East Asian Math. J. Vol. 38 (2022), No. 1, pp. 013–020 http://dx.doi.org/10.7858/eamj.2022.002

MULTIPLICITY OF POSITIVE SOLUTIONS TO SCHRÖDINGER-TYPE POSITONE PROBLEMS

Eunkyung Ko

ABSTRACT. We establish multiplicity results for positive solutions to the Schrödinger-type singular positone problem: $-\Delta u + V(x)u = \lambda f(u)$ in Ω , u = 0 on $\partial\Omega$, where Ω is a bounded domain in \mathbb{R}^N , $N > 2, \lambda$ is a positive parameter, $V \in L^{\infty}(\Omega)$ and $f : [0, \infty) \to (0, \infty)$ is a continuous function. In particular, when f is sublinear at infinity we discuss the existence of at least three positive solutions for a certain range of λ . The proofs are mainly based on the sub- and supersolution method.

1. Introduction and Main Results

We are concerned with the existence of multiple positive solutions of the following Schrödinger-type positone problems with Dirichlet boundary condition

$$\begin{cases} -\Delta u + V(x)u = \lambda f(u), & x \in \Omega, \\ u = 0, & x \in \partial\Omega, \end{cases}$$
(1)

where $0 \in \Omega$ is a nonempty bounded domain in $\mathbb{R}^N, N > 2$, with a smooth boundary $\partial\Omega, V \in L^{\infty}(\Omega)$ and λ is a positive real parameter. We assume that $f \in C([0,\infty), (0,\infty))$ satisfies

 $\begin{array}{ll} (F_1) & \lim_{s \to \infty} \frac{f(s)}{s} = 0, \\ (F_2) & f \text{ is nondecreasing for all } s \ge 0. \end{array}$

We further assume that $V \in L^{\infty}(\Omega)$ satisfies the following condition:

 (V_1) There exists $c_V > 0$ such that $V(x) \ge -c_V > -\frac{1}{\|e\|_{\infty}}$ for $x \in \Omega$, when e is the positive solution of

$$\begin{cases} -\Delta e = 1, \text{ in } \Omega, \\ e = 0, \text{ on } \partial \Omega. \end{cases}$$

©2022 The Youngnam Mathematical Society (pISSN 1226-6973, eISSN 2287-2833)

Received December 24, 2021; Accepted January 3, 2022.

²⁰¹⁰ Mathematics Subject Classification. 35J66, 35J20.

Key words and phrases. Schrödinger-type problem, positive solution, multiplicity.

This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (NRF-2020R1F1A1A01065912).

The equation (1) is derived based on the nonlinear Schrödinger equation, which is detailed in [9]. Nonlinear Schrödinger equations have been widely studied to investigate the existence of solutions that act according to V on the whole space \mathbb{R}^N (see [2, 5, 7] or references therein) or on bounded domains with linear boundary conditions in [4]. In the case when $V \equiv 0$, studying existence of multiple positive solutions of (1) has a rich history for a long time (see [3] and [8] for $\beta = 0$ or references therein). In this paper, we establish the existence of positive solutions of a singular Schrödinger equation (1) for all $\lambda > 0$ and multiple positive solutions of (1) for a certain range of λ by the method of sub and supersolution when $V \neq 0$ is bounded in Ω . We first state our main result.

Theorem 1.1. Assume (F_1) and (V_1) . Then, for each $\lambda > 0$ the problem (1) has a positive solution $u_{\lambda} \in C^2(\Omega) \cap C(\overline{\Omega})$ Moreover, if $\frac{s}{f(s)}$ is nondecreasing, the solution is unique.

Next, to state the multiplicity result, we define for any 0 < a < d

$$Q(a,d) := \frac{a}{f(a)} / \frac{d}{f(d)}$$

and let

$$A = \frac{(N+1)^{N+1}}{N^N}$$
 and $B = \frac{R^2}{AN + \|V\|_{\infty}R^2}$,

where R is the radius of the largest inscribed ball B_R in Ω . We further let K > 0 be a constant such that

$$\frac{1}{K} \le 1 - c_V \|e\|_{\infty}.$$
(2)

from the condition (V_1) .

