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INVEXITY AS NECESSARY OPTIMALITY
CONDITION IN NONSMOOTH PROGRAMS

Puaam Huvu Sach, Do Sang KiM, AND GUE MYUNG LEE

ABSTRACT. This paper gives conditions under which necessary op-
timality conditions in a locally Lipschitz program can be expressed
as the invexity of the active constraint functions or the type I in-
vexity of the objective function and the constraint functions on the
feasible set of the program. The results are nonsmooth extensions
of those of Hanson and Mond obtained earlier in differentiable case.

1. Introduction

Let f and g;, ¢ = 1,2,...,m, be functions defined on an Euclidean
space R™. Consider the following Mathematical Programming Prob-
lem (P)

(1) min  f(z)
(2) subject to  g;(z) <0, i=1,2,...,m.

Let S be the set of all feasible points of (P) (i.e., the set of all z satisfying
(2)). Take a point zp € S and denote by I(zo) the index set of the active
constraints i.e.,

(3) I(ao) = {i : gi(0) = 0}.

It is well known ([7]) that the Kuhn-Tucker condition is sufficient for zg
to be a minimizer of Problem (P) if f and g;, ¢ € I(xo), are differentiable
convex functions. In 1981 Hanson [4] showed that this property remains
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valid if the convexity requirement is replaced by a weaker condition,
later called invexity. Recall that differentiable functions f and g;, i =

1,2,...,m, are invex on an arbitrary set S at a point 25 € R™ if for all
z€eS

(4) f(z) = f(zo) > fr, (n(z)),

(5) gl(x) - gz(mo) > gga:o ("7(-’17)), 1=1,2,...,m,

where f; and g;, stand for the Fréchet derivatives of f and g; at zo,
and 1 : S — R™ is a suitable map. Such a map n will be called a scale
(for f and g;).

In 1985 Martin [8] extended invexity to KT-invexity and proved that
every Kuhn-Tucker point of Problem (P) is a global minimizer if and only
if this problem is KT-invex. (The result of Martin was generalized to
vector optimization in [10]). Recently, Hanson ([5], Theorem 3.1) showed
that the invexity of the active constraint functions is also a necessary
optimality condition if the set of Kuhn-Tucker multipliers exists and is
bounded. In 1987 Hanson and Mond [6] introduced a notion of type
I invexity of f and g; which is different from invexity in that the left
side of (5) is replaced by —g;(zo) while the right side of (5) remains
unchanged. They showed in Theorem 2.2 of [6] that the type I invexity
of the objective function and the constraint functions with a nontrivial
scale is a necessary optimality condition if the number of the active
constraints is less than n (the dimension of variable x).

The notion of invexity was extended to locally Lipschitz functions by
Craven [3]. Recently, Sach, Lee and Kim [13, 14] defined generalized in-
vexity and discussed its roles in vector optimization problems. Reiland
[11] pointed out that under the invexity assumption the Kuhn-Tucker
condition also assures the optimality property in nonsmooth programs
involving locally Lipschitz functions. However, the problem of showing
that the invexity (or the type I invexity) of functions involved in these
programs can be served as a necessary optimality condition is still open.
The aim of this paper is to give an answer to this problem. Our results
are extensions of the corresponding results of [5, 6] to nonsmooth case.
These extensions are useful since many practical problems encountered
in economics, engineering design - -- can be described only by nondiffer-
entiable functions (see [2]); and hence, earlier results for differentiable
case can not be applied to such problems.

The organization of this paper is as follows: Section 2 recalls the defi-
nitions of Clarke subdifferentials and Clarke directional derivatives of lo-
cally Lipschitz functions and gives versions of invexity of these functions.
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Section 3 discusses the consistency of systems of sublinear inequalities
which are given by support functions of nonempty compact convex sets.
The results of this section are needed for proving the invexity properties
in subsequent sections. Section 4 proves that under a constraint qualifi-
cation condition, which is equivalent to the assumption of nonemptiness
and boundedness of the set of the Kuhn-Tucker multipliers, the active
constraint functions are invex on S at an optimal point xg. Section 5
contains two theorems: the first one considers the type I invexity of the
objective function and the constraint functions on some subset of S,
and the second one gives a condition which is equivalent to the type 1
invexity of these functions on the whole set S with a nontrivial scale.
Observe that unlike Theorem 2.2 of [6], where the number of the active
constraints must be less than the dimension of the variable x and the
objective and constraint functions must be differentiable, the second of
these theorems is established under an assumption not depending on the
number of the active constraints and is valid for nonsmooth functions.

