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MULTIPLICITY OF POSITIVE SOLUTIONS TO

SCHRÖDINGER-TYPE POSITONE PROBLEMS

Eunkyung Ko

Abstract. We establish multiplicity results for positive solutions to the

Schrödinger-type singular positone problem: −∆u + V (x)u = λf(u) in

Ω, u = 0 on ∂Ω, where Ω is a bounded domain in RN , N > 2, λ is a
positive parameter, V ∈ L∞(Ω) and f : [0,∞) → (0,∞) is a continuous

function. In particular, when f is sublinear at infinity we discuss the

existence of at least three positive solutions for a certain range of λ. The
proofs are mainly based on the sub- and supersolution method.

1. Introduction and Main Results

We are concerned with the existence of multiple positive solutions of the
following Schrödinger-type positone problems with Dirichlet boundary condition{

−∆u+ V (x)u = λf(u), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1)

where 0 ∈ Ω is a nonempty bounded domain in RN , N > 2, with a smooth
boundary ∂Ω, V ∈ L∞(Ω) and λ is a positive real parameter. We assume that
f ∈ C([0,∞), (0,∞)) satisfies

(F1) lim
s→∞

f(s)

s
= 0,

(F2) f is nondecreasing for all s ≥ 0.

We further assume that V ∈ L∞(Ω) satisfies the following condition:

(V1) There exists cV > 0 such that V (x) ≥ −cV > − 1
‖e‖∞ for x ∈ Ω, when e

is the positive solution of{
−∆e = 1, in Ω,

e = 0, on ∂Ω.
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The equation (1) is derived based on the nonlinear Schrödinger equation,
which is detailed in [9]. Nonlinear Schrödinger equations have been widely
studied to investigate the existence of solutions that act according to V on the
whole space RN (see [2, 5, 7] or references therein) or on bounded domains with
linear boundary conditions in [4]. In the case when V ≡ 0, studying existence
of multiple positive solutions of (1) has a rich history for a long time (see [3]
and [8] for β = 0 or references therein). In this paper, we establish the existence
of positive solutions of a singular Schrödinger equation (1) for all λ > 0 and
multiple positive solutions of (1) for a certain range of λ by the method of sub
and supersolution when V 6≡ 0 is bounded in Ω. We first state our main result.

Theorem 1.1. Assume (F1) and (V1). Then, for each λ > 0 the problem (1)
has a positive solution uλ ∈ C2(Ω) ∩ C(Ω̄) Moreover, if s

f(s) is nondecreasing,

the solution is unique.

Next, to state the multiplicity result, we define for any 0 < a < d

Q(a, d) :=
a

f(a)

/ d

f(d)

and let

A =
(N + 1)N+1

NN
and B =

R2

AN + ‖V ‖∞R2
,

where R is the radius of the largest inscribed ball BR in Ω. We further let K > 0
be a constant such that

1

K
≤ 1− cV ‖e‖∞. (2)

from the condition (V1).

Theorem 1.2. Assume (F1), (F2) and (V1). If there exist a, d and b with 0 <

a < d < 2
Ab such that Q(a, d) > K‖e‖∞

B ,

f̃(s) := f(s)− f(d)

d
B‖V ‖∞s > 0 ∀s ∈ [0, b]

and is nondecreasing on [a, b], then the problem (1) has at least three positive
solutions uλ ∈ C2(Ω) ∩ C(Ω̄) for all λ∗ < λ < λ∗, where

λ∗ =
d

f(d)

1

B
, λ∗ = min{ a

f(a)

1

K‖e‖∞
,

2b

f(d)AB
}.

To obtain multiple positive solutions for a certain range of λ, it is important
to construct a pair of sub and supersolution (ψ2, Z2) of (1) with the property
that ψ1 ≤ ψ2 ≤ Z1, ψ1 ≤ Z2 ≤ Z1 and ψ2 6≤ Z2 when (ψ1, Z1) is a pair
of sub and supersolution of (1). However, the term V (x) acting on u gives a
difficulty on the construction of a second pair of sub and supersolution (ψ2, Z2).
Furthermore, since we allow V to be negative on Ω, the operator −∆+V (x) does
not satisfy the maximum principle. To overcome this issues, we manipulate the
first equation of (1) in such a way that we define a new function f̃ : [0,∞)→ R
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by f̃(s) = f(s) − f(d)
d B‖V ‖∞s so that the function V (x) is related to the

reaction term. Here we also emphasize that f̃(s) is negative for s large since
f(s) is sublinear near infinity. In this case, it is not easy to construct the second
pair of sub and supersolution (ψ2, Z2) satisfying the above property in the region

at which f̃ is positive.