Theorem 1.2. Assume $(F_1), (F_2)$ and (V_1) . If there exist a, d and b with $0 < a < d < \frac{2}{A}b$ such that $Q(a, d) > \frac{K \|e\|_{\infty}}{B}$,

$$\tilde{f}(s) := f(s) - \frac{f(d)}{d} B \|V\|_{\infty} s > 0 \ \forall s \in [0, b]$$

and is nondecreasing on [a, b], then the problem (1) has at least three positive solutions $u_{\lambda} \in C^2(\Omega) \cap C(\overline{\Omega})$ for all $\lambda_* < \lambda < \lambda^*$, where

$$\lambda_* = \frac{d}{f(d)} \frac{1}{B}, \ \lambda^* = \min\{\frac{a}{f(a)} \frac{1}{K \|e\|_{\infty}}, \frac{2b}{f(d)AB}\}.$$

To obtain multiple positive solutions for a certain range of λ , it is important to construct a pair of sub and supersolution (ψ_2, Z_2) of (1) with the property that $\psi_1 \leq \psi_2 \leq Z_1$, $\psi_1 \leq Z_2 \leq Z_1$ and $\psi_2 \not\leq Z_2$ when (ψ_1, Z_1) is a pair of sub and supersolution of (1). However, the term V(x) acting on u gives a difficulty on the construction of a second pair of sub and supersolution (ψ_2, Z_2) . Furthermore, since we allow V to be negative on Ω , the operator $-\Delta + V(x)$ does not satisfy the maximum principle. To overcome this issues, we manipulate the first equation of (1) in such a way that we define a new function $\tilde{f} : [0, \infty) \to \mathbb{R}$ by $\tilde{f}(s) = f(s) - \frac{f(d)}{d}B||V||_{\infty}s$ so that the function V(x) is related to the reaction term. Here we also emphasize that $\tilde{f}(s)$ is negative for s large since f(s) is sublinear near infinity. In this case, it is not easy to construct the second pair of sub and supersolution (ψ_2, Z_2) satisfying the above property in the region at which \tilde{f} is positive.

Remark 1. A simple example satisfying the assumptions of Theorem 1.2 is

$$\begin{cases} -\Delta u + V(x)u = \lambda e^{\frac{\alpha u}{\alpha + u}}, & x \in \Omega, \\ u = 0, & x \in \partial\Omega. \end{cases}$$
(3)

Clearly, $f(u) = e^{\frac{\alpha u}{\alpha + u}}$ satisfies assumptions (F_1) and (F_2) . Choosing $d = \alpha$, we can see that $\tilde{f}(d) = (1 - B ||V||_{\infty}) f(\alpha) > 0$ for all $\alpha > 0$ and $\tilde{f}'(d) = e^{\frac{\alpha}{2}} [\frac{1}{4} - \frac{B ||V||_{\infty}}{\alpha}] \rightarrow \frac{1}{4} e^{\frac{\alpha}{2}} > 0$ as $\alpha \to \infty$. Hence, there exists $\alpha_1 > 0$ such that

$$\tilde{f}'\left((1-\frac{1}{\sqrt{\alpha_1}})\alpha_1\right) > 0,$$

which implies that $\tilde{f}'(\alpha) > 0$ for all $\alpha > (1 - \frac{1}{\sqrt{\alpha_1}})\alpha_1$. Noting that $Q(c\alpha, \alpha) = ce^{\frac{1}{2} - \frac{c}{c+1}\alpha}$ for a constant c, there exists $\alpha_2 > 0$ such that

$$Q\left(\left(1-\frac{1}{\sqrt{\alpha_2}}\right)\alpha_2,\alpha_2\right) = \left(1-\frac{1}{\sqrt{\alpha_2}}\right)e^{\frac{\alpha_2}{4\sqrt{\alpha_2}-2}} > \frac{K\|e\|_{\infty}}{B}$$

which also yields that $Q\left((1-\frac{1}{\sqrt{\alpha}})\alpha,\alpha\right) > \frac{K\|e\|_{\infty}}{B}$ for all $\alpha > \alpha_2$. Observing that for a constant c

$$\tilde{f}'(c\alpha) = \frac{e^{\frac{c}{c+1}\alpha}}{(c+1)^2} - \frac{e^{\frac{\alpha}{2}}}{\alpha}B\|V\|_{\infty},$$