2. Preliminaries

Let A be a subset of an Euclidean space R™. The symbols clA4, coA
and coneA are used to denote the closure of A, the convex hull of A and
the cone generated by A. The scalar product of two vectors a € R™ and
xz € R™ is denoted by (a, ).

Let f : R™ — R (the real line) be a locally Lipschitz function. This
means that for any zg € R™ there are positive numbers « and 8 such
that

lz = zoll <o, [l2" = zoll < @ = [f(2) — f(")| < Bllz — ']

Let f%(xo, ) be the Clarke directional derivative of f at zg in direction
z € R™

fo(zo,x) = limsup (1/N)[f(z' + Ax) — f(z')].

A0, z’—xg
The set
df(zo) :={a e R": f%(zo,z) > (a,z) Vz e R"}

is the Clarke subdifferential of f at zo. It is known from [2] that 0f(zo)
is a nonempty compact convex set satisfying the following condition:

(6) fO(xo,.) = Lo (a:0).
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Throughout this paper, unless otherwise specified, we assume that f
and g;, ¢ = 1,2,... ,m, are locally Lipschitz functions.

Let S be an arbitrary subset of R™ and zg be a given point of R"™.
The following definition is introduced by Craven [3].

DEerFINITION 2.1. Functions f and g;, 7 =1,2,... ,m, are invex on S
at zgifforallz € §
(7) f(x) = f(zo0) = fO(mo,n(2)),
(8) 9:(z) - gi(0) > g} (o, n(x)), i=1,2,...,m,

where 7 : S — R™ is a suitable map. Such a map is called a scale (or
more precisely, a scale for the invexity of f and g; on S at zo).

Observe that the invexity notion of nonsmooth functions is different
from that of differentiable functions only in that the Fréchet derivatives
in the right side of (4) and (5) are replaced by the corresponding Clarke
directional derivatives. The same is true for the case of type I invexity
given in the following definition.

DEFINITION 2.2. Functions f and g;, 7 = 1,2,... ,m, are type | invex
onSatxgifforallze S
(9) f(iL') - f(xO) 2z fo(xo,n(x))a
(10) _gz(iL'O) 2910(330777(5”))7 = 1,27 ) T,

where 17 : S — R" is a suitable map.

A map n : § — R” satisfying (9) and (10) for all z € S is called a
scale (or more precisely, a scale for the type I invexity of f and g; on S
at zg). A scale 7 is nontrivial if n{z) # 0 for all z € S. A nontrivial
scale which is a constant map on S is called a nontrivial constant scale.
Thus a map 1 : S — R"™ is a nontrivial constant scale if and only if there
is a nonzero vector 77 € R™ such that n(z) =7 for all z € S.

We emphasize that in each of Definitions 2.1 and 2.2 map 7 must be
the same for all functions f and g;.

3. Consistency of systems of sublinear inequalities

The general theory of convex inequalities can be found in |7, 12].
Here we are interested only in sublinear inequalities which are given
by support functions of nonempty compact convex sets and which are
needed for proving some results of Sections 4 and 5.
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Given an index set I = {0,1,...,k} and functions ¢; : R* — R,
i € I, we say that the system of inequalities

is consistent if it has a solution (i.e., (11) is satisfied for some £ € R").
Throughout this section we assume that

(12) pi(§) = gggf(b, &),

where B; is a nonempty compact convex set of R™. Then system (11) is
always consistent since it has a solution £ = 0. To give a necessary and
sufficient condition for this system to have a nonzero solution we first
introduce the set

(13) B =col J B:.
el

PROPOSITION 3.1. System (11) has a nonzero solution if and only if

(14) R"™ ## cl cone B.

Proof. Since cl coneB is a closed convex cone we see that

(14) holds & 3¢ # 0,Vz € cl coneB, {z,£) <0
We now give a criterion for the consistency of the following system

(15) @i(§) <0, i€I\ I,
where I; is a nonempty subset of /. Obviously, any solution of this

system must be a nonzero vector and it is also a solution of system (11).
Let us set

(17) C=co U B;,
1€I\I;
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(18) Cy =co U B;.
. jeh
Observe from Corollary 9.8.2 of [12] that C and C; are convex and
compact sets.

