(λa,βc)

Mx(∞)(γ)L(λa,βc) ≥ 0

and

ea,cβc =

∫
| L(λa,βc) |

2 ydµ = LT
(λa,βc)

My(∞)(γ)L(λa,βc) ≥ 0.

Since ea,c > 0, we deduce that (λa, βc) ∈ R2
+, as desired. 2

The following corollary, of Theorem 3.1, characterizes subnormal recursively
generated 2-variables weighted shifts.

Crollary 3.2. Let T ≡ (T1, T2) be a recursively generated 2-variable weighted shift
and let γ ≡ {γij}i,j≥0 be the associated moment sequence, with (P1, P2) ∈ Aγ . Then
T is subnormal if and only if M(deg(P1) + deg(P2)− 2)(γ) ≥ 0.

In particular, we have

Crollary 3.3. Every collection of positive numbers α(0,0), β(0,0), α(0,1), β(1,0), such
that β(1,0)α(0,0) = α(0,1)β(0,0), admits a subnormal completion.

Proof. Let {γij}0≤i,j≤1 be the collection of moments associated with ω ≡
{α(0,0), β(0,0), α(0,1), β(1,0)}, given by (1.2), and let γ ≡ {γij}i,j∈Z+ be the RDIS
defined by the initial conditions {γij}0≤i,j≤1 and by the pair of, minimal, ana-
lytic characteristic polynomials (P1, P2). We set P1(X) = (X − λ0)(X − λ1) and
P2(X) = (X − β0)(X − β1), with 0 ≤ λ0 ≤ λ1 and 0 ≤ β0 ≤ β1.



726 K. Idrissi and E. H. Zerouali

The measure µ = C00δ(λ0,β0) + C10δ(λ1,β0) + C01δ(λ0,β1) + C11δ(λ1,β1) is a rep-
resenting measure for γ if and only if (Cij)0≤i,j≤1 are nonnegative and satisfy the
following linear system of 4 equations

C00 + C10 + C01 + C11 = γ00,

C00β0 + C10β0 + C01β1 + C11β1 = γ01,

C00λ0 + C10λ1 + C01λ0 + C11λ1 = γ10,

C00β0λ0 + C10β0λ1 + C01β1λ0 + C11β1λ1 = γ11.

Since the determinant of the preceding system is∣∣∣∣∣∣∣∣
1 1 1 1
β0 β0 β1 β1

λ0 λ1 λ0 λ1

β0λ0 β0λ1 β1λ0 β1λ1

∣∣∣∣∣∣∣∣ = −((λ1 − λ0)(β1 − β0))
2 ̸= 0,

we obtain the existence of {C00, C10, C01, C11}. Thus for the existence of T ≡
(T1, T2) a subnormal completion of {γij}0≤i,j≤1 it suffices show that {Cij}0≤i,j≤1

can be positive.
The numbers C00, C10, C01 and C11 are given by

C00 = γ11−λ1γ01−β1γ10+λ1β1

(λ1−λ0)(β1−β0)
,

C01 = −γ11+λ1γ01+β0γ10−λ1β0

(λ1−λ0)(β1−β0)
,

C10 = −γ11+λ0γ01+β1γ10−λ0β1

(λ1−λ0)(β1−β0)
,

C11 = γ11−λ0γ01−β0γ10+λ0β0

(λ1−λ0)(β1−β0)
.

Direct computations show that C00, C10, C01 and C11 are positive numbers pre-
cisely when,

(6)


max{2γ10, 2γ11

γ01
} ≤ λ1,

max{2γ01, 2γ11

γ10
} ≤ β1,

0 ≤ λ0 ≤ min{ γ11

2γ01
, γ10

2 },
0 ≤ β0 ≤ min{γ01

2 , γ11

2γ10
}.

Therefore it suffices to choose the roots of the polynomials p1 and p2 obeying
(6). 2

We employ Berger’s Theorem and Equality (1.3) to give a simple proof to the
propagation phenomena for 2-variable subnormal weighted shifts.