Remark 1. A simple example satisfying the assumptions of Theorem 1.2 is{
−∆u+ V (x)u = λe

αu
α+u , x ∈ Ω,

u = 0, x ∈ ∂Ω.
(3)

Clearly, f(u) = e
αu
α+u satisfies assumptions (F1) and (F2). Choosing d = α,

we can see that f̃(d) = (1 − B‖V ‖∞)f(α) > 0 for all α > 0 and f̃ ′(d) =

e
α
2 [ 1

4 −
B‖V ‖∞

α ]→ 1
4e

α
2 > 0 as α→∞. Hence, there exists α1 > 0 such that

f̃ ′
(

(1− 1
√
α1

)α1

)
> 0,

which implies that f̃ ′(α) > 0 for all α > (1 − 1√
α1

)α1. Noting that Q(cα, α) =

ce
1
2−

c
c+1α for a constant c, there exists α2 > 0 such that

Q

(
(1− 1

√
α2

)α2, α2

)
=

(
1− 1
√
α2

)
e

α2
4
√
α2−2 >

K‖e‖∞
B

,

which also yields that Q
(

(1− 1√
α

)α, α
)
> K‖e‖∞

B for all α > α2. Observing

that for a constant c

f̃ ′(cα) =
e

c
c+1α

(c+ 1)2
− e

α
2

α
B‖V ‖∞,

there exist c̄ > A
2 and α3 > 0 large enough such that

f̃ ′(c̄α3) ≥ 0

as c
c+1 > 1

2 for c > 1. It also holds f̃ ′(c̄α) ≥ 0 for all α ≥ α3. Now, letting

α∗ = max{α1, α2, α3} and choosing a = (1 − 1√
α∗

)α∗, d = α∗ and b = c̄α∗, we

have

f̃ ′(s) ≥ 0 in [a, b] and Q(a, d) >
K‖e‖∞
B

and f̃(s) = f(s)− f(d)
d B‖V ‖∞s > 0 on [0, b] for sufficiently small value of ‖V ‖∞.

This paper is organized as follows: In the next Section 2, we introduce a
method of sub and supersolutions for (1) and a three solution theorem for
problem (1). Section 3 is devoted to the proofs of Theorem 1.1 and Theorem
1.2.
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2. Preliminary

In this section, we define sub and supersoluton of (1) and introduce the
method of obtaining sub- and supersolutions and three solution theorem for (1).

A subsolution of (1) is defined as a function ψ : Ω̄→ R satisfying{
−∆ψ + V (x)ψ ≤ λf(ψ), x ∈ Ω,
ψ ≤ 0, x ∈ ∂Ω,

(4)

while a supersolution of (1) is defined as a function φ : Ω̄→ R satisfying{
−∆φ+ V (x)φ ≥ λf(φ), x ∈ Ω,
φ ≥ 0, x ∈ ∂Ω.

(5)

Now we introduce the theorem of sub and supersolution and three solution
theorem.

Lemma 2.1. (Theorem for sub and supersolution in [1]). If a subsolution ψ
and a supersolution φ of (1) exist such that ψ ≤ φ on Ω̄, then (1) has at least
one solution u ∈ C2(Ω) ∩ C(Ω̄) satisfying ψ ≤ u ≤ φ on Ω̄.

Lemma 2.2. (Three solution Theorem in [1] and [10]). Suppose there exists
two pairs of ordered sub and supersolutions (ψ1, Z1) and (ψ2, Z2) of (1) with
the property that ψ1 ≤ ψ2 ≤ Z1, ψ1 ≤ Z2 ≤ Z1 and ψ2 6≤ Z2. Additionally
assume that ψ2, Z2 are not solutions of (1). Then there exists at least three
solutions ui, i = 1, 2, 3 for (1) where u1 ∈ [ψ1, Z2], u2 ∈ [ψ2, Z1] and u3 ∈
[ψ1, Z1] \ ([ψ1, Z2] ∪ [ψ2, Z1]).

