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A Note on the Strong Laws of Large Numbers for
Fuzzy Random Setsl)

Sungho Lee”

Abstract

In this paper we introduce the definition for fuzzy random set by Puri and
Ralescu(1985) and show strong laws of large numbers for fuzzy random sets on
Banach spaces.

1. Introduction

The concept of a fuzzy random variables was defined as a tool for representing
relationships between the outcomes of a random experiment and inexact data. By inexactness
here we mean nonstatistical inexactness that is due to subjectivity and imprecision of human
knowledge rather than to the occurrence of random events. The notion of fuzzy random
variables was first introduced by Kwakernaak(1978) and some fundamental properties were
investigated. Kwakernaak defined a fuzzy random variable as a function F: @ —%(R) (subject
to certain measurability conditions), where (€, A, P ) is a probability space, and #(R) denotes
all piecewise continuous functions u: R —[0,1]. Stein and Talati(1981) and Puri and
Ralescu(1986) give different definitions of fuzzy random variables. However, the definitions and
properties developed by Puri and Ralescu(1986) provide a natural generalization of random
vectors and random set.

The concept of a random set, though vaguely known for a long time, did not develop until
Robins(1944,1945) provided for the first time a solid mathematical formulation of this concept
and investigated relationships between random sets and geometric probabilities. Later,
Kendall(1974) and Matheron(1975) provided a comprehensive mathematical theory of random
sets which was greatly influenced by the geometric probability prospective. With respect to
laws of large numbers, since the pioneering works of Artstein and Vitale(1975), many useful
results for random sets have been developed(cf., Taylor and Inoue)

There are many recent results for laws of large numbers for fuzzy random variables and
fuzzy random sets, see for example, Miyakoshi and Shimbo(1984), Puri and Ralescu(1986),
Klement, Puri and Ralescu(1986), Inoue(1991). In this note we introduce the definition by Puri
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and Ralescu and study strong laws of large numbers on a real separable Banach space.
2. Fuzzy random sets

We consider a fuzzy set in a real separable Banach space E. Let K(E) denote all nonempty
compact subsets of E and let Kc(E) denote all nonempty convex, compact subsets of E. For
A, A2 € KE) (or € Ke(E)) and A € R, Minkowski addition and scalar multiplication are
given by

AitAs= { ajvaz a1 € A, az € Az}
and
My = Aarar € A

Neither K(E) nor Kc(E) are linear space even when E=R. For example, let M=1, A2 = -1

and A=[0,1], and observe that
{0}=0A=(\1+A2)A * MA+MA=[-]11].

The Hausdorff distance between two sets A; , A2€K(E) can be defined as

du(A1A2)= Inf{ >0 1 A c A2 + U, Az c Ay + U }

= max{ sup inf lla-bll, sup inf lla-bll}
acAl bEA? bEAZ acAl .

where U={x: xe¢ E and llxllc 1 }. With the Hausdorff metric, K(E) (and Kc(E)) is a
complete, separable metric space. Also, denote W Ayl = du(A;,{0}) = sup {la;ll: ay€A;} and
coA; =convex hull of A;EKc(E). Let (2, A, P) be a probability space. A random set(random
compact set) is a Borel measurable function X : @ —K(E). If X is a random compact convex
set ( ie. coK(E) valued), then EX is defined as

EX={ Ef : f€L'(®, A, P), f(@©)EX(0) as }

where f : @— E is a selection of X and Ef denotes the classical expection ( via the
Bochner integral). In general EX may be empty, but if ElIXI< » , then EX € coK(E).

