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STRONGLY PRIME FUZZY IDEALS AND RELATED
FUZZY IDEALS IN AN INTEGRAL DOMAIN

MyEONG Oc KiMm* AND HwaNKOO Kim**

ABSTRACT. We introduce the concepts of strongly prime fuzzy ideals,
powerful fuzzy ideals, strongly primary fuzzy ideals, and pseudo-
strongly prime fuzzy ideals of an integral domain R and we pro-
vide characterizations of pseudo-valuation domains, almost pseudo-
valuation domains, and pseudo-almost valuation domains in terms
of these fuzzy ideals.

1. Introduction

In [9], K. H. Lee and J. N. Mordeson introduced the notions of frac-
tionary fuzzy ideals and of fuzzy invertible fractionary fuzzy ideals. Us-
ing these notions they characterized Dedekind domains in terms of the
invertibility of certain fractionary fuzzy ideals. In [5], we introduced the
concept of fuzzy star-operations on an integral domain R and charac-
terized Priifer domains, pseudo-Dedekind domains and G-GCD domains
and others in terms of the invertibility of certain fractionary fuzzy ideals.
Our study of fuzzy multiplicative ideal theory has continued in [6], where
we characterized UFD’s, valuation domains, Priifer domains, m-domains
and Mori domains. Also we introduced the concept of nonfactorable
fuzzy ideals and characterized Dedekind domains in terms of nonfac-
torable fuzzy ideals.

This article continues a study of fuzzy multiplicative ideal theory.
That is, we introduce the concepts of several new fuzzy ideals and using
these notions we characterize some integral domains which are impor-
tant classes in multiplicative ideal theory. More precisely, in section 2,
we study strongly prime fuzzy ideals and characterize pseudo-valuation
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domains. Section 3 contains the concept and properties of powerful
fuzzy ideals. In section 4, we introduce the concept of strongly primary
fuzzy ideals and characterize almost pseudo-valuation domains. In the
last section, using the notion of pseudo-strongly prime fuzzy ideals, we
characterize pseudo-almost valuation domains.

Throughout this article let R be an integral domain with quotient
field K. A fuzzy subset of R is a function from R into [0,1]. Let u, v
be fuzzy subsets of R. We write p C v if pu(z) < v(x) for all z € R.
If 4 C v and there exists x € R such that u(x) < v(z), then we write
i C v. We denote the image of u by Im(u). We say that p is finite-valued
if |[Im(p)| < oo.

Let yy = { z € R | u(z) >t }, a level set, for every t € [0, 1]. For a
subset W of R let X(VQ be the fuzzy subset of K such that X(VQ () =1if
x € W and Xg/)(x) =tifx € K\ W, where t € [0,1).

A fuzzy subset u of R is a fuzzy ideal of R if for every x, y € R,
p(x—y) > p(x) A p(y) and p(zy) > p(x) V p(y). A fuzzy subset pof R
is a fuzzy ideal of R if and only if u(0) > u(x) for every z € R, and
is an ideal of R for every ¢ € [0, 11(0)].

A fuzzy subset § of K is a fuzzy R-submodule of K if f(x —y) >
B(x) A B(y), B(rz) > B(x) and B(0) =1 for every x, y € K, r € R. A
fuzzy subset 3 of K is a fuzzy R-submodule of K if and only if 5(0) =1
and f3; is an R-submodule of K for every ¢t € [0,1]. We let 3, denote
{z € K | B(z) = B(0)}. Let N denote the positive integers.

Let a and 3 be fuzzy subsets of K. Define the fuzzy subset a o § of
K by, for every z € K, (o f)(z) = {a(y) AB(z) | y,z € K} if © is
expressible as a product z = yz. The product of a and 3, written by
o, is defined by afi(x) = VIAL, (a(yi) A B()) | gz € Ko1 < i <
n,n €N, Y " vz =a}. Let {oy | i =1,--- ,n} be a collection of fuzzy
subsets of K; we define the fuzzy subset Y ;o of K by for every z € K,
(S0 a)(@) = VAMaulws) [ i = L+ 0} | @ = X0 i € K} A
fuzzy subset (;c; a; of K is defined by ((;c; i) (z) = AMau(x) | i € I}
for every x € K. For d € K and t € [0, 1], we let d; denote the fuzzy
subset of K defined by, for every € K, dy(x) =tif z = d and di(z) =0
otherwise. We call d; a fuzzy singleton. Let o be a fuzzy subset of K
and let (o) denote the intersection of all fuzzy submodules of K which
contain o. Then (o) is called the fuzzy submodule of K generated by o.

A fuzzy ideal £ of a ring R is said to be fuzzy prime if it is non-constant
and for any two fuzzy ideals p and v of R, the condition pov C £ implies
that either u C € or v C £. It is well-known that £ is a fuzzy prime of
R if and only if £(0) = 1, &, is a prime ideal of R and |Im(§)| = 2 ([10,
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Theorem 3.5.5]). A fuzzy ideal w is called a mazimal fuzzy ideal if w is a
maximal element in the set of all non-constant fuzzy ideals of R under
pointwise partial ordering.

A fuzzy R-submodule § of K is called a fractionary fuzzy ideal of R if
there exists d € R,d # 0, such that dy o 3 C Xg) for some t € [0,1). Let
B be a fractionary fuzzy ideal of R. Then f3|g is a fuzzy ideal of R. If 5|
is a prime(maximal) fuzzy ideal of R, then £ is called a prime (mazimal)
fractionary fuzzy ideal of R. If B(x) = 0 for all z € K \ R, then [ is
called an integral fractionary fuzzy ideal of R. Thus, if 3 is a prime
(maximal) integral fractionary fuzzy ideal of R, then I'm(3) = {0,¢,1}
for some t € [0,1). Any unexplained notation or terminology is standard
like in [10].

2. Strongly prime fuzzy ideals

We recall from [4] that a prime ideal P of R is said to be strongly
prime if x,y € K and xy € P imply that x € P or y € P and an integral
domain R is called a pseudo-valuation domain if every prime ideal of R
is strongly prime. In this section, we introduce the concept of strongly
prime fuzzy ideals and characterize pseudo-valuation domains using this
concept.