Lemma 2.3. (see [6]). Assume (V1). Then the problem{
−∆w + V (x)w = 1, in Ω

w = 0, on ∂Ω
(W )

has a solution w such that w(x) > 0 for x ∈ Ω and ∂w
∂η < 0 on ∂Ω.

3. Proof of Main Theorems

3.1. Proof of Theorem 1.1

Proof. It is easy to see that ψ1 ≡ 0 is a strict subsolution of (1). Now, we
construct a supersolution. Let us define f̄(s) := maxt≤s f(t). Then, it follows

that f(s) ≤ f̄(s), f̄ is monotone increasing and lims→∞
f̄(s)
s = 0. This implies

that there exists Mλ � 1 such that

f̄(Mλ‖w‖∞)

Mλ‖w‖∞
≤ 1

λ‖w‖∞
. (6)
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Let Z1 = Mλw. Then, using (6) and the definition of f̄ , we can find

−∆Z1 + V (x)Z1 = Mλ(−∆w + V (x)w) = Mλ

≥ λf̄(Mλ‖w‖∞)

≥ λf̄(Mλw)

≥ λf(Mλw) = λf(Z1).

Also we easily get Z1 = 0 on ∂Ω, which implies that Z1 is a supersolution of
(1). By Lemma 2.1, there exists a solution uλ such that 0 ≤ uλ ≤ Z1 for each
λ > 0.

Next, let us show that this solution is unique for any λ > 0 provided s
f(s)

is nondecreasing on (0,∞). Since ψ1 ≡ 0 is a subsolution of (1), there exists a
minimal solution of (1). Let u1 be a minimal solution and u2 any other solution
of (1). Then u1 ≤ u2 in Ω. It follows from (1) that

0 =

∫
Ω

(u1∆u2 − u2∆u1)dx =

∫
Ω

u1(−λf(u2) + V (x)u2) + u2(λf(u1)− V (x)u1)dx

=

∫
Ω

λf(u1)f(u2)

[
u2

f(u2)
− u1

f(u1)

]
dx ≥ 0,

which yields u1 = u2. Hence, the solution is unique. �

3.2. Proof of Theorem 1.2

Proof. We first construct a supersolution for λ < λ∗. From Assumption (V1)
there exists cV > 0 such that V (x) ≥ −cV > − 1

‖e‖∞ Let Z2 = a e
‖e‖∞ . Then in

Ω, we have

−∆Z2 + V (x)Z2 =
a

‖e‖∞
(−∆e+ V (x)e)

> λKf(a)(1 + V (x)e)

≥ λKf(a
e

‖e‖∞
)(1− cV ‖e‖∞) ≥ λf(Z2)

where we used the fact λ < a
f(a)K‖e‖∞ at the first inequality and 1−cV ‖e‖∞ ≥ 1

K

at the second inequality. Clearly, Z2 = 0 on ∂Ω. Hence, Z2 is supersolution for
λ < λ∗.

Now we construct a positive subsolution ψ2 of the following problem{
−∆u+ ‖V ‖∞u = λf(u), in Ω,

u = 0, on ∂Ω.
(7)

when λ > λ∗. Then, ψ2 is a subsolution of (1) since

−∆ψ2 + V (x)ψ2 ≤ −∆ψ2 + ‖V ‖∞ψ2 ≤ λf(ψ2).

In order to construct the positive subsolution ψ2, we recall f̃(u) = f(u) −
f(d)
d B‖V ‖∞u > 0 and consider the following problem
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{
−∆u = λf̃(u), in Ω,

u = 0, on ∂Ω.
(8)

Recall that R is the radius of the biggest inscribed ball in Ω. For 0 < ε < R and
δ, µ > 1 let us define ρ : [0, R]→ [0, 1] by

ρ(r) =

{
1, 0 ≤ r ≤ ε,
1− (1− (R−rR−ε )µ)δ, ε < r ≤ R.

Then we have

ρ′(r) =

{
0, 0 ≤ r ≤ ε,
− δµ
R−ε (1− (R−rR−ε )µ)δ−1(R−rR−ε )µ−1, ε < r ≤ R.

Let v(r) = dρ(r). Note that |v′(r)| ≤ d δµ
R−ε . Define ψ as the radially symmetric

solution of {
−∆ψ = λf̃(v(|x|)), in BR(0),

ψ = 0, on ∂BR(0).