PROPOSITION 3.2. System (15), (16) is consistent if and only if
(19) —CiNcl cone C = 0.

Proof. We see that
(19) holds

(20) <« 3¢ € R",VYa; € C1,Vz € cl cone C, —(x1,&) > 0> (x,&)
< 3¢ € R™ such that (15) and (16) are satisfied.

(When showing the forward implication “=" in (20) we use a separation

theorem.) O
COROLLARY 3.1. System (16) is consistent if and only if 0 ¢ C).
Proof. Apply Proposition 3.2 with B; = {0},¢ € I'\ I. O

Now let 3; be a real number. Consider the following nonhomogeneous
system

(21) @i(€) < Bi, i€l
Let
(22) B,L/ = B; x {_Bz} C R™ x R,
(23) B’ =co U B;.

i€l

ProposITION 3.3. System (21) is consistent if and only if
(24) (0,1) ¢ cl cone B' (0 being the origin of R").

Proof. As in [7, p.32] we introduce an additional variable r € R and
we set £ = (§,r) € R"x R. Then it is clear that system (21) is consistent
if and only if system

(25) @i(€) = wi(€) —rBi <0, i=0,1,...,k,

(26) Pr1(§) == ~-r <0

is consistent. Let Bj,, be the set which consists of the unique ele-
ment (0,~1) € R® x R. Then obviously ¢}(¢') = maXy e p; (v',¢), 1=
0,1,...,k+1. Applying Proposition 3.2 to system (25), (26) yields con-
dition (24), as desired. O
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4. Invexity and necessary optimality condition

We begin by recalling a known result of [2]. As we said in Section
2, unless otherwise specificed all functions f and g; are assumed to be
locally Lipschitz.

THEOREM 4.1. If x4 is a minimizer of Problem (P), then the Fritz
John condition is satisfied: there are nonnegative numbers \;,i = 0,1,
.,m, not all zero, such that

(27) 0 € Mdf (mo) + Y _ XiBgi(za),
1=1
(28) 0:)\igi(l‘0), 1= 1,2,... ,m

~ Observe that in case I(xg) # @ the Fritz John condition can be refor-
mulated as follows: there are nonnegative numbers Ao and \;, ¢ € I(xo),
not all zero, such that

(29) 0€ Xdf(mo) + Y Xidgi(wo)-

i€l(zo)

Under additional conditions the multiplier A\g must be different from
zero and hence we may set A\g = 1. We now give such a condition, called
the condition (CQ): if I(xzo) # @ then

(30) 0¢ A(mo) :=co | 8gs(@0).

161(:1:0)

Observe from Corollary 9.8.2 of [12] that the set A(xq) being the
convex hull of a finite number of compact sets is (convex and) compact.

The following result is a direct consequence of Theorem 4.1 and con-
dition (CQ).

THEOREM 4.2. Assume that condition (CQ) holds. If zq is a mini-
mizer of Problem (P) then the Kuhn-Tucker condition is satisfied: there
are nonnegative numbers A;, i = 1,2,... ,m, satisfying (28) and the
following condition

(31) 0 € 8f (o) + Y _ MiBgi(xo).

=1
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Observe that in case [(zg) # @ the Kuhn-Tucker condition means
that there are nonnegative numbers A;, ¢ € I(zg), such that

(32) 0 € 0f(xo) Z Ai0g; (o).

1€I(zo)

We shall give conditions equivalent to condition (CQ). For this pur-
pose we have to introduce some definitions. If I(zg) # 0 we shall use
the symbol A = (\;, @ € I(zp)) to denote the vector with coordinates
Xi, © € I(xp), and the symbol E(z) to denote the set of all vectors
A = (A, © € I(zg)) with nonnegative coordinates \; such that (32) is
satisfied. Observe that E(x) is a closed convex set, but it may be empty
or unbounded. We shall see that the nonemptiness and boundedness of
E(zy) at the minimizer zo of (P) is equivalent to condition (CQ).

Let us introduce the following two conditions:

Condition (CQ)’: If I(xg) # 0 then E(zo) is a nonempty bounded
set.

Condition (CQ)": If I(xg) # 0 then there is a point z € R™ such that

(33) g2 (o, ) <0, i € I(xp).

LEMMA 4.1. Let zo € S be such that I(zo) # 0. Then
condition (CQ)’ = condition (CQ) < condition (CQ)".
If, in addition, z¢ is a minimizer of Problem (P), then all three conditions
are equivalent.