DEFINITION 2.1. A prime integral fractionary fuzzy ideal 8 of R is
said to be strongly prime if for any fractionary fuzzy ideals p,v of R,
pov C 3 implies that p C G or v C .

PropoSITION 2.2. If 8 is a strongly prime integral fractionary fuzzy
ideal of R, then (3, is a strongly prime ideal of R.

Proof. Let z,y € K and zy € [i«. Then < 1 > o < y; >=<
(zy)1 >C (. Since f is a strongly prime fuzzy ideal, we have < x; >C 3
or <y >C (. Hence x € B, or y € B,. Thus B, is a strongly prime
ideal of R. O

THEOREM 2.3. Let (8 be a {0, 1}-valued prime integral fractionary
fuzzy ideal of R. Then the following statements are equivalent:

(1) B is a strongly prime fuzzy ideal of R.

(2) P is a strongly prime ideal of R.

(3) If z,y € K, a,b € [0,1] and < x5, > o < y, >C [3, then either
<Xy >C B or <y, >C L.
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Proof. (1) = (2) This follows from Proposition 2.2.

(2) = (1) Suppose that there exist fractionary fuzzy ideals p, v of R
such that pov C 3, but p ¢ f and v € 5. Then there exist z,y € K
such that u(x) > B(x) and v(y) > B(y). Since §is {0, 1}-valued, we have
B(x) = 0and B(y) = 0. Then x ¢ B, and y ¢ [, By hypothesis, zy ¢ .,
and so f(zy) = 0. But 0 = (zy) > (pov)(xy) > p(z) Av(y) > 0, which
is a contradiction. Thus y C B or v C 3. Therefore § is a strongly
prime fuzzy ideal of R.

(1) = (3) This is trivial.

(3) = (1) Suppose that for any fractionary fuzzy ideals u,v of R,
pov C B. Let xz,y € K. Since x,,) C p and y,q) C v, we have
Ty(z) © Yu(y) © pov C B. By hypothesis, z,,,) C B or y,(,) C 8. Hence
w(z) € B(x) or v(y) C B(y). Thus p C Gorv C L. O

COROLLARY 2.4. Let a and 3 be a {0, 1}-valued prime integral frac-
tionary fuzzy ideals of R. If « C § and ( is a strongly prime fuzzy ideal
of R, then « is a strongly prime fuzzy ideal of R.

THEOREM 2.5. The following statements are equivalent for an inte-
gral domain R:

(1) R is a pseudo-valuation domain.
(2) Every {0,1}-valued prime integral fractionary fuzzy ideal of R is
a strongly prime fuzzy ideal of R.

Proof. (1) = (2) Let 8 be a {0, 1}-valued prime integral fractionary
fuzzy ideal of R. Since R is a pseudo-valuation domain, we have G, =
(B|R)« is a strongly prime ideal of R. Hence 3 is a strongly prime fuzzy
ideal of R by Theorem 2.3.

(2)= (1) Let P be a prime ideal of R, and assume that z,y € K and
zy € P. Then < x1 > o <y >C ng). By hypothesis, < x1 >C ng) or
<y >C ng). Hence x € P or y € P. Thus P is a strongly prime ideal
of R. Therefore R is a pseudo-valuation domain. O

The following corollary is well-known ([4, Proposition 1.1]). Here, we
will give its proof in terms of fractional fuzzy ideals.

COROLLARY 2.6. Every valuation domain is a pseudo-valuation do-
main.

Proof. Let R be a valuation domain and let 8 be a {0,1}-valued
prime integral fractionary fuzzy ideals of R. Suppose that z,y € K
and < 21 > o < y; >C 3. Then zy € B,. If x ¢ R, y ¢ R, then
B(z) = B(y) = 0. Since R is a valuation domain, we have =1, y~! € R.
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Then y = 2yz~' € B, x = zyy~' € B, which is a contradiction. Thus
either x € Rory € R. If z,y € R, then we are done. If x ¢ R, then
<x >¢ B, and so y = zyr~' € By. Thus < y; >C (8. Hence 3 is
a strongly prime fuzzy ideal of R. Therefore R is a pseudo-valuation
domain. O

The following result is the fuzzification of [4, Proposition 1.2].

PROPOSITION 2.7. Let 3 be a {0, 1}-valued prime integral fractionary
fuzzy ideal of R. Then (3 is a strongly prime fuzzy ideal of R if and only
jf(%)l o3 C 8 whenever x € K \ R.

Proof. Suppose that 3 is a strongly prime fuzzy ideal of R and let
z€K\Rand we K. If B(w) =1, then ((1); 0 B)(w) <1 = B(w). If
B(w) = 0, then we now show that ((2); o 8)(w) = B(zw) = 0. If w € R
and f(zw) = 1, then xw € B,. Since [ is a strongly prime ideal of R,
we have w € f3,. Then f(w) = 1, which is a contradiction. If w ¢ R and
B(zw) =1, then < 21 > o < w; >C (. Since f is a strongly prime fuzzy
ideal of R, < 1 >C B or < w; >C . Hence f(z) =1 or f(w) = 1,
which is a contradiction. Therefore (%)1 o3 Cp.

Conversely, assume that (1); 0 3 C 3 for each z € K \ R, and that
Y,z € K and < y; > o < 21 >C . If y,z € R, then [(yz) = 5(y)
or B(yz) = B(z) since B|g is a prime fuzzy ideal of R. Then y € B, or
z € Bx. Hence < y1 >C for <z >C 3. If y ¢ Rand z € R, then
< y1 >¢ 3. By hypothesis, (%)1 o3 C . Hence < 21 >=< (5)1 >0 <
yr > o < z1 >C (%)1 o8 C [B. Therefore § is a strongly prime fuzzy
ideal of R . O

COROLLARY 2.8. If R is a pseudo-valuation domain, then every {0, 1}-
valued prime integral fractionary fuzzy ideals of R are linearly ordered.