Definition 3.4. A 2-variable weighted shift T ≡ (T1, T2) is horizontally flat ( resp.
vertically flat) if α(k1,k2) = α(1,1), for all k1, k2 ≥ 1 (resp. β(k1,k2) = β(1,1)).

Theorem 3.5. Let T ≡ (T1, T2) be a subnormal 2-variable weighted shift associated
with the weight sequences {αk}k∈Z2

+
and {βk}k∈Z2

+
. If α(k1,k2) = α(k1+1,k2) for some
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k1, k2 ≥ 1 (resp. β(k1,k2) = β(k1,k2+1)), then T is horizontally flat (resp. vertically
flat).

Proof. Let γ ≡ {γij}i,j≥0 be the moment sequence of T, see (1.2). Given
an arbitrary number n0 ≥ max(k1 + 1, k2), let γ(n0) ≡ {γij}i,j≤n0 be a trun-
cated subsequence of γ. Since γ admits a Berger measure, then, via Tchakaloff’s
Theorem [1], there exists a finite supported Berger measure µ of γ(n0) , write
µ =

∑
0 ≤ i ≤ p,
0 ≤ j ≤ q.

ρi,jδ(λi,ϑj). Notice that {ϑj ; 0 ≤ j ≤ q} ̸= {0} because the moments of

the subnormal weighted shift are strictly positive.
Since α(k1,k2) = α(k1+1,k2), then it follows from (1.3) that

γ(k1+1,k2)

γ(k1,k2)
=

γ(k1+2,k2)

γ(k1+1,k2)
,

hence

(
∑

0 ≤ i ≤ p,
0 ≤ j ≤ q.

ρijλ
k1+1
i ϑk2

j )2 = (
∑

0 ≤ i ≤ p,
0 ≤ j ≤ q.

ρijλ
k1
i ϑk2

j )(
∑

0 ≤ i ≤ p,
0 ≤ j ≤ q.

ρijλ
k1+2
i ϑk2

j ),

that is, ∑
0 ≤ i < k ≤ p,
0 ≤ j, h ≤ q.

ρijρhk(λi − λk)
2λk1

i λk1

k ϑk2
j ϑk2

h = 0.

We deduce that λi = λk whenever λi.λk ̸= 0, and thus

γnl = λn
1 (

∑
0≤j≤q

ρjlϑ
l
j), for all n, l ≤ n0.

Since n0 is arbitrary, then

α(n,m) =

√
γ(n+1,m)

γ(n,m)
=

√
γ(2,1)

γ(1,1)
= α(1,1), for all n,m ∈ N∗.

The vertically flatness can be proved analogously. 2

4. The Minimal 2-variable SCP

Given an integer n ≥ 0, let Ωn := {(α(k1,k2), β(k1,k2)); k1 + k2 ≤ 2n} be a

given collection of weight obeying (1.1) and let γ(2n+1) ≡ {γij}i+j≤2n+1 be the
corresponding moment sequence given by (1.2). We say that Ωn admits a minimal
2-variable subnormal completion if it has a subnormal completion with rankM(n)-
atomic Berger measure.

For n = 1, a characterization of weights admitting minimal 2-variable subnormal
completion is given by S. H. Lee and J. Yoon [11]. In this section we give the
complete solution of this problem.
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Recall that, an extension of M(n)(γ(2n)) is a block matrix of the form

(4.1) M =

(
M(n)(γ(2n)) B

B∗ C

)
.

A theorem of Smul’jan [12] shows that M(n)(γ(2n)) admits a positive extension in
the form of moment matrix if, and only if,

i) M(n) ≥ 0,

ii) there exists a matrix W such that B = AW ,

iii) C ≥ B∗W ,

iv) C is a Hankel (n+ 2)× (n+ 2) matrix.