Then ψ satisfies {
−(rN−1(ψ′(r))′ = λrN−1f̃(v(r)),

ψ′(0) = 0, ψ(R) = 0.
(9)

Integrating (9), for 0 < r < R, we have

−ψ′(r) =
λ

rN−1

∫ r

0

sN−1f̃(v(s)) ds. (10)

Here we claim that

ψ(r) ≥ v(r), ∀ 0 ≤ r ≤ R (11)

and

‖ψ‖∞ ≤ b (12)

when
d

f(d)

1

B
< λ <

2b

f(d)AB
.

In order to prove (11), it is enough to show that

−ψ′(r) ≥ −v′(r), ∀ 0 ≤ r ≤ R (13)

as ψ(R) = 0 = v(R). Notice that for 0 ≤ r ≤ ε, ψ′(r) ≤ 0 = v′(r). Hence, for
r > ε we get from (10)

−ψ′(r) =
λ

rN−1

∫ r

0

sN−1f̃(v(s)) ds

>
λ

RN−1

∫ ε

0

sN−1f̃(v(s)) ds

=
λ

RN−1

εN

N
f̃(d).
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If λ > d
f̃(d)

NRN−1

(R−ε)εN δµ, then we conclude (13). Note that

inf
ε

d

f̃(d)

NRN−1

(R− ε)εN
δµ =

d

f̃(d)

(N + 1)N+1

R2NN−1
δµ

and is achieved at ε = NR
N+1 . Hence, if λ > d

f̃(d)

(N+1)N+1

R2NN−1 , then in the definition of

ρ we can choose ε = NR
N+1 and the values of δ and µ so that λ ≥ d

f̃(d)
NRN−1

(R−ε)εN δµ,

and hence (13) holds. Note that it is clear that

f̃(d) = (1−B‖V ‖∞)f(d) (14)

from the definition of f̃(u). Hence the range of λ is written as

λ >
d

f̃(d)

(N + 1)N+1

R2NN−1
=

d

f(d)

1

B
.

Now to show (12), we integrate (10) from t to R, we obtain that for 0 ≤ r ≤ R

ψ(t) =

∫ R

t

λ

rN−1

(∫ r

0

sN−1f̃(v(s)) ds

)
dr

≤
∫ R

t

λ

rN−1
f̃(d)

(∫ r

0

sN−1 ds

)
dr

≤ λ
f̃(d)

N

∫ R

0

r dr = λ
f̃(d)

2N
R2

Hence, if λ <
b

f̃(d)

2N

R2
, then we get ‖ψ‖∞ ≤ b. Again, from (14), the range of

λ is written as λ <
2b

f(d)AB
. Hence, we find that v(r) ≤ ψ(r) ≤ b,∀ 0 ≤ r ≤ R

when
d

f(d)

1

B
< λ <

2b

f(d)AB
. From v(r) ≤ ψ(r) ≤ b,∀ 0 ≤ r ≤ R, we see

−∆ψ = λf̃(v) ≤ λf̃(ψ), in BR(0) and ψ = 0 on ∂BR(0).

Now we let ψ2(x) = ψ(x) if x ∈ BR(0) and ψ2(x) = 0 if x ∈ Ω\BR(0). Then ψ2

is a positive subsolution of (8) for λ∗ = d
f(d)

1
B < λ < 2b

f(d)AB . Finally, we find

that for λ > λ∗

−∆ψ2 ≤ λf̃(ψ2) = λ[f(ψ2)− 1

λ∗
‖V ‖∞ψ2]

< λ[f(ψ2)− 1

λ
‖V ‖∞ψ2]

= λf(ψ2)− ‖V ‖∞ψ2,

which implies that ψ2 is a nonnegative subsolution of (7). Finally, we obtain
the subsolution ψ2 of (1) satisfying ψ2 6≤ Z2 for λ∗ < λ < λ∗.

From the proof of Theorem 1.1 we have a subsolution ψ1 ≡ 0 such that
ψ1 ≤ Z2 and a sufficiently large supersolution Z1 = Mλw such that ψ2 ≤ Z1.
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Hence, there exist a positive solutions u1 and u2 of (1) such that ψ1 ≤ u1 ≤ Z2

and ψ2 ≤ u2 ≤ Z1. Note that u1 6= u2 as ψ2 6≤ Z2. By three solution theorem
2.2, there exists a positive solution u3 such that u3 ∈ [ψ1, Z1] \ ([ψ1, Z2] ∪
[ψ2, Z1]). �
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