Proof. Let o, 3 be {0, 1}-valued prime integral fractionary fuzzy ideals
of R and assume that o ¢ . Then there exists z € K such that
a(r) > B(x). Since a and f are {0,1}-valued, we have a(x) = 1 and
B(z) = 0, and so x € R. We now show that 8 C «. Suppose that
w € Rand B(w) =1. If € R, then 0 = (z) = B(w- ) > B(w) =1,

which is a contradiction. Hence we conclude 7 ¢ R. Since « is a

strongly prime fuzzy ideals of R, (¥)1 0o« C a by Proposition 2.7. Then

a(w) > ((£)10a)(w) = a(z) = 1. Thus a(w) = 1. Hence 3 C o O
The following result is the fuzzification of [4, Theorem 1.4].

THEOREM 2.9. Let (R, M) be a quasi-local domain. Then the fol-
lowing statements are equivalent:
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(1) R is a pseudo-valuation domain.

(2) For any {0,1}-valued integral fractionary fuzzy ideals «, 8 of R,
either a C 3 or Xg\(/][) o C xg\(}) oa.

(3) For any {0,1}-valued integral fractionary fuzzy ideals o, 3 of R,
either a C (3 or XE\(/)[) ofBCa.

(4) Xg\g) is a strongly prime integral fractional fuzzy ideal of R.

Proof. (1) = (2) Since R is a pseudo-valuation domain, we have either
oy C By or MG, C Ma,. Thenagﬁorxg&)oﬂgxg\?[)oa.

(2) = (3) If XS\(BI) o3 C Xg\(/)[) oa, then M3, € Ma, C «,. Hence

(0) -
Xy © B Ca.

(3) = (4) Clearly XS\(/)[) is a {0, 1}-valued prime integral fractional
fuzzy ideal of R. Let x,y € R with ¥ ¢ R. Since m ¢ R, we have
zR ¢ yR. Then < z1 >¢< y; >. By hypothesis, we have < y; >
OXE\(/)[) C< o >C<< 2 > oxg). Then < (%)1 > OXE\(}) - Xg)- Hence

YM C R. If%M:R,thenM:%R,andsoﬁEMQR,Whichisa

contradiction. Thus M C M, and so < (£); > oxg\(}) C Xg\(/)[)- Therefore

Xg\(/][) is a strongly prime fuzzy ideal of R by Proposition 2.7.

(4) = (1) Since XS\(}) is a strongly prime integral fractional fuzzy ideal

of R, M = (xs\(}))* is a strongly prime ideal of R by Theorem 2.3. Hence
R is a pseudo-valuation domain. O

ProposITION 2.10. Let R be a pseudo-valuation domain. If 3 is a
{0, 1}-valued integral fractionary fuzzy ideal of R, then u = N{ g* | k =
1,2,---} is a prime integral fractionary fuzzy ideal of R.

Proof. Since R is a pseudo-valuation domain, P = N{ (8,)% | k =
1,2,---} is a prime ideal of R. Since 3 is finite-valued, (3,)* =
for each k € N by [10, Theorem 3.1.16]. Then P = ({ (8.)" |
L2, 3 =N{ (6" [ k=12-}=({B"k=12"1}) = pe

Thus p is a prime integral fractionary fuzzy ideal of R. O

Let & be a fractionary fuzzy ideal of R and let &% be the family of
all prime fractionary fuzzy ideal of R such that & C u. The fuzzy radical
ideal of €, denoted by /€, is defined by /&€ =N{ p | p € Pe}if Pe #10

and vZ = X0 it 2 = 0. Then ¢ € V€ and V&, C (VO).. If s a
{0, 1}-valued fractionary fuzzy ideal of R, then /&, = (V/€)x.
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COROLLARY 2.11. Let (R, M) be a pseudo-valuation domain. If o
and [ are {0,1}-valued integral fractionary fuzzy ideals of R with o C
VB, then o* C 3 for some k > 0.

Proof. Suppose that o ¢ f for each k > 0. Since R is a pseudo-

valuation domain, Xﬂ[}) o3 C oF for each k > 0. Since § C XE\(/)[), we have
(% C oF for each k > 0. Then $% C ¥, and N oF is a prime integral
fractionary fuzzy ideal of R by Proposition 2.10. By [10, Theorem 3.5.3],
we have 3 C N aF. Hence /3 C N aF C o, which is a contradiction. [

3. Powerful fuzzy ideals

We recall from [2] that a nonzero ideal I of R is said to be powerful
if z,y € K and zy € I imply that x € R or y € R. In this section, we
introduce the concept of powerful fuzzy ideal of R.

DEFINITION 3.1. Let 8 be an integral fractionary fuzzy ideal of R.

Then S is called a powerful fuzzy ideal of R if x,y € K and < 1 > o <
y1 >C G imply that < 1 >C ng) or <y >C xﬁ?)-
PROPOSITION 3.2. Let 8 be an integral fractionary fuzzy ideal of R.

Then ( is a powerful fuzzy ideal of R if and only if 3, is a powerful ideal
of R.

Proof. Suppose that 3 is a powerful fuzzy ideal of R and that =,y € K
and zy € fBi«. Then < 1 > o < y; >=< (zy); >C (. Since [ is a

powerful fuzzy ideal of R, we have < x1 >C x(}g) or <y >C ng). Then
x € Rory € R. Hence (3, is powerful ideal of R. Conversely, assume that
Bs is a powerful ideal of R and that z,y € K and < z; > o < y; >C .
Then zy € By, and so z € R or y € R. Hence < x1 >C ng) or
<y >C ng). Therefore 3 is a powerful fuzzy ideal of R. O

The following corollary is well-known ([2]). Here, we will give its
proof in terms of fractional fuzzy ideals.

COROLLARY 3.3. An integral domain R is powerful if and only if R
is a valuation domain.