Moreover, M(n)(γ(2n)) admits a flat extension, or M is flat, if, and only if, C =
B∗W . Notice that the condition iv) serves only to ensure that M is a moment
matrix, see (1.5) and (1.6). If the conditions i)–iv) are satisfied, we set M ≡
M(n + 1)(γ̂(2n+2)), where γ(2n) ⊆ γ̂(2n+2), i.e., γij = γ̂ij for all i + j ≤ 2n. To
simplify our notations, we set γ(2n+2) = γ̂(2n+2).

Observe that if M(n+1)(γ(2n+2)) ≡ M(n+1) is flat (that is, rankM(n+1) =
rankM(n)), then every column of M(n + 1), indexed by a monomial of degree
n+1, is a linear combination of columns indexed by monomials of degree less than
or equal to n. Explicitly, the columns in M(n+ 1) satisfies

(4.2) Xn+1−eY e =
∑

i+j≤n

a
(e)
ij XiY j with a

(e)
ij ∈ R and e = 0, . . . , n+ 1.

Hence

(X lY k)TM(n+ 1)Xn+1−eY e =
∑

i+j≤n

a
(e)
ij (X lY k)TM(n+ 1)XiY j ,

for (l + k ≤ n+ 1), that is

(4.3) γn+1−e+l,e+k =
∑

i+j≤n

a
(e)
ij γi+l,j+k (e = 0, . . . , n+ 1 and l + k ≤ n+ 1).

Setting PXn+1−eY e(x, y) =
∑

i+j≤n

a
(e)
ij xiyj .

Lemma 4.1. Let γ(2n+2) ≡ {γij}i+j≤2n+2 be a finite collection of non negative
numbers such that rankM(n + 1) = rankM(n) and let PXn+1−eY e be as above.
Then, for all e ∈ {0, . . . , n+1}, the polynomial xn+1−eye −PXn+1−eY e is a charac-
teristic one of the RDIS defined by the initial conditions {γij}i,j≤n and by the pair
of characteristic polynomials (xn+1 − PXn+1 , yn+1 − PY n+1).

Proof. Let γ ≡ {γij}i,j∈Z+ be a RDIS defined by the initial conditions {γij}i,j≤n
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and by the pair of characteristic polynomials (xn+1 − PXn+1 , yn+1 − PY n+1). Cor-
responding to the sequence γ, the Riesz functional Λ : R[x, y] → R defined by
Λ(

∑
i,j

pijx
iyj) =

∑
i,j

pijγij . Then , for all a, b ∈ Z+, we have

(4.4) Λ(xayb(xn+1 − PXn+1)) = Λ(xayb(yn+1 − PY n+1)) = 0.

Let e ∈ {0, . . . , n+ 1} be a fixed integer, we will show that xn+1−eye − PXn+1−eY e

is a characteristic polynomial of γ, that is, for all a, b ∈ Z+,

(4.5) Λ(xayb(xn+1−eye − PXn+1−eY e)) = 0.

We distinguish two cases;

1) a+ b ≤ n+1, then (4.3) implies that Λ(xa+n+1−eyb+e) = Λ(xaybPXn+1−eY e)
and hence (4.5) is verified.

2) a+ b = n+ 2, we show first that

(4.6) Λ(xfygQk) = 0 for all f + g ≤ n+ 1,

where Qk = yPXn+1−kY k − xPXn−kY k+1 and k ∈ {0, . . . , n+ 1}.

For f + g ≤ n, we have

(4.7)

Λ(xfygQk) = Λ(xfyg(yPXn+1−kY k − xPXn−kY k+1))

= Λ(xfyg+1PXn+1−kY k − xf+1ygPXn−kY k+1))

= Λ(xf+n+1−kyg+1+k − xf+1+n−kyg+k+1), due to (4.3),

= 0.