A fuzzy set is a subset whose boundaries may not be identifiable with certainty. More
technically, a fuzzy set in a space E is defined as {(x,u(x)) : x€E, 0Osu(x)s<l }. The function
u(C:E —[0,1]) is referred to as the membership function. For each u, we denote by

L, ) ={x€E : u(x) 2 a}, 0<a<l, its a-leve| set. By supp u, we denote the support of u,

i.e. the closure of the set {xe E : u(x)>0 }. Let #E) denote the space of fuzzy sets
u : E —[0,1] with the following properties :

(i) u is upper semicontinuous,

(i1) {x€E : u(x)=a} is compact for each a>0,

(iii) {X€EE : ux)=1}=0

Similarly, denote by #c(E) the subspace of #(E) satisfying that {x€E : u(x)=a} is compact
convex for each a>0. A linear structure in F(E) is defined via the following operations :

(u+v)(x)= sup min [u(y),v(z)],
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_[u(A7x) ifA=+0
(Aw) (x) { I (x) if A=0
for u,vE¥#(E), AeR. Note that L,(u+v)= L (w+ L,(v) and L,Qu)=M L,(w) for every 0<a<1
There is no unique metric in $#(E) which extends the Hausdorff distance. In this note we
will be concerned with the metric defined as

du, V)= [du(Lw), L) de.

Then, the space (¥(E), d) is a complete separable metric space (cf. Klement, Puri and
Ralescu(1986)). The concept of a random set was generalized by Puri and Ralescu(1986). Let

X : @— FE) be a function such that for each ae (0,1] and each we @,
X, ={xe E : X(w)(x)z ale K(E).

A fuzzy random set is a Borel measurable function X : @— #(E) such taht X,(0) (as a

function of ®) is a random set in K(E) for each ae (0,1]. Similarly, coX can be defined as a
function —%(E) such that
L,(coX) = co{x€E : X)(x) =2 a} for each a

Tightness and moment conditions can be used to obtain laws of large numbers. A sequence
of fuzzy random sets {Xx} is said to be tight if for fixed ae (0,1] and each £>0 there exists
a compact subset of K(E), K¢, such that P{Xya. ¢ K:]<& for all k. Since ( X(E), duy ) is a
complete separable metric space, each random set Xi,, Xka(0) ={xe E : Xx)(x) = a}, is
tight( Billingsley(1968), p.234). A fuzzy random set Xx is called integrably bounded if for any
ae (0,11 there exists h, @ = R, h, € L"R) such that ||x|l| <h, for all x, ® with xeXy,a

(0). A sequence of fuzzy random sets {Xy} is said to be compactly uniformly integrable if for
fixed a and each ¢ >0 there exists a compact set K¢ such that E|[Xy ,I(x, . exill <&

uniformly in k. Klement, Puri and Ralescu(1986) showed that there exists a unique fuzzy set
EX e #E) such that L ,(EcoX)= E(L,coX) for each a €(0,1] if X is an integrably bounded

fuzzy random set.
3. Strong laws of large numbers for fuzzy random sets.

In this section we are concerned with strong laws of large numbers for fuzzy random sets
developed by Puri and Ralescu(1986). A strong laws of large numbers and a central limit
theorem for fuzzy random sets on R° were driven in Klement, Puri and Ralescu(1986),
Inoue(1991) showed a strong law of large number for tight fuzzy random sets in a real
separable Banach space. The one method of approach in proving limit theorems for fuzzy
random sets is to apply limit results in random sets(see, for example, Theorem 3.4 and
Theorem 3.6). The another method of approach is similar to the approach for random sets
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initiated by Artstein and Vitale(1975)(see, for example, Theorem 3.3). The approach is as
follows :

(a) Consider first fuzzy random convex sets and embed %c(E) into a Banach space.

(b) Use a limit theorem for Banach space valued random elements.

(c) Drop the convexity condition.

Several embedding theorems exist for embedding the convex, compact subset of E into
Banach spaces. The main tool in proving strong Law of large numbers is a result due to
Radstrom(1952) which states that the collection of compact convex subsets of a Banach space
can be embedded as a convex cone in a normed space.

Lemma 3.1 (Puri and Ralescu(1983 a) Let E be a reflexive Banach space. Then there exists
a normed space ¥ such that Fc¢(E) can be embedded isometrically into %.