Proof. The equivalence of conditions (CQ) and (CQ)" is derived from
Corollary 3.1 and equality (6). Implications (CQ)’ = (CQ) and (CQ) =
(CQ)’ can be obtained from Theorem 5.1 of [9]. For reader’s convenience
we give a direct proof of these implications.

(CQ) = (CQ). Since E(z¢) # 0§ we can pick a vector A = (), ¢ €

I(zo)) € E(xg). Assume to the contrary that 0 € A(zg) then there are
nonnegative numbers A}, i € I(xg), not all zero, such that

(34) 0e Y Ndgi(xo).
iEI(.’Do)

Let v be an arbitrary positive number. Multiplying both sides of (34)
by v and summing up the obtained inclusion and inclusion (32) we get

0€df(zo)+ >, (As+7A)dgi(zo).
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Thus vector A = (\; + v}, i € I(xo)) belongs to E(xg). Since v > 0 is
arbitrarily chosen, this shows that E(z) is unbounded. It is impossible.

(CQ) = (CQ)’ (under the assumption that xg is a minimizer of Prob-
lem (P)). By Theorem 4.2 the set E(xz) is nonempty. To prove the
boundedness of this set we assume to the contrary that there is a se-
quence of vectors A\¥ = (\¥, i € I(x0)) such that \¥ > 0, i € I(xy),
[|IA¥|| = oo and

0 € 0f(zo) + Z A Bgi (o).
i€I(zo)

Setting v = 3° AF and dividing the last inclusion by v* we get that
i€l(xo)

0 € (1/7*)8f (z0) + A(zo).

Letting £ — oo and observing from the known property of Clarke subdif-
ferentials that 8f(z¢) and A(zo) are compact sets, we obtain 0 € A(xp),
a contradiction to condition (CQ). O

COROLLARY 4.1. Let the following Slater condition be satisfied: if
I(zq¢) # 0 then there is a point € S such that g;(z) < 0,1 € I(xo).
Let the active constraint functions of Problem (P) be invex on S at xg.
Then condition (CQ) holds.

Proof. From the Slater condition and the invexity property it follows
that there is a point n(xz) € R™ such that (33) is satisfied with n(z)
instead of z. Thus condition (CQ)” holds and hence, Lemma 4.1 yields
our desired conclusion. [

Combining Theorem 4.2 and Corollary 4.1 we obtain the following
result which is established in Theorem 4 of [1] for differentiable case.

THEOREM 4.3. Assume that the active constraint functions are invex
on S at xq and the Slater condition holds at xq. If xg is a minimizer of
Problem (P) then the Kuhn-Tucker condition is satisfied.

THEOREM 4.4. Assume that condition (CQ) holds. If xy is a mini-
mizer of Problem (P) then the active constraint functions are invex on
S at Zo.

Proof. Observe from the boundedness of E(zy) (see Lemma 4.1)
that for fixed x € S there is a positive number Gy such that for all
A= (N, i€ I(zp)) € E(xp) we have

(35) —Bo— D>, M <0,

i1€I(zo)



250 Pham Huu Sach, Do Sang Kim, and Gue Myung Lee
where

(36) Bi = gi(x) — gi(xo), i € I(xzo).
Without loss of generality, we may assume that

(37) I(zo) ={1,2,... ,k},

where 1 <k <m. Let usset I ={0}UI(xo)=1{0,1,2,...,k},

(38) 90(€) = f(£),
(39) (é) 9 (20,8),
(40) B; = 8gi(xo)-

To prove the invexity of the active constraint functions, it is enough to
show that system (21) is consistent. By Proposition 3.3 this is equivalent
to the validity of condition (24), where B’ is defined by (22) and (23).
To prove it, first observe from (35) and condition (CQ) that B’ does not
contain the origin of space R™ x R. Indeed, otherwise we have

k
(41) 0e Z )\gagi(wo),
i=0
k
(42) 0==> X8
i=0
for suitable numbers \; > 0,7 =0,1,... ,k, with
k
(43) Y ox=1
i=0