Proof. Suppose that R = (X%?))* is powerful. Then Xg) is a powerful

fuzzy ideal of R by Proposition 3.2. Let 0 # x € K. Then < z1 >
o< (%)1 >C ng). By hypothesis, < x7 >C ng) or < (%)1 >C Xg)-
Thus z € R or z~! € R. Hence R is a valuation domain. Conversely,
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assume that z,y € K and < z1 > o < y3 >C ng), but < 21 >¢ Xg)).
Then z ¢ R. Since R is a valuation domain, we have 2! € R. Thus
<y >=< (%)1 >o<x >o0<y >C Xg) oxgg) = Xg:?)' Hence ng) is
a powerful fuzzy ideal of R. Therefore R is powerful. O

COROLLARY 3.4. Let 3 be a {0, 1}-valued prime integral fractionary
fuzzy ideal of R. Then  is a strongly prime fuzzy ideal of R if and only
if B is a powerful fuzzy ideal of R.

Proof. This follows from Theorem 2.3, Proposition 3.2, and the fact
that a prime ideal of R is strongly prime if and only if it is powerful (|2,
Proposition 1.3]). O

The following result is easy to prove and so we omit its proof.

COROLLARY 3.5. Let o, 8 be integral fractionary fuzzy ideals of R.
If a« C B and ( is a powerful fuzzy ideal of R, then « is a powerful fuzzy
ideal of R.

COROLLARY 3.6. Let 8 be a {0,1}-valued powerful integral frac-
tionary fuzzy ideal of R. If o is a {0, 1}-valued prime integral fractionary
fuzzy ideal of R, then o and 3 are comparable.

Proof. This follows from Proposition 3.2 and [2, Theorem 1.5]. [

COROLLARY 3.7. If § is a {0, 1}-valued powerful integral fractionary
fuzzy ideal of R, then /3 is a prime fractionary fuzzy ideal of R.

Proof. This follows from Proposition 3.2, [2, Proposition 1.9], and the
fact that (v/B3) = VB« ([10, Corollary 3.6.6]). O

The following result is the fuzzification of [2, Lemma 1.2].

PROPOSITION 3.8. Let 3 be a {0, 1}-valued integral fractionary fuzzy
ideal of R. Then the following statements are equivalent:

(1) B is a powerful fuzzy ideal of R.
(2) (2)108C X\ for each z € K \ R.
3) (1)108C ng) for each x € K \ B..

Proof. (1) = (2) Suppose that [ is a powerful fuzzy ideal of R and
let z € K\ R Ifwé€ R, then (1)1 08)(w) < 1= ng)(w). Ifwé¢R

and f(zw) = 1, then < 21 > o <aC wi >C B. Since (§ is powerful, we
have < z; >C ng) or < wj; >C Xg). Then = € R or w € R, which is a
contradiction. Thus ((2); o 3)(w) = B(zw) = 0. Hence (2); 03 C ng).

(2) = (3) This is trivial.
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(3) = (1) Suppose that z,y € K and < 1 > o < y; >C [, but

<z >¢ Xg)). Then = ¢ R. By hypothesis, (i)l of C ng). Thus
<y >=< (%)1 >o0<xp>0<y >C (%)1oﬁgxg§). Hence [ is a

powerful fuzzy ideal of R. O

COROLLARY 3.9. If (3 is a {0, 1}-valued powerful integral fractionary
fuzzy ideal of R, then (3% is a powerful fuzzy ideal of R.

Proof. Let x € K\ R. Since 3 is a powerful fuzzy ideal of R, (%)mﬂ -
ng). Then () 08 C Xg) o3 C ng). In fact, if w € K \ R and
(ng) o %)(w) = 1, then there exist u,v € K such that w = uv and
Xg)(u) = 1,6%(v) = 1. Also, since 3%(v) = 1, there exist a,b € K
such that v = ab and fB(a) =1 = B(b) = 1. Hence u,a,b € R, and so

w = wv € R, which is a contradiction. Thus (ng) o 3?)(w) = 0 for each
w € K\ R. Therefore 32 is a powerful fuzzy ideal of R. O

PROPOSITION 3.10. Let 8 be a {0, 1}-valued powerful integral frac-
tionary fuzzy ideal of R. Then the following statements are equivalent:

(1) B is a powerful fuzzy ideal of R.
(2) If x,y € K and < x1 > o < y; >C [, then < 1 >C [ or
<y >C Xg)-

Proof. (1) = (2) Suppose that z,y € K and < 1 > o < y; >C f.
If <z >¢Z B, then < (1)1 > o C ng) by Proposition 3.8. Hence

T
<y >=< (L)1 >o0< (zy)1 >C< (2)1 > 08 C Xg).
(2) = (1) Let z € K\ B and let w € K\ R. If (1)1 0 B)(w) =
B(xw) = 1, then zw € (B, and so < x; > o < w; >C (. By hypothesis
<z >C [or < w >C ng). Since = ¢ [, we have < w; >C ng)-

Then w € R, which is a contradiction. Thus ((2); 0 8)(w) = B(zw) = 0.
Hence (%)1 offC Xg_-?). Therefore [ is a powerful fuzzy ideal of R. O

PROPOSITION 3.11. The finite sum of a {0, 1}-valued powerful inte-

gral fractionary fuzzy ideals of R is a {0, 1}-valued powerful fuzzy ideal
of R.

Proof. Let B1,---, By be {0, 1}-valued powerful integral fractionary
fuzzy ideals of R and let z € K \ R. Then (1), 04; C ng), where

i=1,---,n. Thus (%)10(51-1-'”4—@1):(%)1§ﬂ1+-"+(%)10ﬂn§

Xg) +- 4 Xg) = ng)' Hence B1 + - - - + (6, is a powerful fuzzy ideal of

R. O
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PROPOSITION 3.12. An integral domain R is a pseudo-valuation do-
main if and only if some {0, 1}-valued maximal integral fractionary fuzzy
ideal of R is a powerful fuzzy ideal of R.

