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Strong Laws of Large Numbers for Weighted Sums of
Random Variables
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Strong laws of large numbers are established for the weighted sums of ii.d. random

variables which have higher order moment condition. One of the results of Sung (2001) is

extended.
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1. Introduction

Let {X,X,, n>1} be a sequence of i.i.d. random variables and {a,, 1<i<n,n>1}

be an array of constants. The almost sure (a.s.) limiting behavior of weighted sums
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210 »X; Wwas studied by many authors (see, Bai and Cheng (2000), Choi and Sung
&~

(1987), Cuzick (1995), Sung (2001), Wu (1999)). Recently, Sung (2001) proved the strong

law of large numbers

ga #Xilb,—0 a.s. 6}
when {X, X, n>1} is a sequence of i.i.d. random variables with EX=() and

Elexp(HX1")]< o for some A>( and some (<y<], v )]

and {a,;,1<i<n,n>1} is an array of constants satisfying
Au= limsup A g,1<0, A% ,= ShlafIn ®

for some 1<a<2, where b,=n'(logn) V7*% (B>0).

In this paper, we extend the result of Sung (2001).

2. Main Result

We state and prove our main result.

Theorem 1. Let 0<y<1. Let {X,X,,n>1)}be iid. random variables satisfying

EX=0 and (2). Let {a,;,1<i<n,7n>1}be an array of constants such that

max j<ic.la "'{=O(W) @

and

rJ Y
ga,,;~ of logn)‘ %)

Then ga,,,-X,'—'O a.s.

Proof. By (5), we have
B( 22 ,X) = 33 dWEX = o( L),

log»n
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It follows that

32X —0 in probabiliy.

=

Hence, by Theorem 3.2.1 in Stout (1974), it suffices to prove that
31a,Xi=0 as.,
=

where (X3) is a symmetric version of (X,). So we need only to prove the result
for (X,) symmetric.
Define X,/ =X I(|X|<(h 'logn)'") and X,  =X;—X, for 1<i<n and

n>1. Note that E[e”]<co is equivalent to EIPUX,,I)(h_Ilogn)”")(oq

Hence, by the Borel-Cantelli lemma, zllX » | is bounded as. It follows by (4) that

- IXm’Hl
I g‘a wiX ni | < max lSiSnla wd glxm’ | = O(I)W -0

a.s. as p»—>oo, Hence, to prove the theorem, it remains to prove that

,gla wiX ni —0 a.s. ©6)

I

2
From an inequality ¢*<1 +x+~’§— e” for all xR, we have

ELe* 7)1+ Bl faldX 1P “ )

for any #>(. Let &>() be given. By putting ¢=2logn/e, we obtain
X , 2 |a JIX . llogn
Ble"™™] <1+(3)(2)%d%log*n ELIX 1% ©

toglX 17 , & 1. log

=1+(%)(%)2a2,,,-log2nE[e
Since |X /| =IX(X)<(h 'logn)'"), we have that
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loglX m.’|2e ‘% la JIX ologn

Ele 1 2
_ gl XPKIXI< (k- log ) ") £ la JIXIIXIS (B log m)'Dlog n
£ : :
K(r Mog G—1)Y7<IXI< (B~  1og /) V7]

-1 ur Zlad(h log ) Mlog n _
< gzem“' log ", € P((h  log G— 1) Y71 X1<(h ™ log/)V7).
Observe that

)

210g(h‘llogj)”7+l|a AR og )V log n
=2log (b~ log )7+ 2 —0(%177(h Nog/)"10g n

=2log (A~ log )7+ o(1) 122 - (log )7
(log n)
<log(j—1)
for all sufficiently large j7(j,<{j<m). Thus we have by (7) that

E[e %", Zla X 110gn
e

ur 2|4 {h log )" logn
< 3} et e g € AT b 1 og (5 1)) XI< (™ hog )
+ 3 e ™R log (- D)V IXI< (A log ')

j=n+1

<C+ F "

for some constant C>(, It follows that
Ele*™"] <1+(3)X£)%d, log’n (C+EL*])
Sexp{(%x%)zam log®n (C+E[e*"])).
Hence, by (5)
P22 X >e) =P FoX
Se_"E[et'ga'X"]
-—te l‘IiE[efam'x-u"]
= e I exo (3)(2)?d%; log®n (C+EL*])
= exp (1 )(2)? log’n (C+EL*]) Z, 2%)

2logn

=e” exp {o(1) log n}

= exp{(—2+ o(1)) log n},
which implies that
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rSlP( glaﬂiXm’)EKOO.

By the Borel-Cantelli lemma, we have

limsup oo g\a X i =0 a.s.

By replacing X ,’ by — X, from the above statement, we obtain

Iminf oo ga X i =0 a.s.

Hence (6) is satisfied.

The following corollary is proved by Sung (2001).

Corollary 2. Let ({y<l. Let {X,X,,n=1}be iid random variables satisfying
EX=0 and (2). Let {a,,1<i<n,n>1}be an array of constants satisfying (3) for
some 1<@<2. Then for b,= n"*(logn) V"% (8>0)

ga #Xil b0 a.s.

Proof. Note that

a pi |S ( tglla m{a)l/a (nAc:z,n) Ve
b,

1
| b, T nVe(logn) V7FE = ol )”7)'

(logn

and

a\2/e
| a n; IZ ( tglla Ml ) — (nAa;z,n)Z/a — 0( ]_
& b" nZ/a((logn) l/7+ﬁ)Z nZ/a((logn) 1/7+ﬁ)2 ]ogn

)

since 2(1/y+ 8)>1. Thus it follows by Theorem 1 that gamX,-/b,,*O a.s.
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