Observe that Aj # 0 since otherwise (41) contradicts condition (CQ).
Dividing (41) and (42) by A\j and setting A\; = A,/A{, we obtain

k
(44) 0 € f(z0) + Y MiBgi(xo),

i=1

k
(45) 0=—Fo— ) b
i=1
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Inclusion (44) shows that A = (A1, Aq,... ,\x) € E(zg) and hence, (45)
contradicts (35). We have thus proved that B’ does not contain the
origin of R™ x R. From Corollary 9.6.1 of [12] it follows that coneB’ is a
closed set. Assume now that (24) fails to hold i.e. (0,1) € cl cone B’ =
coneB’. Then there are v > 0 and X, > 0,7 = 0,1,2,... ,k, such that
(43) and the following conditions are satisfied:

k
(46) 0y Ndgi(zo),
i=0
k
(47) L=—y> N
1=0

Equality (47) shows that v # 0 and condition (46) yields Aj # 0 (see
(30)). Setting A; = A;/Aj and dividing (46) by vAj, we obtain again (44)
which shows that A = (A1, A2,... ,Ax) € E(zg). On the other hand, (47)
implies that

k
—Bo— > _ XiBi =1/4X > 0,

i=1
a contradiction to (35). a
As a consequence of Lemma 4.1 and Theorem 4.4 we obtain the fol-

lowing result which is proved in Theorem 3.1 of [5] for differentiable
programs.

COROLLARY 4.2. Assume that condition (CQ)’ is satisfied. Then the
conclusion of Theorem 4.4 is true.

COROLLARY 4.3. Assume that condition (CQ)" holds. If zg is a
minimizer of Problem (P) then, for any j € I(zg) such that g;j(z) < 0
for some z € S, we have

—dg;(zo) ﬂ cl cone C;(zo) = 0

where _
Cj(xo) = co U 0g;(xo)-
i€l(zo)\{s}

Proof. By Corollary 4.2 the active constraint functions are invex
on S at zo. Thus we find n(z) € R™ such that g;(x) — gi(zo) >
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92(xo,n(x)), i € I(xo). This shows that & := n(x) is a nonzero solu-
tion of system

97 (20,6) <0, i€ I(zo)\ {5}, ¢f(wo,€)<0.

Our desired conclusion is now an immediate consequence of Proposition
3.2. |

Now let us set
(48) So={z€S5:f(z)> f(zo)}

THEOREM 4.5. Assume that zo is a minimizer of Problem (P). As-
sume, in addition, that there is a point x € S\ Sy such that g;(z) <
0,7 € I(zg). If the objective function and the active constraint functions
are invex on S at xy then

(49) 0 € 9f(xo).

Proof. Since the Slater condition is satisfied, by Theorem 4.3 there
are nonnegative numbers A; and vectors ag € 0f(zo), a; € 9g;(xo) such
that

(50) —Qg = z /\iai.

We claim that A; = 0 for all i € I(zo). In this case, (50) yields ag = 0 and
hence, (49) holds. Assume to the contrary that \; # 0 for some i € I(zo).
Let x be the point appearing in the formulation of the theorem. Then
by the invexity assumption we have

(51) S Mann@) < Y Adale) - gi(20)] <0,

i€ (xo) i€1(zo)
(52) (a0, n(2)) < f(2) - f(20) = 0.
On the other hand, from (50) and (51) we have —(aop,n(z)) < 0, a
contradiction to (52). The proof is thus complete. (]
EXAMPLE 4.1. Let n =m =1 and let g;(z) =,
T if 0<uz,
flx)=¢ 0 if —1<z<0,
—z—1 if z<-L



Invexity as necessary optimality condition in nonsmooth programs 253

Then zy = 0 is a minimizer of (P), S = (—00,0], So = (—o00,~1).
Obviously, I(zg) = {1}, z := —1/2 € S\ Sy and g;(z) < 0. On the
other hand, it can be seen that f and g¢; are invex on S at zq, with n
being the identity map. By Theorem 4.5 inclusion (49) holds.

EXAMPLE 4.2. Let n =m =1 and let g;(z) = —x,

0 if 2<uz,
—x+ 2 if 1<z<2,
f(z) = .
if 0<z<1,
27ty if z<0.

Obviously, for zg = 0 I(zg) = {1}, 0f(xo) = [271,1] # 0 and x¢ is a
minimizer. On the other hand, for z = 2 € §\ Sy we have ¢g;(z) = -2 <
0. By Theorem 4.5 f and g; cannot be invex on S at x;.