Proof. Suppose that (R, M) is a pseudo-valuation domain. Then ev-
ery {0, 1}-valued prime integral fractionary fuzzy ideal of R is a powerful

fuzzy ideal of R by Theorem 2.5 and Corollary 3.4. Thus Xﬁ\(}) is a pow-
erful fuzzy ideal of R. Conversely, let 5 be a {0, 1}-valued prime integral
fractionary fuzzy ideal of R and «a be a {0,1}-valued maximal integral
fractionary fuzzy ideal of R with a powerful. Then o C g or 8 C « by
Corollary 3.6. From the fact that « is a maximal and powerful fuzzy
ideal, it follows that ( is a strongly prime fuzzy ideal of R. Thus R is a
pseudo-valuation domain. O

ProPOSITION 3.13. If B is a {0,1}-valued powerful integral frac-
tionary fuzzy ideal of R with 3, # R, then p=({ ¥ | k=1,2,--- } is
a strongly prime fuzzy ideal of R.

Proof. Since 3 is finite-valued, we have ., = (N{ B¥ |k =1,2,---})s =
N B k=12 Y =N{ (B)" | k=1,2,---}. Since 3, is a proper
powerful ideal of R, u. is a strongly prime ideal of R. By Theorem 2.3,
= NF* is a strongly prime fuzzy ideal of R. O

PROPOSITION 3.14. Let 8 be a {0, 1}-valued powerful integral frac-
tionary fuzzy ideal of R.
(1) If 2,y € K and < x1 > o < y; >C /3, then < (z"); >C [ or
< (y"™)1 >C 3 for some n € N.
(2) If v € K and < (2™); >C 3 for some n € N, then < (z"%); >C
Xg) for each k > 0.

Proof. (1) Since zy € (v/B)« = /B, and fi is a powerful ideal of R,
by [2, Proposition 1.9] either 2™ € §, or y™ € (3, for some n € N. Thus
< (2™)1 >C Bor < (y")1 >C B

(2) Straightforward. O

Recall from [2] that an integral domain R is said to be seminormal if
x € K and 22,23 € R imply = € R.

ProrosITION 3.15. Let R be a seminormal integral domain. If (3 is
a {0, 1}-valued powerful integral fractionary fuzzy ideal of R, then /(3
is a powerful fuzzy ideal of R.

Proof. Suppose that z,y € K and < x1 > o < 33 >C /3. By
Proposition 3.14, < (z"); >C S or < (y"); >C 3 for some n € N.
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Then < (z"); >C ng) or < (y"tF); >C ng) for each k > 0. Hence
z"t* € R or y"t* € R for each k > 0. Since R is seminormal, we have
x € Rory € R. Then < x; >§X$g) or < yi >§X§g). Thus /3 is a
powerful fuzzy ideal of R. 0

ProrosiTION 3.16. Let B be a powerful integral fractionary fuzzy
ideal of R. If o =< (x1)1, -+, (zn)1 >,21, - ,on € R is a finitely
generated prime integral fractionary fuzzy ideal of R with a C (3, then «
is a maximal fractionary fuzzy ideal of R. Hence R is a pseudo-valuation
domain.

Proof. Since [ is powerful, « is a {0, 1}-valued powerful fuzzy ideal
of R. Since «, is a finitely generated prime ideal of R and [, is a
powerful ideal of R, c is a maximal ideal of R by [2, Proposition 1.14].
Then « is a maximal integral fractionary fuzzy ideal of R. Hence R is a
pseudo-valuation domain by Proposition 3.12. O

LEMMA 3.17. Let R be a valuation domain. If 3 is a {0,1}-valued
integral fractionary fuzzy ideal of R with (. # R, then § is a powerful
fuzzy ideal of R.

Proof. Let x € K\ R. Then 7! € R, and so (1)1 08), = 2718, C

O« C R = (ng))*. Hence (%)1 o C ng). Thus 8 is a powerful fuzzy
ideal of R. 0

THEOREM 3.18. The following statements are equivalent:

(1) R is a valuation domain.
(2) Every {0, 1}-valued integral fractionary fuzzy ideal 3 of R with
B+« # R is a powerful fuzzy ideal of R.

Proof. (1) = (2) This follows from Lemma 3.17.

(2) = (1) Let I be any proper ideal of R and let 5 = x;. Then
B« = (x1)+ = I # R. By hypothesis, § is a powerful fuzzy ideal of R.
By Proposition 3.8, (%)1 o3 C ng) for each z € K\ 3. Then 2713, C R,
i.e., 77 C R. Hence R is a valuation domain by [11, Theorem 37]. [

We recall from [11] that an ideal I of R is called divided if x™'1 C R
for each € R\ I and that an ideal I of R is said to be super divided if
2711 C R for each = € K\1I.

DEFINITION 3.19. An integral fractionary fuzzy ideal 3 of R is called
a divided fuzzy ideal of R if (%)1 o3 C f for each z € K \ fs.



344 Myeong Og Kim and Hwankoo Kim

PROPOSITION 3.20. Let (3 be a {0, 1}-valued integral fractionary fuzzy
ideal of R. Then ( is a divided fuzzy ideal of R if and only if (B, is a
super divided ideal of R.

Proof. Let x € K\ (. Since g is divided, we have (%)1 o3 C 3. Then
x7 '8, C B« C R. Thus f, is a super divided ideal of R. Conversely, let
z€ K\ B and w € K. If B(w) = 0 and ((2)1 0 B)(w) = Baw) = 1,
then zw € B, and so w € 713, C B.. Thus B(w) = 1, which is a
contradiction. Hence (%)1 o B C B. Therefore 3 is a divided fuzzy ideal
of R. O

ProOPOSITION 3.21. Let 8 be a {0,1}-valued prime integral frac-
tionary fuzzy ideal of R. Then (3 is a divided fuzzy ideal of R if and only
if B is a strongly prime fuzzy ideal of R.

