

GENERALIZED PRIME IDEALS IN NON-ASSOCIATIVE NEAR-RINGS I

Yong Uk Cho

ABSTRACT. In this paper, the concept of *-prime ideals in non-associative near-rings is introduced and then will be studied. For this purpose, first we introduce the notions of *-operation, *-prime ideal and *-system in a near-ring. Next, we will define the *-sequence, *-strongly nilpotent and *-prime radical of near-rings, and then obtain some characterizations of *-prime ideal and *-prime radical $r_s(I)$ of an ideal I of near-ring N.

1. Introduction

A near-ring N is an algebraic system $(N, +, \cdot)$ with two binary operations, say + and \cdot such that (N, +) is a group (not necessarily abelian) with neutral element 0, (N, \cdot) is a semigroup and a(b + c) = ab + ac for all a, b, c in N.

In this near-ring, if (N, \cdot) is not a semigroup, then N is a non-associative near-ring. If N has a unity 1, then N is called *unitary*. An element d in N is called *distributive* if (a + b)d = ad + bd for all a and b in N. A near-ring N is called *distributive* if every element in N is distributive.

An *ideal* of N is a subset I of N such that (i) (I, +) is a normal subgroup of (N, +), (ii) $a(I + b) - ab \subset I$ for all $a, b \in N$, (iii) $(I + a)b - ab \subset I$ for all $a, b \in N$. If I satisfies (i) and (ii) then it is called a *left ideal* of N. If I satisfies (i) and (iii) then it is called a *right ideal* of N.

On the other hand, an N-subgroup of N is any subset H of N such that (i) (H, +) is a subgroup of (N, +), (ii) $NH \subset H$ and (iii) $HN \subset H$. If H satisfies (i) and (ii) then it is called a *left N-subgroup* of N. If H satisfies (i) and (iii) then it is called a *right N-subgroup* of N. In case, (H, +) is normal in above, we say that normal N-subgroup, normal left N-subgroup and normal right N-subgroup instead of N-subgroup, left N-subgroup and right N-subgroup, respectively.

Note that normal N-subgroups of N are not equivalent to ideals of N. We consider the following notations: Given a near-ring N,

$$N_0 = \{ a \in N \mid 0a = 0 \}$$

281

©20121 The Youngnam Mathematical Society

Received June 7, 2011; Revised September 25, 2011; Accepted April 25, 2012. 2000 Mathematics Subject Classification. 16Y30.

Key words and phrases. Non-associative near-rings, *-prime ideal, *-system, *-strongly nilpotent and *-prime radical.

which is called the zero symmetric part of N,

$$N_c = \{a \in N \mid 0a = a\} = \{a \in N \mid ra = a, \text{ for all } r \in N\}$$

which is called the *constant part* of N.

We note that N_0 and N_c are subnear-rings of N. A near-ring N with the extra axiom 0a = 0 for all $a \in N$, that is, $N = N_0$ is said to be zero symmetric, also, in case $N = N_c$, N is called a *constant* near-ring. From the Pierce decomposition theorem, we get the important fact:

$$N = N_0 \oplus N_c$$

as additive groups. So every element $a \in N$ has a unique representation of the form a = b + c, where $b \in N_0$ and $c \in N_c$.

Throughout this paper, by a near-ring, we mean a zero-symmetric nonassociative near-ring. For basic definitions and results on near-rings, one may refer Pilz [5].

Let (G, +) be a group (not necessarily abelian). In the set

$$M(G) = \{ f \mid f : G \longrightarrow G \}$$

of all the self maps of G, if we define the sum f + g of any two mappings f, gin M(G) by the rule x(f + g) = xf + xg for all $x \in G$ and the product $f \cdot g$ by the rule $x(f \cdot g) = (xf)g$ for all $x \in G$, then $(M(G), +, \cdot)$ becomes a near-ring. It is called the *self map near-ring* of the group G. Also, if we define the set

$$M_0(G) = \{ f \in M(G) \mid 0f = 0 \},\$$

then $(M_0(G), +, \cdot)$ is a zero symmetric near-ring.

7

2. Results on *-prime ideals and *-prime radicals

Groenewald and Potgieter [1] generalized the notion of prime ideals in associative near-rings and introduced the concept of f-prime ideals in associative near-rings. The notion of f-prime ideals in associative near rings actually extends the notion of f-prime ideals in associative rings due to Murata et al. [2]. Myung [3] introduced the notion of *-prime ideals in non-associative rings. Corresponding to *-prime ideals in non-associative rings, we can introduce in this paper the *-prime ideals in non-associative near-rings. For this purpose, first we define the notions of *-system and *-prime ideal in a near-ring and prove that complement of a *-system is a *-prime ideal.

In this section, we define *-operation for the purpose of *-prime ideals, and obtain some characterizations of *-prime ideal and *-prime radical.