there exist $\bar{c} > \frac{A}{2}$ and $\alpha_3 > 0$ large enough such that

 $\tilde{f}'(\bar{c}\alpha_3) \ge 0$

as $\frac{c}{c+1} > \frac{1}{2}$ for c > 1. It also holds $\tilde{f}'(\bar{c}\alpha) \ge 0$ for all $\alpha \ge \alpha_3$. Now, letting $\alpha^* = \max\{\alpha_1, \alpha_2, \alpha_3\}$ and choosing $a = (1 - \frac{1}{\sqrt{\alpha^*}})\alpha^*, d = \alpha^*$ and $b = \bar{c}\alpha^*$, we have

$$\tilde{f}'(s) \ge 0$$
 in $[a, b]$ and $Q(a, d) > \frac{K \|e\|_{\infty}}{B}$

and $\tilde{f}(s) = f(s) - \frac{f(d)}{d} B ||V||_{\infty} s > 0$ on [0, b] for sufficiently small value of $||V||_{\infty}$.

This paper is organized as follows: In the next Section 2, we introduce a method of sub and supersolutions for (1) and a three solution theorem for problem (1). Section 3 is devoted to the proofs of Theorem 1.1 and Theorem 1.2.

E.KO

2. Preliminary

In this section, we define sub and supersolution of (1) and introduce the method of obtaining sub- and supersolutions and three solution theorem for (1).

A subsolution of (1) is defined as a function $\psi : \Omega \to \mathbb{R}$ satisfying

$$\begin{cases} -\Delta \psi + V(x)\psi \le \lambda f(\psi), & x \in \Omega, \\ \psi \le 0, & x \in \partial\Omega, \end{cases}$$
(4)

while a supersolution of (1) is defined as a function $\phi: \overline{\Omega} \to \mathbb{R}$ satisfying

$$\begin{cases} -\Delta \phi + V(x)\phi \ge \lambda f(\phi), & x \in \Omega, \\ \phi \ge 0, & x \in \partial \Omega. \end{cases}$$
(5)

Now we introduce the theorem of sub and supersolution and three solution theorem.

Lemma 2.1. (Theorem for sub and supersolution in [1]). If a subsolution ψ and a supersolution ϕ of (1) exist such that $\psi \leq \phi$ on $\overline{\Omega}$, then (1) has at least one solution $u \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfying $\psi \leq u \leq \phi$ on $\overline{\Omega}$.

Lemma 2.2. (Three solution Theorem in [1] and [10]). Suppose there exists two pairs of ordered sub and supersolutions (ψ_1, Z_1) and (ψ_2, Z_2) of (1) with the property that $\psi_1 \leq \psi_2 \leq Z_1$, $\psi_1 \leq Z_2 \leq Z_1$ and $\psi_2 \not\leq Z_2$. Additionally assume that ψ_2, Z_2 are not solutions of (1). Then there exists at least three solutions $u_i, i = 1, 2, 3$ for (1) where $u_1 \in [\psi_1, Z_2], u_2 \in [\psi_2, Z_1]$ and $u_3 \in$ $[\psi_1, Z_1] \setminus ([\psi_1, Z_2] \cup [\psi_2, Z_1]).$

Lemma 2.3. (see [6]). Assume (V_1) . Then the problem

$$\begin{cases} -\Delta w + V(x)w = 1, \text{ in } \Omega\\ w = 0, \text{ on } \partial\Omega \end{cases}$$
(W)

has a solution w such that w(x) > 0 for $x \in \Omega$ and $\frac{\partial w}{\partial n} < 0$ on $\partial \Omega$.

3. Proof of Main Theorems

3.1. Proof of Theorem 1.1

Proof. It is easy to see that $\psi_1 \equiv 0$ is a strict subsolution of (1). Now, we construct a supersolution. Let us define $\bar{f}(s) := \max_{t \leq s} f(t)$. Then, it follows that $f(s) \leq \bar{f}(s)$, \bar{f} is monotone increasing and $\lim_{s \to \infty} \frac{\bar{f}(s)}{s} = 0$. This implies that there exists $M_{\lambda} \gg 1$ such that

$$\frac{f(M_{\lambda}\|w\|_{\infty})}{M_{\lambda}\|w\|_{\infty}} \le \frac{1}{\lambda\|w\|_{\infty}}.$$
(6)

Let $Z_1 = M_{\lambda} w$. Then, using (6) and the definition of \bar{f} , we can find

$$-\Delta Z_1 + V(x)Z_1 = M_{\lambda}(-\Delta w + V(x)w) = M_{\lambda}$$

$$\geq \lambda \bar{f}(M_{\lambda} ||w||_{\infty})$$

$$\geq \lambda \bar{f}(M_{\lambda}w)$$

$$\geq \lambda f(M_{\lambda}w) = \lambda f(Z_1).$$

Also we easily get $Z_1 = 0$ on $\partial\Omega$, which implies that Z_1 is a supersolution of (1). By Lemma 2.1, there exists a solution u_{λ} such that $0 \leq u_{\lambda} \leq Z_1$ for each $\lambda > 0$.