5. Type I invexity and necessary optimality condition

Let 2o be a minimizer of Problem (P). Then the objective function
and the constraint functions are type I invex on S at xg, with the trivial
scale n(z) = 0 for all z € 5. This section will give conditions under which
nontrivial scales or nontrivial constant scales exist on some subset of .S
or on the whole set §. Observe that for the differentiable case Hanson
and Mond ([6], Theorem 2.2) show that a nontrivial scale on S can be
found if the number of the active constraints is less than the dimension of
variable z. We shall see in Corollary 5.1 that this fact is a consequence of
a more general result (Theorem 5.2) which is established for nonsmooth
programs under an assumption not depending on the number of the
active constraints.

Let Sp be defined by (48). We have the following result.

THEOREM 5.1. Let condition (CQ) hold. If z¢ is a minimizer of
Problem (P) then the objective function and the constraint functions
are type I invex on Sy at xq, with a nontrivial scale.

Proof. We first assume that I(xo) # 0. Let z € Sp. Since f(z) >
f(zo) and

(53) —gi(z0) >0, ¢ I(z0),
there is a positive number Gy such that
(54) f(z) = f(=o) = Bo,

(55) —gi(z0) > Bo, 1 & I(zo).
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Because of the boundedness of set E(zp) (see Lemma 4.1) there are
negative numbers 3;, ¢ € I(zg), such that for all vectors A = (\;, @ €
I(zg)) of E(xg) we have

(56) ~Bo — Z A G <0,

iE[(CI}O)

Let I(xg), I, go, p; and B; be as in the proof of Theorem 4.4. Using
inequality (56) and condition (CQ), and arguing as in the proof of The-
orem 4.4 we can show that system (21) has a nonzero solution £. Now
let us take o € (0, 1) such that ag?(zo,&) < Bo for all ¢ & I(xg). Setting
n(z) = af we have

(57)

f(CL') - f(l'()) Z BO 2 a/BO 2 ngo(l‘o?g) = fo(xoan(x))7
(58)

— gi(z0) = 0> aff; > agd(z0,&) = g} (z0,n(x)), € I(z0),
(59)

= gi(mo) = Bo = ag? (x0,€) = g7 (zo,n(x)), i & I(xo).

Thus fand g;,7=1,2,... ,m, are invex on Sy at zg, with the nontrivial
scale 7. This conclusion is proved under the assumption that I(xzg) # 0.

Consider now the case I(zg) = 0. Since functions g; are continu-
ous and since g;(zg) < 0 for all 4 = 1,2,... ,m we must find an open
neighborhood U of zg such that g;(u) < 0 for all 4 = 1,2,... ,m and
u € U. Then U C S. Since by assumption xg is a minimizer of f on S,
it must be a minimizer of f on U. By [14], 0 € df(zg) or, equivalently,
fzo,€) > 0 for all € € R™. Therefore, we must find £ # 0 such that
f%(x0,€) < By where By is a positive number satisfying (54) and (55).
Take a € (0,1) such that ag?(zo,£) < Bp for alli = 1,2,... ,m. Setting
n(z) = a€, we obtain again (57) and (59). Thus f and g; are invex on
So at zg, with nontrivial scale 7. a

REMARK 5.1. Theorem 5.1 fails to hold if we replace Sy by S. This is
shown by an example of Hanson and Mond ([6], p.55), where f(z) =z,
g(z) =1 —z and x¢ = 1. Another example is now given.

EXAMPLE 5.1. Let n = m = 1, f(z) = —2? and g1(z) = 2 — 1.
Then 2o = —1 is a minimizer of (P), S = [-1,1}, Sp = (—1,1). Since
w0 = 2 J1z, = —2, functions f and g, are type I invex on S at zp if
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and only if f(z) — f(zo) > 2n(z) and —g1(xy) > —2n(x) for all z € S.
If we take x = 1 € S\ Sy then these last inequalities are satisfied only if
n{x) = 0. This shows that f and g; cannot be type I invex on the whole
set S at zo with a nontrivial scale.

Observe from Example 5.1 (and the mentioned example of Hanson-
Mond in [6]) that, although condition (CQ) is satisfied the type I invexity
of fand g;, ¢ =1,2,... ,m, on the whole set S (with a nontrivial scale)
fails to hold. So the type I invexity on the whole set S requires a
condition different from condition (CQ). Such a condition is given in
Theorem 5.2 below. Before formulating it let us set

(60) Ap(zo) = co U 9gi(xo),
iefo(wo)
where go = f, Io(zo) = {0} U I(z0).
THEOREM 5.2. Let 29 be a minimizer of Problem (P). Then the
following statements are equivalent:

(a) The objective function and the constraint functions are type I
invex on S at xq, with a nontrivial constant scale.