For f + g = n + 1, since degQk ≤ n + 1, and according to (4.3), we de-
rive that Λ(xfygQk) = Λ(PXfY gQk). As degPXfY g ≤ n, then (4.7) implies that
Λ(PXfY gQk) = 0, and hence Λ(xfygQk) = 0 (for all f + g ≤ n+ 1).

Now we consider the case a+ b = n+ 2, which we split in two subcases.
i) If a ≥ e: according to (4.6), we have

Λ(xa−eyb+ePXn+1) = Λ(xa−e+1yb+e−1PXnY )
= . . . = Λ(xaybPXn+1−eY e)

Thus

(4.8)

0 = Λ(xa−eyb+ePXn+1)− Λ(xaybPXn+1−eY e)

= Λ(xa−e+n+1yb+e)− Λ(xaybPXn+1−eY e), by applying (4.4),

= Λ(xa+n+1−eyb+e − xaybPXn+1−eY e)

= Λ(xayb(xn+1−eye − PXn+1−eY e)).
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ii) If a ≤ e: since a+ b = n+2, then b+ e ≥ n+1 and b+ e ≥ n+1. According to
(4.7), we have

Λ(xaybPXn+1−eY e) = Λ(xa+1yb−1PXn−eY e+1)
= . . . = Λ(xa+n+1−eyb−n−1+ePY n+1)

.

Hence

(4.9)

0 = Λ(xa+n+1−eyb−n−1+ePY n+1)− Λ(xaybPXn+1−eY e)

= Λ(xa+n+1−eyb+e)− Λ(xaybPXn+1−eY e), due to (4.4),

= Λ(xa+n+1−eyb+e − xaybPXn+1−eY e)

= Λ(xayb(xn+1−eye − PXn+1−eY e)).

Therefore, we conclude that

(4.10) Λ(xayb(xn+1−eye − PXn+1−eY e)) = 0, for all a+ b ≤ n+ 2.

By induction, we obtain Λ(xayb(xn+1−eye −PXn+1−eY e)) = 0, for all a, b ∈ Z+. 2

Now we are able to give a concrete solution to the minimal 2-variable SCP. To
this aim, let γ(2n) ≡ {γi}i∈Z2

+,|i|≤2n ≡ {γij}i+j≤2n be a given bi-sequence and let

M [i, j] (i, j = 0, 1, . . . , n) be as in (1.6). In the next theorem, we denote by B the
following matrix

B ≡ B(n+ 1) :=


M [0, n+ 1]

...
M [n− 1, n+ 1]
M [n, n+ 1]

 .

Theorem 4.2. Let Ωn := {(α(k1,k2), β(k1,k2)); k1 + k2 ≤ 2n} be a given collection

of weights obeying (1.1) and let γ(2n+1), M(n), Mx(n), My(n), B and Pxn+1−iyi

(i = 0, . . . , n + 1) be as above, with RangB ⊆ RangM(n) and M(n), Mx(n) and
My(n) are positive. Then Ωn admits a minimal subnormal completion if and only
if

(4.11) PT
xn+1−jyjM(n)Pxn+1−iyi = PT

xn−jyj+1M(n)Pxn+2−iyi−1

for all integers i and j with 0 ≤ j ≤ n− 1 and 2 + j ≤ i ≤ n+ 1.

Proof. Let m ≡ m(n) denote the number of rows (or columns) in M(n). Adopting
the notation in (4.1), with B is a m × (n + 1) matrix. Observe that, the sequence
γ(2n+1) fills only the matrices M(n) and B. We are looking for new numbers
(entries) for the matrix C in order that M be a flat moment matrix.

Let the rows Xn+1−jY j , columns Xn+1−iY i (i, j = 0, . . . , n + 1) entry of the
matrix M be equal to PT

xn+1−jyjM(n)Pxn+1−iyi (i.e., C = (M(n)W )∗W ). With this

completion, M becomes a flat completion of M(n).
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Let us show that M is a moment matrix, that is, C is Hankel. The relation
(4.11) implies that the upper left triangular part of the matrix C is Hankel type.
Since M(n) is symmetric, then C is also symmetric, and thus C = (M(n)W )∗W
is a Hankel matrix. Setting M = M(n + 1)(γ(2n+2)). It follows, from Lemma
4.1, that there exists a DIRS γ such that rankM(n) = rankM(∞)(γ) (where
M(n) = M(n)(γ(2n)) = M(n)(γ)).