The concept of *-operation for rings was introduced by Myung [3], [4]. We can extend this concept to near-rings as following:

Definition 1. Let F(N) be the set of all ideals in N. A *-operation is a mapping from $F(N) \times F(N)$ into the family of additive subgroups of N satisfying the following conditions.

(i) for A, B, C, D in F(N), if $A \subseteq B$ and $C \subseteq D$, then $A * C \subseteq B * D$.

282

(ii) $A * B \subseteq A \cap B$ for all A, B in F(N).

(iii) $(A+C)*(B+C) \subseteq (A*B)+C$ for all A, B, C in F(N).

Hereafter, by a near-ring we mean a near-ring N in which a $\ast\text{-operation}$ is defined.

Now, we may obtain the following examples of *-operations in N.

Example 1. Let N be a near-ring. Define * on $F(N) \times F(N)$ by A * B is a normal subgroup generated by $\{ab|a \in A, b \in B\}$. Then this *-operation satisfy the conditions stated in the above Definition 1. For, the conditions (i)and (ii) are trivially true. If $A, B, C \in F(N)$, then $(A+C)(B+C) \subseteq AB+C$. Thus the set of all generators of (A+C) * (B+C) are of the form ab + c for $a \in A, b \in B$ and $c \in C$. Clearly A * B + C is a normal subgroup of (N, +) and it contains all the elements of AB + C. Thus $(A+C) * (B+C) \subseteq A * B + C$. Hence for any near-ring N, always *-operation exists.

Definition 2. A proper ideal I in a near-ring is said to be *-prime if $A * B \subseteq I$ implies either $A \subseteq I$ or $B \subseteq I$ for A, B in F(N).

Definition 3. A non-empty subset M of N is said to be *-system if $A \cap M \neq \emptyset$ and $B \cap M \neq \emptyset$ implies $A * B \cap M \neq \emptyset$ for $A, B \in F(N)$.

In the following, we give some examples of *-prime ideals in N.

Example 2. Consider the near-ring (N, +, .) defined on Dihedral group $(D_8, +)$ according to the scheme (0,9,0,9,1,3,1,3) (p. 415 [5]). This near-ring is non-associative, since (a+b)((2a+b)(3a+b)) = a+b and ((a+b)(2a+b))(3a+b) = 3a+b. One can check that the proper ideals of the above near-ring are $I_1 = \{0, 2a\}$ and $I_2 = \{0, a, 2a, 3a\}$. This follows from the fact that the above near-ring is distributive and I_1 and I_2 are the only normal subgroups which are closed under left and right multiplications by elements of N. Define * on $F(N) \times F(N)$ as in Example 1. For this *-operation, it is easy to observe that I_2 is *-prime and I_1 is not a *-prime ideal in N.

Now, we can obtain some equivalent conditions of \ast -prime ideals in N.

Proposition 2.1. Let I be a proper ideal in a near-ring N. Then the following are equivalent:

- (i) If $A * B \subseteq I$ for A, B in F(N), then either $A \subseteq I$ or $B \subseteq I$.
- (ii) If $A \cap C(I) \neq \emptyset$ and $B \cap C(I) \neq \emptyset$, then $(A * B) \cap C(I) \neq \emptyset$ for $A, B \in F(N)$. Here C(I) denotes complement of I.
- (iii) If a and b are in C(I), then $(\langle a \rangle * \langle b \rangle) \cap C(I) \neq \emptyset$, where $\langle x \rangle$ denotes the ideal generated by $x \in N$.

Proof. $(i) \Rightarrow (ii)$. Assume the condition (i). If $A \cap C(I) \neq \emptyset$ and $B \cap C(I) \neq \emptyset$, then there exist a in A and b in B such that $a \in C(I)$ and $b \in C(I)$, that is, $a \notin I$ and $b \notin I$. These fact implies that $A \notin I$ and $B \notin I$. From the condition (i), we see that $A * B \notin I$, that is, there exists $c \in (A * B)$ such that $c \notin I$, equivalently, there exists $c \in (A * B)$ such that $c \in C(I)$. Hence, $(A * B) \cap C(I) \neq \emptyset$ for $A, B \in F(N)$.

 $(ii) \Rightarrow (iii)$ and $(iii) \Rightarrow (i)$ can be, analogously, proved as $(i) \Rightarrow (ii)$.

Remark 1. By the above Proposition 2.1, an ideal I is a *-prime ideal if and only if C(I) is a *-system. Thus in Example 2, the set $M = \{b, a + b, 2a + b, 3a + b\}$ is a *-system.

Definition 4. A sequence $a_0, a_1, \ldots, a_n, \ldots$ of elements in N is said to be a *-sequence if $a_n \in \langle a_{n-1} \rangle * \langle a_{n-1} \rangle$ for all $n \ge 1$.