Proof. Let x € K\ R. Then z € K\ (.. Since [ is a divided fuzzy
ideal of R, we have (%)1 o C B. Thus 8 is a strongly prime fuzzy ideal
of R by Proposition 2.7. Conversely, let z € K \ fx. Then =z € R or
x ¢ R. If x ¢ R, then (%)1 o3 C (3 since (3 is a strongly prime fuzzy
ideal of R. Now suppose that € R and w € K. If f(w) = 0 and
((3)108)(w) = B(zw) = 1, then zw € B,. Since B, is a strongly prime
ideal of R, we have x € (3, or w € ;. Then 5(z) =1 or f(w) = 1, which
is a contradiction. Thus (%)1 o3 C B. Hence ( is a divided fuzzy ideal
of R. O

PROPOSITION 3.22. The finite sum of {0, 1}-valued divided integral

fractionary fuzzy ideals of R is a {0, 1}-valued divided fuzzy ideal of R.

Proof. Let 1, , [0, be {0,1}-valued divided integral fractionary
fuzzy ideals of R and let z € K\ (B1 + -+ + Bn)«. Then = ¢ (5;), for

eachi=1,---,n. Since each 3; is divided, we have (%)1 o B; C 3;, where
=1, ,m Thus (110 (B + -+ B = (D108 ++(L)108, C
61+ -+ Bn. Hence 81 + -+ G, is a divided fuzzy ideal of R. O

4. Strongly primary fuzzy ideals

We recall from [10] that a fuzzy ideal 3 of R is called primary if 3 is
nonconstant and for any fuzzy ideals u,v of R, pov C 3 implies that
uw C Borv C+/B. A fuzzy ideal 3 of R is a primary if and only if
B(0) =1, B, is a primary ideal of R and [Im(8)| = 2.

We recall from [2] that an ideal I of R is called a strongly primary
ideal of R if x,y € K and xy € I imply that x € I or y™ € I for some
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n € N and an integral domain R is called an almost pseudo-valuation
domain if every prime ideal of R is strongly primary.

In this section, we introduce the concept of strongly primary fuzzy
ideals and characterize almost pseudo-valuation domains using this con-
cept.

DEFINITION 4.1. Let 8 be an integral fractionary fuzzy ideal of R.
Then S is called a strongly primary fuzzy ideal of R if for any fractionary
fuzzy ideals p,v of R, pov C 3 implies that u C 3 or v C /f.

It is clear that a strongly prime fuzzy ideal of R is a strongly primary
fuzzy ideal of R.

THEOREM 4.2. Let 3 be a {0,1}-valued integral fractionary fuzzy
ideal of R. Then the following statements are equivalent:

(1) B is a strongly primary fuzzy ideal of R.
(2) B is a strongly primary ideal of R.

Proof. (1) = (2) Suppose that [ is a strongly primary fuzzy ideal of
R and let z,y € K and zy € 8,. Then < z; > o < y; >C (. Since 3 is
a strongly primary fuzzy ideal of R, < 1 >C 3 or < y; >C /3. Then
x € By ory € (vVB)x =B, Thus B, is a strongly primary ideal of R.

(2) = (1) Suppose that there exist fractionary fuzzy ideals p, v of R
such that pov C 3, but u ¢ 3 and v ¢ /3. Then there exist z,y € K
such that u(z) > B(z) and v(y) > (v/B)(y). Since S is {0, 1}-valued, we
have f(z) =0 and (v/3)(y) =0. Thenz ¢ B, and y ¢ (v/B)x = v/B«. By
hypothesis, xy ¢ (., and so B(zy) = 0. But 0 = B(zy) > (pov)(zy) >
wu(z) Av(y) > 0, which is a contradiction. Thus u C S or v C /(.
Therefore 3 is a strongly primary fuzzy ideal of R. O

COROLLARY 4.3. Let 3 be a {0, 1}-valued integral fractionary fuzzy
ideal of R. If B is a strongly primary fuzzy ideal of R, then (|g is a
primary fuzzy ideal of R.

Proof. By Theorem 4.2, 5, = (B|r), is a strongly primary ideal of R.
Then f|g is a primary fuzzy ideal of R by [10, Theorem 3.7.10]. O

COROLLARY 4.4. Let R be a valuation domain and let 3 be a {0,1}-
valued integral fractionary fuzzy ideal of R. If B|r is a primary fuzzy
ideal of R, then 3 is a strongly primary fuzzy ideal of R.

Proof. By [10, Theorem 3.7.10], B« = (8|r), is a primary ideal of R.
Since R is a valuation domain, 3, is a strongly primary ideal of R. Then
[ is a strongly primary fuzzy ideal of R by Theorem 4.2. O
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COROLLARY 4.5. Let R be a seminormal domain. If 5 is a {0,1}-
valued strongly primary integral fractionary fuzzy ideal of R with [, #
R, then f3 is a powerful fuzzy ideal of R and \/(3 is a strongly prime fuzzy
ideal of R. In particular, a {0, 1}-valued prime integral fractionary fuzzy
ideal of R is strongly prime if and only if it is strongly primary.

Proof. Since (3, is a strongly primary ideal of R, [, is a powerful
ideal of R. Then ( is a powerful fuzzy ideal of R by Proposition 3.2. It
follows from Corollary 3.7 and Proposition 3.15 that 1/ is a prime and
powerful fuzzy ideal of R. Hence \/f is a strongly prime fuzzy ideal of
R by Corollary 3.4. O

PROPOSITION 4.6. If 3 is a {0, 1}-valued strongly primary integral
fractionary fuzzy ideal of R, then p = (), (3" is a strongly prime
fuzzy ideal of R.

Proof. Since 3 is a strongly primary ideal of R, ps = ([, ")« =
Mo (8" = N1 (B)™ is a strongly prime ideal of R. Thus p =
N2, A" is a strongly prime fuzzy ideal of R by Theorem 2.3. ]

We recall that for a subset S of R, E(S) = {x € K | 2" ¢ S for each
n > 1}. The following result is the fuzzification of [2, Lemma 2.3].

PROPOSITION 4.7. Let 3 be a {0, 1}-valued integral fractionary fuzzy

ideal of R. Then (3 is a strongly primary fuzzy ideal of R if and only if
(1)1 08 C B for each x € E(S).