Next, let us show that this solution is unique for any $\lambda > 0$ provided $\frac{s}{f(s)}$ is nondecreasing on $(0, \infty)$. Since $\psi_1 \equiv 0$ is a subsolution of (1), there exists a minimal solution of (1). Let u_1 be a minimal solution and u_2 any other solution of (1). Then $u_1 \leq u_2$ in Ω . It follows from (1) that

$$0 = \int_{\Omega} (u_1 \Delta u_2 - u_2 \Delta u_1) dx = \int_{\Omega} u_1 (-\lambda f(u_2) + V(x)u_2) + u_2 (\lambda f(u_1) - V(x)u_1) dx$$
$$= \int_{\Omega} \lambda f(u_1) f(u_2) \left[\frac{u_2}{f(u_2)} - \frac{u_1}{f(u_1)} \right] dx \ge 0,$$

which yields $u_1 = u_2$. Hence, the solution is unique.

3.2. Proof of Theorem 1.2

Proof. We first construct a supersolution for $\lambda < \lambda^*$. From Assumption (V_1) there exists $c_V > 0$ such that $V(x) \ge -c_V > -\frac{1}{\|e\|_{\infty}}$ Let $Z_2 = a \frac{e}{\|e\|_{\infty}}$. Then in Ω , we have

$$-\Delta Z_2 + V(x)Z_2 = \frac{a}{\|e\|_{\infty}} (-\Delta e + V(x)e)$$

> $\lambda K f(a)(1 + V(x)e)$
 $\geq \lambda K f(a\frac{e}{\|e\|_{\infty}})(1 - c_V \|e\|_{\infty}) \geq \lambda f(Z_2)$

where we used the fact $\lambda < \frac{a}{f(a)K\|e\|_{\infty}}$ at the first inequality and $1-c_V \|e\|_{\infty} \geq \frac{1}{K}$ at the second inequality. Clearly, $Z_2 = 0$ on $\partial\Omega$. Hence, Z_2 is supersolution for $\lambda < \lambda^*$.

Now we construct a positive subsolution ψ_2 of the following problem

$$\begin{cases} -\Delta u + \|V\|_{\infty} u = \lambda f(u), \text{ in } \Omega, \\ u = 0, \text{ on } \partial\Omega. \end{cases}$$
(7)

when $\lambda > \lambda_*$. Then, ψ_2 is a subsolution of (1) since

$$-\Delta\psi_2 + V(x)\psi_2 \le -\Delta\psi_2 + \|V\|_{\infty}\psi_2 \le \lambda f(\psi_2).$$

In order to construct the positive subsolution ψ_2 , we recall $\tilde{f}(u) = f(u) - \frac{f(d)}{d}B||V||_{\infty}u > 0$ and consider the following problem

E.KO

$$\begin{cases} -\Delta u = \lambda \tilde{f}(u), \text{ in } \Omega, \\ u = 0, \text{ on } \partial \Omega. \end{cases}$$
(8)

Recall that R is the radius of the biggest inscribed ball in Ω . For $0 < \epsilon < R$ and $\delta, \mu > 1$ let us define $\rho : [0, R] \to [0, 1]$ by

$$\rho(r) = \begin{cases} 1, \ 0 \le r \le \epsilon, \\ 1 - (1 - (\frac{R-r}{R-\epsilon})^{\mu})^{\delta}, \ \epsilon < r \le R. \end{cases}$$

Then we have

$$\rho'(r) = \begin{cases} 0, \ 0 \le r \le \epsilon, \\ -\frac{\delta\mu}{R-\epsilon} (1 - (\frac{R-r}{R-\epsilon})^{\mu})^{\delta-1} (\frac{R-r}{R-\epsilon})^{\mu-1}, \ \epsilon < r \le R. \end{cases}$$

Let $v(r) = d\rho(r)$. Note that $|v'(r)| \le d\frac{\delta\mu}{R-\epsilon}$. Define ψ as the radially symmetric solution of

$$\begin{cases} -\Delta \psi = \lambda \tilde{f}(v(|x|)), \text{ in } B_R(0) \\ \psi = 0, \text{ on } \partial B_R(0). \end{cases}$$