We show now that rankMx(n + 1)(γ) = rankMx(∞)(γ) and rankMy(n +
1)(γ) = rankMy(∞)(γ). We prove first that the columns in Mx(n + 2) verify

the relation XeY n+1−e =
∑

i+j≤n

a
(e)
ij XiY j(= Pxeyn+1−e(X,Y )). We have, for all

a+ b ≤ n+ 1,

(XaY b)TMx(n+ 2)(γ)(XeY n+1−e − Pxeyn+1−e(X,Y ))

= < Mx(n+ 2)(γ)(xeyn+1−e − Pxeyn+1−e), xayb >, see (1.8),

= < M(n+ 1)(γ)(xeyn+1−e − Pxeyn+1−e), xa+1yb >

=0, since xeyn+1−e − Pxeyn+1−e is a characteristic polynomial of γ.

Hence Mx(n + 2)(γ)(XeY n+1−e) = Mx(n + 2)(γ)(Pxeyn+1−e(X,Y )). Since
degPxeyn+1−e ≤ n, then rankMx(n + 1)(γ) = rankMx(n + 2)(γ), and thus we
obtain, by induction, rankMx(n + 1)(γ) = rankMx(∞)(γ). Similarly, one shows
that rankMy(n+1)(γ) = rankMy(∞)(γ). Since Mx(n+1)(γ) and My(n+1)(γ) are
positive, then, via Schmul’jan’s theorem, Mx(∞)(γ) and My(∞)(γ) are positive.

Let (p1, p2) ∈ Aγ . We conclude, from above, that M(deg p1 + deg p2 − 2)(γ),
My(deg p1 + deg p2 − 1)(γ) and My(deg p1 + deg p2 − 1)(γ) are positive. Now,
by applying Theorem 3.1, Ωn admits a subnormal completion with finite Berger
measure, say µ =

∑
(a,b)∈Iµ

e(a,b)dδ(λa,βb) (with e(a,b) ̸= 0, for all (a, b) ∈ Iµ).

It remain to show that card suppµ = rankM(n)(γ). Let ζ(λa,βc) := (1, λa, βc,

λ2
a, λaβc, β

2
c , . . .) = (λi

aβ
j
c)(i,j)∈Z2

+
∈ RZ2

+ . By using Corollary 2.13, the infinite mo-

ment matrix can be formulated as follows M(∞)(γ) =
∑

(a,c)∈Iµ

e(a,c)ζ(λa,βc)ζ
T
(λa,βc)

,

then

rankM(∞)(γ) ≤ card Iµ = card suppµ.

On the other hand, Let L(λa,βc) be as in (3.5) and let

M(∞)(γ)
∑

(a,c)∈Iµ

κ(a,c)
1

√
e(a,c)

L(λa,βc) = 0,

where {κ(a,c)}(a,c)∈Iµ are real numbers (not all zero).

Since 1√
e(i,j)

LT
(λi,βj)

M(∞)(γ) 1√
e(n,m)

L(λn,βm) is 1 if (i, j) = (n,m) and equal to
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0 if (i, j) ̸= (n,m), then

0 = (
∑

(a,c)∈Iµ

κ(a,c)
1

√
e(a,c)

L(λa,βc))
TM(∞)(γ)

∑
(a,c)∈Iµ

κ(a,c)
1

√
e(a,c)

L(λa,βc)

=
∑

(a,c)∈Iµ

κ2
(a,c),

a contradiction. Hence card suppµ ≤ rankM(∞)(γ), and thus card suppµ =
rankM(n)(γ), as desired. 2
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