Lemma 2.2. Every \ast -sequence is a \ast -system in N.

Proof. Let $S = \{a_0, a_1, \ldots, a_n, \ldots\}$ be a *-sequence in N. If $A \cap S \neq \emptyset$ and $B \cap S \neq \emptyset$, then there exist elements a_k and a_ℓ in S such that $a_k \in A$ and $a_\ell \in B$. If $k \ge \ell$, then $a_{k+1} \in \langle a_k \rangle * \langle a_k \rangle \subseteq \langle a_k \rangle * \langle a_\ell \rangle \subseteq A * B$ and so $(A * B) \cap S \neq \emptyset$. Thus S is a *-system in N.

Definition 5. An element $a \in N$ is said to be *-strongly nilpotent if every *-sequence $a_0, a_1, \ldots, a_n, \ldots$ with $a_0 = a$ vanishes. That is, there exists an integer $k \geq 1$ such that $a_s = 0$ for all $s \geq k$.

Definition 6. If I is a proper ideal of N, then the *-prime radical $r_S(I)$ of I is the set of all elements $x \in N$ such that every *-system that contains x contains an element of I.

Proposition 2.3. For an ideal I of a near-ring N, $r_S(I)$ is the intersection of all *-prime ideals in N containing I.

Proof. Let $x \in r_S(I)$. Suppose $x \notin \cap P_i$, where P_i is a *-prime ideal containing I. By assumption there exists a *-prime ideal P such that $x \notin P$ and $I \subseteq P$. Since P is a *-prime ideal, C(P) is a *-system containing x and $C(P) \cap I = \emptyset$. This is a contradiction. Hence $r_S(I) \subseteq \cap P_i$.

Conversely, if $x \in \cap P_i$ and $x \notin r_S(I)$, then there exists a *-system M such that $x \in M$ and $M \cap I = \emptyset$. This implies that C(M) = P is a *-prime ideal and $x \notin P$, a contradiction. Thus $\cap P_i \subseteq r_S(I)$

Proposition 2.4. Let N be a near-ring. Then $r_S(N) = \{n \in N/n \text{ is } *\text{-strongly nilpotent } \}.$

Proof. Let $x \in r_S(N)$. If x is not *-strongly nilpotent, then there exists a *-sequence $S = \{a_0, a_1, \ldots, a_n, \ldots\}$ with $a_0 = x$ and $a_n \neq 0$ for all $n \geq 1$. By Lemma 2.2, S is a *-system. Again by Proposition 2.1, C(S) is a *-prime ideal and note that $x \notin C(S)$. Thus $x \notin r_S(N)$, a contradiction.

Conversely let x be a *-strongly nilpotent. If $x \notin r_S(N)$, then there exists a *-prime ideal P such that $x \notin P$. By Proposition 2.1, C(P) is a *-system and $x \in C(P)$. Since $a_0 = x \in \langle x \rangle \cap C(P)$, by the definition of *-system we get $(\langle a_0 \rangle * \langle a_0 \rangle) \cap C(P) \neq \emptyset$. Let $a_1 \in (\langle a_0 \rangle * \langle a_0 \rangle) \cap C(P)$. Since $\langle a_1 \rangle \cap C(P) \neq \emptyset$ we get an element $a_2 \in (\langle a_1 \rangle * \langle a_1 \rangle) \cap C(P)$. Continuing in this way we get a *-sequence $S = \{a_0, a_1, \ldots\}$ with $a_0 = x$. Note that $S \subseteq C(P)$. By the assumption, x is *-strongly nilpotent, there exists

284

an integer $k \ge 1$ such that $a_s = 0$ for all $s \ge k$. Thus $a_k = 0 \in P$ and so $P \cap C(P) \ne \emptyset$, a contradiction. Thus $x \in r_S(N)$.

References

- N. J. Groenewald and P. C. Potgieter A generalization of prime ideals in near-rings, Comm. in Algebra 12(15) (1984), 1835–1853.
- K. Murata, Y. Murata and K. Marubayashi A generalization of prime radical in rings, Osaka J. Math. 66 (1969), 291–301.
- [3] H. C. Myung On prime ideals and primary decomposition in a non-associative rings, Osaka J. Math. 9 (1972), 41–47.
- [4] H. C. Myung A generalization of prime radical in non-associative rings, Pacific Journal of Mathematics 42 (1) (1972), 187–193.
- [5] G. Pilz *Near-rings*, North Holland Publishing Company, Amsterdam, New York, Oxford 1983.

Yong Uk Cho Department of May

Department of Mathematics, College of Education, Silla University, Pusan 617-736, Korea

 $E\text{-}mail\ address: \texttt{yucho@silla.ac.kr}$