Then ψ satisfies

$$\begin{cases} -(r^{N-1}(\psi'(r))' = \lambda r^{N-1}\tilde{f}(v(r)), \\ \psi'(0) = 0, \ \psi(R) = 0. \end{cases}$$
(9)

Integrating (9), for 0 < r < R, we have

$$-\psi'(r) = \frac{\lambda}{r^{N-1}} \int_0^r s^{N-1} \tilde{f}(v(s)) \, ds.$$
 (10)

Here we claim that

$$\psi(r) \ge v(r), \ \forall \ 0 \le r \le R \tag{11}$$

and

$$\|\psi\|_{\infty} \le b \tag{12}$$

when $\frac{d}{f(d)} \frac{1}{B} < \lambda < \frac{2b}{f(d)AB}$.

In order to prove (11), it is enough to show that

$$-\psi'(r) \ge -v'(r), \ \forall \ 0 \le r \le R$$
(13)

as $\psi(R) = 0 = v(R)$. Notice that for $0 \le r \le \epsilon$, $\psi'(r) \le 0 = v'(r)$. Hence, for $r > \epsilon$ we get from (10)

$$\begin{aligned} -\psi'(r) &= \frac{\lambda}{r^{N-1}} \int_0^r s^{N-1} \tilde{f}(v(s)) \ ds \\ &> \frac{\lambda}{R^{N-1}} \int_0^\epsilon s^{N-1} \tilde{f}(v(s)) \ ds \\ &= \frac{\lambda}{R^{N-1}} \frac{\epsilon^N}{N} \tilde{f}(d). \end{aligned}$$

18

If $\lambda > \frac{d}{\bar{f}(d)} \frac{NR^{N-1}}{(R-\epsilon)\epsilon^N} \delta \mu$, then we conclude (13). Note that $d = NR^{N-1} = d = (N+1)^{N-1}$

$$\inf_{\epsilon} \frac{d}{\tilde{f}(d)} \frac{NR^{N-1}}{(R-\epsilon)\epsilon^N} \delta\mu = \frac{d}{\tilde{f}(d)} \frac{(N+1)^{N+1}}{R^2 N^{N-1}} \delta\mu$$

and is achieved at $\epsilon = \frac{NR}{N+1}$. Hence, if $\lambda > \frac{d}{\tilde{f}(d)} \frac{(N+1)^{N+1}}{R^2 N^{N-1}}$, then in the definition of ρ we can choose $\epsilon = \frac{NR}{N+1}$ and the values of δ and μ so that $\lambda \ge \frac{d}{\tilde{f}(d)} \frac{NR^{N-1}}{(R-\epsilon)\epsilon^N} \delta \mu$, and hence (13) holds. Note that it is clear that

$$\hat{f}(d) = (1 - B \|V\|_{\infty}) f(d)$$
 (14)

from the definition of $\tilde{f}(u)$. Hence the range of λ is written as

$$\lambda > \frac{d}{\tilde{f}(d)} \frac{(N+1)^{N+1}}{R^2 N^{N-1}} = \frac{d}{f(d)} \frac{1}{B}.$$

Now to show (12), we integrate (10) from t to R, we obtain that for $0 \le r \le R$

$$\begin{split} \psi(t) &= \int_t^R \frac{\lambda}{r^{N-1}} \left(\int_0^r s^{N-1} \tilde{f}(v(s)) \, ds \right) \, dr \\ &\leq \int_t^R \frac{\lambda}{r^{N-1}} \tilde{f}(d) \left(\int_0^r s^{N-1} \, ds \right) \, dr \\ &\leq \lambda \frac{\tilde{f}(d)}{N} \int_0^R r \, dr = \lambda \frac{\tilde{f}(d)}{2N} R^2 \end{split}$$

Hence, if $\lambda < \frac{b}{\tilde{f}(d)} \frac{2N}{R^2}$, then we get $\|\psi\|_{\infty} \leq b$. Again, from (14), the range of λ is written as $\lambda < \frac{2b}{f(d)AB}$. Hence, we find that $v(r) \leq \psi(r) \leq b, \forall \ 0 \leq r \leq R$ when $\frac{d}{f(d)} \frac{1}{B} < \lambda < \frac{2b}{f(d)AB}$. From $v(r) \leq \psi(r) \leq b, \forall \ 0 \leq r \leq R$, we see $-\Delta \psi = \lambda \tilde{f}(v) \leq \lambda \tilde{f}(\psi)$, in $B_R(0)$ and $\psi = 0$ on $\partial B_R(0)$.

