• Title/Summary/Keyword: strongly prime

Search Result 75, Processing Time 0.023 seconds

STRONGLY PRIME FUZZY IDEALS AND RELATED FUZZY IDEALS IN AN INTEGRAL DOMAIN

  • Kim, Myeong Og;Kim, Hwankoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.333-351
    • /
    • 2009
  • We introduce the concepts of strongly prime fuzzy ideals, powerful fuzzy ideals, strongly primary fuzzy ideals, and pseudo-strongly prime fuzzy ideals of an integral domain R and we provide characterizations of pseudo-valuation domains, almost pseudo-valuation domains, and pseudo-almost valuation domains in terms of these fuzzy ideals.

  • PDF

RINGS IN WHICH NILPOTENT ELEMENTS FORM AN IDEAL

  • Cho, June-Rae;Kim, Nam-Kyun;Lee, Yang
    • East Asian mathematical journal
    • /
    • v.18 no.1
    • /
    • pp.15-20
    • /
    • 2002
  • We study the relationships between strongly prime ideals and completely prime ideals, concentrating on the connections among various radicals(prime radical, upper nilradical and generalized nilradical). Given a ring R, consider the condition: (*) nilpotent elements of R form an ideal in R. We show that a ring R satisfies (*) if and only if every minimal strongly prime ideal of R is completely prime if and only if the upper nilradical coincides with the generalized nilradical in R.

  • PDF

Strongly Prime Ideals and Primal Ideals in Posets

  • John, Catherine Grace;Elavarasan, Balasubramanian
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.727-735
    • /
    • 2016
  • In this paper, we study and establish some interesting results of ideals in a poset. It is shown that for a nonzero ideal I of a poset P, there are at most two strongly prime ideals of P that are minimal over I. Also, we study the notion of primal ideals in a poset and the relationship among the primal ideals and strongly prime ideals is considered.

Pseudo valuation domains

  • Cho, Yong-Hwan
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.2
    • /
    • pp.281-284
    • /
    • 1996
  • In this paper we characterize strongly prime ideals and prove a theorem: an integral domain R is a PVD if and only if every maximal ideal M of R is strongly prime.

  • PDF

STRONGLY IRREDUCIBLE SUBMODULES

  • ATANI, SHAHABADDIN EBRAHIMI
    • Bulletin of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.121-131
    • /
    • 2005
  • This paper is motivated by the results in [6]. We study some properties of strongly irreducible submodules of a module. In fact, our objective is to investigate strongly irreducible modules and to examine in particular when sub modules of a module are strongly irreducible. For example, we show that prime submodules of a multiplication module are strongly irreducible, and a characterization is given of a multiplication module over a Noetherian ring which contain a non-prime strongly irreducible submodule.

GENERALIZED PRIME IDEALS IN NON-ASSOCIATIVE NEAR-RINGS I

  • Cho, Yong-Uk
    • East Asian mathematical journal
    • /
    • v.28 no.3
    • /
    • pp.281-285
    • /
    • 2012
  • In this paper, the concept of *-prime ideals in non-associative near-rings is introduced and then will be studied. For this purpose, first we introduce the notions of *-operation, *-prime ideal and *-system in a near-ring. Next, we will define the *-sequence, *-strongly nilpotent *-prime radical of near-rings, and then obtain some characterizations of *-prime ideal and *-prime radical $r_s$(I) of an ideal I of near-ring N.

zJ-Ideals and Strongly Prime Ideals in Posets

  • John, Catherine Grace;Elavarasan, Balasubramanian
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.385-391
    • /
    • 2017
  • In this paper, we study the notion of $z^J$ - ideals of posets and explore the various properties of $z^J$-ideals in posets. The relations between topological space on Sspec(P), the set $I_Q=\{x{\in}P:L(x,y){\subseteq}I\text{ for some }y{\in}P{\backslash}Q\}$ for an ideal I and a strongly prime ideal Q of P and $z^J$-ideals are discussed in poset P.

ON STRONGLY 1-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Almahdi, Fuad Ali Ahmed;Bouba, El Mehdi;Koam, Ali N.A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1205-1213
    • /
    • 2020
  • Let R be a commutative ring with 1 ≠ 0. In this paper, we introduce a subclass of the class of 1-absorbing primary ideals called the class of strongly 1-absorbing primary ideals. A proper ideal I of R is called strongly 1-absorbing primary if whenever nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈ ${\sqrt{0}}$. Firstly, we investigate basic properties of strongly 1-absorbing primary ideals. Hence, we use strongly 1-absorbing primary ideals to characterize rings with exactly one prime ideal (the UN-rings) and local rings with exactly one non maximal prime ideal. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the prime ideals, the primary ideals and the 1-absorbing primary ideals. In the end of this paper, we give an idea about some strongly 1-absorbing primary ideals of the quotient rings, the polynomial rings, and the power series rings.

CHARACTERIZATIONS OF ELEMENTS IN PRIME RADICALS OF SKEW POLYNOMIAL RINGS AND SKEW LAURENT POLYNOMIAL RINGS

  • Cheon, Jeoung-Soo;Kim, Eun-Jeong;Lee, Chang-Ik;Shin, Yun-Ho
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.2
    • /
    • pp.277-290
    • /
    • 2011
  • We show that the ${\theta}$-prime radical of a ring R is the set of all strongly ${\theta}$-nilpotent elements in R, where ${\theta}$ is an automorphism of R. We observe some conditions under which the ${\theta}$-prime radical of coincides with the prime radical of R. Moreover we characterize elements in prime radicals of skew Laurent polynomial rings, studying (${\theta}$, ${\theta}^{-1}$)-(semi)primeness of ideals of R.

A NOTE ON MINIMAL PRIME IDEALS

  • Mohammadi, Rasul;Moussavi, Ahmad;Zahiri, Masoome
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.4
    • /
    • pp.1281-1291
    • /
    • 2017
  • Let R be a strongly 2-primal ring and I a proper ideal of R. Then there are only finitely many prime ideals minimal over I if and only if for every prime ideal P minimal over I, the ideal $P/{\sqrt{I}}$ of $R/{\sqrt{I}}$ is finitely generated if and only if the ring $R/{\sqrt{I}}$ satisfies the ACC on right annihilators. This result extends "D. D. Anderson, A note on minimal prime ideals, Proc. Amer. Math. Soc. 122 (1994), no. 1, 13-14." to large classes of noncommutative rings. It is also shown that, a 2-primal ring R only has finitely many minimal prime ideals if each minimal prime ideal of R is finitely generated. Examples are provided to illustrate our results.