Proof. Let x € E(f.). Since f, is a strongly primary fuzzy ideal of R ,
27!, C B, by [2, Lemma 2.3]. Then ((1)100). C B.. Thus (1);08 C g.
Conversely, let 2,y € K and zy € (., y € E(Bx). Then y ¢ [, and
(j)ioB C f. Thus < 21 >=< ()1 > o < (ay)1 >C (yiof C 4.
Hence x € By, and so [, is a strongly primary ideal of R. Therefore 3
is a strongly primary fuzzy ideal of R. O

COROLLARY 4.8. Let 8 be a {0, 1}-valued integral fractionary fuzzy
ideal of R. If (3 is a strongly primary fuzzy ideal of R, then (%)105 C ng)
for each x € K \ /.

Proof. Let x € K \ v/B«. Then x € E(fB.). By Proposition 4.7,
we have (%)1 of3 C B. Then B, C a0« C 2R = (x1 0 ng))*. Hence
ﬂgxloxg),and SO (%)1oﬂgxg). O

The power of a fuzzy ideal 3 can be defined recursively as follows:
Bl = pand " = Bl op™ ! for all n > 2.
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PROPOSITION 4.9. Let 3 be a {0, 1}-valued strongly primary integral
fractionary fuzzy ideal of R. If « is a {0, 1}-valued integral fractionary
fuzzy ideal of R with \/a, = (4, then avo 3 is a strongly primary fuzzy
ideal of R. In particular, " is a strongly primary fuzzy ideal of R for
n > 1.

Proof. Let x € E((ao3)s) = E(a.f4). Since Vo, fy = /o N/ B =
B« N /By = Ps, we have 2™ & [, for all n > 1. Then z € E(S,).
Since 3 is a strongly primary fuzzy ideal of R, (%)1 of C (. Hence
(%)1 oaof C aof. Thus ao [ is a strongly primary fuzzy ideal of
R. O
THEOREM 4.10. The following statements are equivalent for an inte-

gral domain R:

(1) R is an almost pseudo-valuation domain.
(2) Every {0,1}-valued prime integral fractionary fuzzy ideal of R is
a strongly primary fuzzy ideal of R.

Proof. (1) = (2) Let 8 be a {0, 1}-valued prime integral fractionary
fuzzy ideal of R. Then . = (f|r)« is a prime ideal of R. Since R is an
almost pseudo-valuation domain, we have 3, is a strongly primary ideal
of R. Hence (3 is a strongly primary fuzzy ideal of R by Theorem 4.2.

(2)= (1) Let P be a prime ideal of R and assume that =,y € K and
zy € P. Then < x1 > o <y >C XES)' By hypothesis, < x1 >C ng) or
<y >C \/@. Thus z € Pory € (\/ng))* = \/(XES))* =P =P.
Hence P is a strongly primary ideal of R. Therefore R is an almost
pseudo-valuation domain. O

PRrROPOSITION 4.11. Let R be an almost pseudo-valuation domain. If
B is a {0, 1}-valued non-maximal prime integral fractionary fuzzy ideal
of R, then (3 is a strongly prime fuzzy ideal of R.

Proof. Since . = (8|r)« is a non-maximal prime ideal of R, [, is a
strongly prime ideal of R. Hence ( is a strongly prime fuzzy ideal of R
by Theorem 2.3. O

5. Pseudo-strongly prime fuzzy ideals

We recall from [1] that a prime ideal P of R is called a pseudo-strongly
prime ideal if whenever x, y € K and xyP C P, there exist m € N such
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that 2™ € R or y™ P C P and an integral domain R is called a pseudo-
almost valuation domain if every prime ideal is a pseudo-strongly prime
ideal.

In this section, we introduce the concept of pseudo-strongly prime
fuzzy ideals and characterize pseudo-almost valuation domain using this
concept.

DEFINITION 5.1. Let 3 be a {0, 1}-valued prime integral fractionary
fuzzy ideal of R. Then f is called a pseudo-strongly prime fuzzy ideal
of Rif z, y € K and (xy)1 o 8 C [ imply that there exists m € N such

that (z™); C ng) or (y™)1 08 C 8.

PROPOSITION 5.2. Let (3 be a {0, 1}-valued prime integral fractionary
fuzzy ideal of R. Then (3 is a pseudo-strongly prime fuzzy ideal of R if
and only if B, is a pseudo-strongly prime ideal of R.

Proof. Suppose that (§ is a pseudo-strongly prime fuzzy ideal of R
and that x,y € K and zy0B: C B«. Then there exist m € N such that
(™)1 C ng) or (y™); 0B C B. Hence 2™ € R or y" B, C (. Thus [,
is a pseudo-strongly prime ideal of R. Conversely, assume that 3, is a
pseudo-strongly prime ideal of R and that z, y € K and (zy); o3 C S.
Then zyfB« C B«. By hypothesis, there exists m € N such that '™ € R
or y"P C P. Hence < (z™)1 > oxg) or < (y™)1 > o8 C 3. Thus 3 is
a pseudo-strongly prime fuzzy ideal of R. O

THEOREM 5.3. The following statements are equivalent for an inte-
gral domain R:

(1) R is a pseudo-almost valuation domain.
(2) Every {0,1}-valued prime integral fractionary fuzzy ideal of R is
a pseudo-strongly prime fuzzy ideal of R.

Proof. (1) = (2) Let 8 be a {0, 1}-valued prime integral fractionary
fuzzy ideal of R. Then (3. = (B|g)« is a prime ideal of R. Since R
is a pseudo-almost valuation domain, we have (, is a pseudo-strongly
prime ideal of R. Hence (3 is a pseudo-strongly prime fuzzy ideal of R
by Proposition 5.2.