Now we let $\psi_2(x) = \psi(x)$ if $x \in B_R(0)$ and $\psi_2(x) = 0$ if $x \in \Omega \setminus B_R(0)$. Then ψ_2 is a positive subsolution of (8) for $\lambda_* = \frac{d}{f(d)} \frac{1}{B} < \lambda < \frac{2b}{f(d)AB}$. Finally, we find that for $\lambda > \lambda_*$

$$\begin{aligned} -\Delta\psi_2 &\leq \lambda \tilde{f}(\psi_2) &= \lambda [f(\psi_2) - \frac{1}{\lambda_*} \|V\|_{\infty} \psi_2] \\ &< \lambda [f(\psi_2) - \frac{1}{\lambda} \|V\|_{\infty} \psi_2] \\ &= \lambda f(\psi_2) - \|V\|_{\infty} \psi_2, \end{aligned}$$

which implies that ψ_2 is a nonnegative subsolution of (7). Finally, we obtain the subsolution ψ_2 of (1) satisfying $\psi_2 \not\leq Z_2$ for $\lambda_* < \lambda < \lambda^*$.

From the proof of Theorem 1.1 we have a subsolution $\psi_1 \equiv 0$ such that $\psi_1 \leq Z_2$ and a sufficiently large supersolution $Z_1 = M_{\lambda} w$ such that $\psi_2 \leq Z_1$.

Hence, there exist a positive solutions u_1 and u_2 of (1) such that $\psi_1 \leq u_1 \leq Z_2$ and $\psi_2 \leq u_2 \leq Z_1$. Note that $u_1 \neq u_2$ as $\psi_2 \not\leq Z_2$. By three solution theorem 2.2, there exists a positive solution u_3 such that $u_3 \in [\psi_1, Z_1] \setminus ([\psi_1, Z_2] \cup [\psi_2, Z_1])$.

References

- H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Rev. 18 (1976), no. 4, 620-709.
- [2] T. Bartsch and Z.-Q. Wang, Sign changing solutions of nonlinear Schrdinger equations, Topol. Methods Nonlinear Anal. 13 (1999), no. 2, 191198.
- [3] K.J. Brown, M.M.A. Ibrahim and R. Shivaji, S shaphed bifurcation curves, Nonlinear Analysis, 5 (1981), 475-486.
- [4] G.M. Figueiredo, J.R. Santos Júnior and A. Suárez, Structure of the set of positive solutions of a non-linear Schrdinger equation, (English summary) Israel J. Math. 227 (2018), no. 1, 485505.
- [5] Y. Guo, Z.-Q. Wang, X. Zeng and H.-S. Zhou, Properties of ground states of attractive Gross-Pitaevskii equations with multi-well potentials, Nonlinearity **31** (2018), no. 3, 957979.
- [6] E. Ko, E.K. Lee and I. Sim, Existence of positive solution to Schrdinger-type semipositone problems with mixed nonlinear boundary conditions, Taiwanese J. Math. 25 (2021), no. 1, 107124.
- [7] J.-Q. Liu, Y.-Q. Wang and Z.-Q. Wang, Solutions for quasilinear Schrdinger equations via the Nehari method, Comm. Partial Differential Equations 29 (2004), no. 5-6, 879901.
- [8] M. Ramaswamy and R. Shivaji, Multiple positive solutions for classes of p-laplacian equations, Differential Integral Equations, 17 (2004), no. 11-12,1255 – 1261.
- [9] P.H. Rabinowitz, On a class of nonlinear Schrdinger equations, Z. Angew. Math. Phys. 43 (1992), no. 2, 270291.
- [10] R. Shivaji, A remark on the existence of three solutions via sub-super solutions. Nonlinear analysis and applications, (Arlington, Tex., 1986), 561566, Lecture Notes in Pure and Appl. Math., 109, Dekker, New York, 1987.

Eunkyung Ko

MAJOR IN MATHEMATICS, COLLEGE OF NATURAL SCIENCE, KEIMYUNG UNIVERSITY, DAEGU 42601, SOUTH KOREA

E-mail address: ekko@kmu.ac.kr