(b) The objective function and the constraint functions are type I
invex on S at xq, with a nontrivial scale.

(c) R™ # cl cone Ag(zp).

Proof. (a) = (b) Obvious.
(b) = (¢) Setting z = zy we obtain from (9) and (10),

0 = f(w0) = f(wo) 2 f°(z0,m(0)),
0 = —gi(z0) > ¢ (z0,1(z0)), 1 € I(T0),
where n(zo) # 0 by assumption (b). Applying Proposition 3.1 yields

condition (c).
(c) = (a) By Proposition 3.1 there is £ # 0 such that

(61) fO(20,8) <0, g(z0,6) <0, i€ I(zo).
Since g;(zo) < 0 for ¢ € I(x¢) we can take a > 0 such that

(62) agy (o, €) < —gi(xo), i & I(xo).
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Observing now that g;(z¢) = 0 for i € I(zg) and f(x) — f(zo) > 0 for
all z € S we see from (61) and (62) that the nontrivial constant map
1 = o can be taken as a scale for functions f and g;, i =1,2,... ,m.0

REMARK 5.2. Theorem 5.2 remains true for differentiable programs.
In this case, the set Ag(xo) is nothing else than the convex hull of vectors
v and gi, , @ € I(zo). Observe that in condition (c) we do not require
that the number of the active constraints is less than the dimension of
variable 2. As we shall see in the proof of the following corollary, the
last condition implies (c).

COROLLARY 5.1. Assume that zo is a minimizer of problem (P)
where all functions involved in this problem are Fréchet differentiable at
xo. If the number of the active constraints is less than n (the dimension
of variable ) then statements (a), (b), and (c) hold.

Proof. Since z¢ is a minimizer of (P) the Fritz John condition (see
Theorem 4.1 with f, and g, in place of 9f(x¢) and 0g;(xo), respec-
tively) shows that vectors f; and g;, ,% € I(xo), are linearly dependent.
On the other hand, the number of these vectors is less than or equal to n.
Hence the (closed) linear subspace generated by them cannot coincide
with R™. Thus statement (c) of Theorem 5.2 holds. Since (c) implies by
Theorem 4.2 the statements (a) and (b), our proof is thus complete. [

Let us observe that in Example 5.1 condition (c) is violated. Hence by
Theorem 5.2 f and ¢; cannot be type I invex on S at zy with a nontrivial
scale. The same is true for the mentioned example of Hanson-Mond [6]
and another example of Hanson given in (][5, pp.600-601]).

In Example 4.1, 0f(xo) = [0,1] and 9g1(xo) = {1}. Thus Ag(zo) =
[0,1] and condition (c) holds. Hence by Theorem 5.2 f and g are type
I invex on S with a nontrivial constant scale.

COROLLARY 5.2. Let zp be a minimizer of Problem (P) and for some

(63) —0g;(zo) ﬂ cl cone Cj(zo) = 0,

where
Cj(zg) = co U 9g;(zo).
i€lo(z0)\{s}
Then the objective function and the constraint functions are type I invex
on S at xg, with a nontrivial scale. Conversely, if the objective function
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and the active constraint functions are invex on S at xp and if for j €
I(z) there is a point x € S\ Sy such that g;(x) < 0 then (63) holds.

Proof. Let go, @i, Bi, I{zo) and I be as in the proof of Theorem 4.4
and let I; = {j}. If (63) holds then by Proposition 3.2 it follows that
system (15), (16) (and hence, system (11)) has a nonzero solution £. By
Proposition 3.1 statement (c) (and hence, (b)) of Theorem 5.2 holds.

Turning to the proof of the second part of the corollary let us observe
that, for the point z appearing in its formulation, we have

go(x) — go(xo) = f(x) — f(z0) =0,
9i(x) — gi(z0) <0, i€ I(zo)\ {5},
9;(z) — gj(z0) <O.

Taking account of these conditions and making use of the invexity as-
sumption we derive that there is a point n(z) € R™ such that ¢ := n(z)
is a solution of system (15), (16). Applying Proposition 3.2 we obtain
(63), as desired. O
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