(2)= (1) Let P be a prime ideal of R. Since ng) is a {0, 1}-valued
prime integral fractionary fuzzy ideal of R, Xﬁt?) is a pseudo-strongly

prime fuzzy ideal of R. Then P is a pseudo-strongly prime ideal of R
by Proposition 5.2. Hence R is a pseudo-almost valuation domain. [J

The following result is the fuzzification of [1, Lemma 2.1].
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PROPOSITION 5.4. Let 3 be a {0, 1}-valued prime integral fractionary
fuzzy ideal of R. Then 3 is a pseudo-strongly prime fuzzy ideal of R if
and only if for each x € E(R), (x™")1 08 C 3 for some n € N.

Proof. Suppose that 3 is a pseudo-strongly prime fuzzy ideal of R.
Let « € E(R). Since z10(2); 08 = (1)1 03 C 3, we have < (2"); >C
ng) or (z7");0p C 3 for some n € N. Since x € E(R), we have
(z7™)1 0 B C B. Conversely, assume that z, y € K and (zy); o 8 C S.
If x € E(R), then by hypothesis, (z7"); o 8 C 3 for some n € N and
(™) & ng). Since (z"y")1 0 C (xy)1 o 8 C (3, we have (y")1 0 =
(z7™)10(z"y™)1008 C (x7™)100 C (. Thus [ is a pseudo-strongly prime
fuzzy ideal of R. ]

PROPOSITION 5.5. If R is a pseudo-almost valuation domain, then ev-
ery {0, 1}-valued prime integral fractionary fuzzy ideals of R are linearly
ordered.

Proof. Let a, 3 be a {0, 1}-valued prime integral fractionary fuzzy
ideals of R and assume that « ¢ 3 and 8 € . Then there exist z, y € K
such that a(z) > f(z) and B(y) > a(y). Since a and 3 are {0, 1}-valued,
we have a(z) =1, (z) =0, a(y) =0, and f(y) =1. Set w =£. If w ¢
E(R), then w" = g—z € R for some n € N. Then y" € z"R C . Hence
Y € ay, which is a contradiction. So we conclude that w € E(R). Since
R is a pseudo-almost valuation domain, a is a pseudo-strongly prime
fuzzy ideal of R. By Proposition 5.4, (w™"); o @ C « for some n € N.
Then a(x;rl) > ((Z—:)l o a)(x;tl) > a(x) = 1, and so a(x;l) =1

n+1 . . . .
Then £ s € Qs and "' € B,. Since B, is a prime ideal of R, we have

x € [B4. This is a contradiction. Therefore either a C 5 or 8 C «. O

THEOREM 5.6. An integral domain R is a pseudo-almost valuation
domain if and only if some {0, 1}-valued maximal integral fractionary
fuzzy ideal is a pseudo-strongly prime fuzzy ideal of R.

Proof. Suppose that some {0, 1}-valued maximal integral fractionary
fuzzy ideal « is a pseudo-strongly prime fuzzy ideal of R. Then a is a
maximal pseudo-strongly prime ideal of R by Proposition 5.2. That R
is a pseudo-almost valuation domain by [1, Theorem 2.5]. The converse
is clear. O

In light of Theorem 5.6, we have the following corollary.

COROLLARY 5.7. Let a be a pseudo-strongly prime fuzzy ideal of R.
If B is a {0, 1}-valued prime integral fractionary fuzzy ideal of R and
8 C a, then (8 is a pseudo-strongly prime fuzzy ideal of R.



350 Myeong Og Kim and Hwankoo Kim

Proof. Let o« be a pseudo-strongly prime fuzzy ideal of R. Let (8
be a {0, 1}-valued prime integral fractionary fuzzy ideal of R such that
B C a. Let z € E(R). Since a is a pseudo-strongly prime fuzzy ideal
of R, we have (x7™); o @ C « for some n > 1. By Proposition 5.4,
we need only show that (z7!); o 8 C 8 for some [ > 1. Suppose that
(z7%)1 003 ¢ B for each s > 1. Then there exist y € K such that
((x7™)1 0 B)(y) > B(y). Hence B(z"y) = 1 and B(y) = 0. Since 1 =
(@)1 0 B)(y) < (™)1 0 a)(y) < aly), we have ay) = a(a™y) = 1.
Thus 2"y € Bx C oy and y € ay \ Bs«. Since ay is a pseudo-strongly

prime ideal of R, z™" = ‘Tn;# € By C R for some m > 1 by [,
Proposition 2.4]. Hence = ¢ E(R), which is a contradiction. Thus 3 is
a pseudo-strongly prime fuzzy ideal of R. 0

The following two results are well-known ([1, Proposition 2.11 and
Theorem 2.13]). Here we will give their proofs in terms of fractional
fuzzy ideals.

PROPOSITION 5.8. If R is an almost pseudo-valuation domain, then
R is a pseudo-almost valuation domain.

Proof. Let (3 be a {0, 1}-valued prime integral fractionary fuzzy ideals
of R and let z € E(R). Then x € E(f,). Since R is an almost pseudo-
valuation domain, 3 is a strongly primary fuzzy ideal of R. Hence (%)1 o
B C B. Thus 3 is a pseudo-strongly prime fuzzy ideal of R. Therefore
R is a pseudo-almost valuation domain. O

We recall that an integral domain R is root closed if, whenever x € K
and z™ € R for some n > 1, then x € R.

THEOREM 5.9. If R is a root closed pseudo-almost valuation domain,
then R is a pseudo-valuation domain.

Proof. Let M be the maximal ideal of R and let z € K \ R. Then

x € E(R). Since R is a pseudo-almost valuation domain, Xg\(/)[) is a

pseudo-strongly prime fuzzy ideal of R. Then XSSI) C(2™)0 XSSI). Let

m € M. Then 1 = Xg\g)(m") < ((&™)1 0 Xs\g))(m") = XS\(/][)(%:). Hence
Xg\g)(m—n) =1, and so ()" € M. Since R is root closed, we have 7t € M.

Then (271 o Xg\(z,))(m) = Xg\(/)[)(%) = 1. Hence XS\(/,){) Cxio0 X§\(/)[)- Thus XE\(/)[)

is a strongly prime fuzzy ideal of R. Therefore R is a pseudo-valuation
domain. 0
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