Theorem 3.2 (Klement, Puri and Ralescu(1986)) Let { X,} be independent and identically

distributed fuzzy random variables(sets) on R® such that El|suppX;l|{co. Then,

d (% gxk . E(coXy) — 0 a.s.

The above theorem can be easily applied to a real reflexive separable Banach space E by
Lemma 3.1 A short proof will be given in Theorem 3.3 for the completeness. A more general
result was obtained by Inoue(1991), which is shown in Theorem 3.4.

Theorem 3.3 Let { X;} be independent and identically distributed fuzzy random sets in
%(E) such that EllsuppX;|l< . Then,

d (71,; ;Xk , E(coX})) — 0 a.s.

proof. (i) Consider first X; : @ — Fc(E). Let j : Fc(E) — % be isometry provided by

Lemma 3.1. Since #c(E) is separable, it is easy to show that ¥ is separable. By a standard

SLLN for iid. random elements in Banach space, it follows that % z;( jeXp) —

E(j- X)) a.s. By the similar arguments in Klement, Puri and Ralescu(1986),
EG-X) = j(EX)) if EllsuppX;ll<oo. Thus,

I 3G X0 - (EXDI =0 as,

and hence
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A % ,Z‘Xk | E(X)) — 0 a.s.

(ii) In the general case, ie. X, : @ — F(E).

Applying the theorem in Arstein and Hansen(1985) and dominated convergence theorem to
the case (i), the result follows.

Identically distributed assumption and reflexivity can be relaxed as follows. In the following
theorems E is a separable Banach space.

Theorem 3.4 ( Inoue (1991)) Let {X,} be a sequence of independent, tight fuzzy random

sets in #(E) and [|.X, Jdl” (1< 7<2) is bounded by h,(w) which is integrable. Then
d (L gxk L gE(coXk)) -0 as.

Corollary 3.5 Let { X,} be independent and identically distributed fuzzy random sets in
#(E) such that EllsuppX,l| {oo. Then,

d <—1; g;Xk . E(coXy) — 0 a.s.

proof. Since || X JI<IlsuppX,ll and EllsuppX,||< o, By the above theorem the result

follows.
Finally, we will show a SLLN for a triangular array of fuzzy random sets in #(E).

Theorem 3.6 Let { X,} be a sequence of independent compactly uniformly integrable

fuzzy random sets in #(E). Let X be a random variable such that P(||supp Xikl| =x)

L1
1+
<P(X =x ) for all kK and x>0 and E(X 7")=TI< oo ,»>0. If the non-negative array

{ age'n =1, 1 <k <n} satisfies the condition

) z;a,,ks 1,

(i) max j<pc, @m0 as n— oo,
(iil) max j<pcnlur = O(n"")

Then,

d ( gﬁanka , Z:‘a,,kE(coXk)) — 0 a.s.
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Proof.
EllsuppXsll = [ PUlsuppX || > %) ds
< | PX>x)dv = EX ¢ o
and hence L,(EX)=E(L,X).

Now,

d (‘g\aMXk , gankEcoXk)

- [l Fauxs) . Lo BlamEcoXs)) de,
and du (Lol ZiauXs) , Lol RamEcoX,))

i

A ( Bl 2X0) , DLl anEcoX))

di ( B awlaX0 . 2 am Lo EcoX,))

dn( BauXia, SamE(Lc0Xi)))

"

dy ( Z%anka,ay ;dnkE( c0X.)) .

Applying random set version in Theorem 3.1, Taylor and Inoue(1985), for each a =(0,1]

dy ( ;anka_a , gankE(coXk,a))ﬁ 0 a.s.
Also, dy( ;anka,a , gankE(coXk,,,))
< di( R amXeo, (01 + du( BlanE(coXs) . (0)),

and @i ( Zjan Ko, (0) < sup Xl <sup lsupp Xill <oo
Thus, by the Lebesgue dominated convergence theorem,

a gankxk , g‘ankE(coXk)) —~0 as.
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