• Title/Summary/Keyword: sublinear function

Search Result 7, Processing Time 0.025 seconds

SOME MULTI-SUBLINEAR OPERATORS ON GENERALIZED MORREY SPACES WITH NON-DOUBLING MEASURES

  • Shi, Yanlong;Tao, Xiangxing
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.907-925
    • /
    • 2012
  • In this paper the boundedness for a large class of multi-sublinear operators is established on product generalized Morrey spaces with non-doubling measures. As special cases, the corresponding results for multilinear Calder$\acute{o}$n-Zygmund operators, multilinear fractional integrals and multi-sublinear maximal operators will be obtained.

Anisotropic Variable Herz Spaces and Applications

  • Aissa Djeriou;Rabah Heraiz
    • Kyungpook Mathematical Journal
    • /
    • v.64 no.2
    • /
    • pp.245-260
    • /
    • 2024
  • In this study, we establish some new characterizations for a class of anisotropic Herz spaces in which all exponents are considered as variables. We also provide a description of these spaces based on bloc decomposition. As an application, we investigate the boundedness of certain sublinear operators within these function spaces.

Characterization of Weak Asplund Space in Terms of Positive Sublinear Functional

  • Oh, Seung Jae
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.1 no.1
    • /
    • pp.71-76
    • /
    • 1988
  • For each continuous convex function ${\phi}$ defined on an open convex subset $A_{\phi}$ of a Banach space X, if we define a positively homogeneous sublinear functional ${\sigma}_x$ on X by ${\sigma}_x(y)=\sup{\lbrace}f(y)\;:\;f{\in}{\partial}{\phi}(x){\rbrace}$, where ${\partial}{\phi}(x)$ is a subdifferential of ${\phi}$ at x, then we get the following characterization theorem of Gateaux differentiability (weak Asplund) sapce. THEOREM. For every ${\phi}$ above, $D_{\phi}={\lbrace}x{\in}A\;:\;\sup_{||u||=1}\;{\sigma}_x(u)+{\sigma}_x(-u)=0{\rbrace}$ contains dense (dense $G_{\delta}$) subset of $A_{\phi}$ if and only if X is a Gateaux differentiability (weak Asplund) space.

  • PDF

SADDLE POINT AND GENERALIZED CONVEX DUALITY FOR MULTIOBJECTIVE PROGRAMMING

  • Yan, Zhao-Xiang;Li, Shi-Zheng
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.227-235
    • /
    • 2004
  • In this paper we consider the dual problems for multiobjective programming with generalized convex functions. We obtain the weak duality and the strong duality. At last, we give an equivalent relationship between saddle point and efficient solution in multiobjective programming.

EXISTENCE OF POSITIVE SOLUTIONS FOR GENERALIZED LAPLACIAN PROBLEMS WITH A PARAMETER

  • Kim, Chan-Gyun
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.33-41
    • /
    • 2022
  • In this paper, we study singular Dirichlet boundary value problems involving ϕ-Laplacian. Using fixed point index theory, the existence of positive solutions is established under the assumption that the nonlinearity f = f(u) has a positive falling zero and is either superlinear or sublinear at u = 0.

INVEXITY AS NECESSARY OPTIMALITY CONDITION IN NONSMOOTH PROGRAMS

  • Sach, Pham-Huu;Kim, Do-Sang;Lee, Gue-Myung
    • Journal of the Korean Mathematical Society
    • /
    • v.43 no.2
    • /
    • pp.241-258
    • /
    • 2006
  • This paper gives conditions under which necessary optimality conditions in a locally Lipschitz program can be expressed as the invexity of the active constraint functions or the type I invexity of the objective function and the constraint functions on the feasible set of the program. The results are nonsmooth extensions of those of Hanson and Mond obtained earlier in differentiable case.

MULTIPLICITY OF POSITIVE SOLUTIONS TO SCHRÖDINGER-TYPE POSITONE PROBLEMS

  • Ko, Eunkyung
    • East Asian mathematical journal
    • /
    • v.38 no.1
    • /
    • pp.13-20
    • /
    • 2022
  • We establish multiplicity results for positive solutions to the Schrödinger-type singular positone problem: -∆u + V (x)u = λf(u) in Ω, u = 0 on ∂Ω, where Ω is a bounded domain in ℝN, N > 2, λ is a positive parameter, V ∈ L(Ω) and f : [0, ∞) → (0, ∞) is a continuous function. In particular, when f is sublinear at infinity we discuss the existence of at least three positive solutions for a certain range of λ. The proofs are mainly based on the sub- and supersolution method.