• Title/Summary/Keyword: strong laws of large numbers

Search Result 26, Processing Time 0.025 seconds

ON STRONG LAWS OF LARGE NUMBERS FOR 2-DIMENSIONAL POSITIVELY DEPENDENT RANDOM VARIABLES

  • Kim, Tae-Sung;Beak, Hoh-Yoo;Seo, Hye-Young
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.709-718
    • /
    • 1998
  • In this paper we obtain strong laws of large numbers for 2-dimensional arrays of random variables which are either pairwise positive quadrant dependent or associated. Our results imply extensions of Etemadi`s strong laws of large numbers for nonnegative random variables to the 2-dimensional case.

  • PDF

A NOTE ON THE STRONG LAW OF LARGE NUMBERS FOR WEIGHTED SUMS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

  • Lee, S.W.;Kim, T.S.;Kim, H.C.
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.4
    • /
    • pp.855-863
    • /
    • 1998
  • Some conditions on the strong law of large numbers for weighted sums of negative quadrant dependent random variables are studied. The almost sure convergence of weighted sums of negatively associated random variables is also established, and then it is utilized to obtain strong laws of large numbers for weighted averages of negatively associated random variables.

  • PDF

On the Strong Laws for Weighted Sums of AANA Random Variables

  • Kim, Tae-Sung;Ko, Mi-Hwa;Chung, Sung-Mo
    • Journal of the Korean Statistical Society
    • /
    • v.31 no.3
    • /
    • pp.369-378
    • /
    • 2002
  • Strong laws of large numbers for weighted sums of asymptotically almost negatively associated(AANA) sequence are proved by our generalized maximal inequality for AANA random variables at a crucial step.

Weak laws of large numbers for weighted sums of Banach space valued fuzzy random variables

  • Kim, Yun Kyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.215-223
    • /
    • 2013
  • In this paper, we present some results on weak laws of large numbers for weighted sums of fuzzy random variables taking values in the space of normal and upper-semicontinuous fuzzy sets with compact support in a separable real Banach space. First, we give weak laws of large numbers for weighted sums of strong-compactly uniformly integrable fuzzy random variables. Then, we consider the case that the weighted averages of expectations of fuzzy random variables converge. Finally, weak laws of large numbers for weighted sums of strongly tight or identically distributed fuzzy random variables are obtained as corollaries.

The Strong Laws of Large Numbers for Weighted Averages of Dependent Random Variables

  • Kim, Tae-Sung;Lee, Il-Hyun;Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.451-457
    • /
    • 2002
  • We derive the strong laws of large numbers for weighted averages of partial sums of random variables which are either associated or negatively associated. Our theorems extend and generalize strong law of large numbers for weighted sums of associated and negatively associated random variables of Matula(1996; Probab. Math. Statist. 16) and some results in Birkel(1989; Statist. Probab. Lett. 7) and Matula (1992; Statist. Probab. Lett. 15 ).