• Title/Summary/Keyword: stress function

Search Result 3,099, Processing Time 0.031 seconds

Production of green tea jelly using theanine and its physiochemical characterization (녹차 theanine을 이용한 젤리 제조 및 품질특성 조사)

  • Kim, Seong Gyung;Jeong, Hana;Im, Ae Eun;Yang, Kwang-Yeol;Choi, Yong Soo;Nam, Seung-Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.553-560
    • /
    • 2021
  • Theanine, the major amino acid and a sweet umami component of green tea, has anti-stress effects in humans. From green tea, theanine was extracted at 80℃ for 2 h using a low temperature, high pressure extractor, and caffeine was removed using an HP-20 column with 80% ethanol. Theanine extracts were applied to produce functional jelly using three kinds of gelling agents (I, II, and III) or various concentrations of theanine extracts (10-50%). Theanine jelly was characterized with respect to its physical properties, product stability, and physiological function. Gelling agent III (tamarind gum, xanthan gum, and locust bean gum=2:3:5, w/w/w) and S3 (35% theanine extracts) jelly exhibited the optimum textural properties with lower hardness and high springiness. Among theanine jellies, S3 exhibited optimum product stability, high 1,1-diphenyl-2-picrylhydrazyl (DPPH) scavenging, and acetylcholinesterase inhibitory activity. These results indicate that the anine extracts could be used as a neuroprotective source in the food industry.

Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae

  • Ji, Seon Yeong;Cha, Hee-Jae;Molagoda, Ilandarage Menu Neelaka;Kim, Min Yeong;Kim, So Young;Hwangbo, Hyun;Lee, Hyesook;Kim, Gi-Young;Kim, Do-Hyung;Hyun, Jin Won;Kim, Heui-Soo;Kim, Suhkmann;Jin, Cheng-Yun;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.685-696
    • /
    • 2021
  • In this study, we investigated the inhibitory effect of 5-aminolevulinic acid (ALA), a heme precursor, on inflammatory and oxidative stress activated by lipopolysaccharide (LPS) in RAW 264.7 macrophages by estimating nitric oxide (NO), prostaglandin E2 (PGE2), cytokines, and reactive oxygen species (ROS). We also evaluated the molecular mechanisms through analysis of the expression of their regulatory genes, and further evaluated the anti-inflammatory and antioxidant efficacy of ALA against LPS in the zebrafish model. Our results indicated that ALA treatment significantly attenuated the LPS-induced release of pro-inflammatory mediators including NO and PGE2, which was associated with decreased inducible NO synthase and cyclooxygenase-2 expression. ALA also inhibited the LPS-induced expression of pro-inflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6, reducing their extracellular secretion. Additionally, ALA abolished ROS generation, improved the mitochondrial mass, and enhanced the expression of heme oxygenase-1 (HO-1) and the activation of nuclear translocation of nuclear factor-E2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 macrophages. However, zinc protoporphyrin, a specific inhibitor of HO-1, reversed the ALA-mediated inhibition of pro-inflammatory cytokines production and activation of mitochondrial function in LPS-treated RAW 264.7 macrophages. Furthermore, ALA significantly abolished the expression of LPS-induced pro-inflammatory mediators and cytokines, and showed strong protective effects against NO and ROS production in zebrafish larvae. In conclusion, our findings suggest that ALA exerts LPS-induced anti-inflammatory and antioxidant effects by upregulating the Nrf2/HO-1 signaling pathway, and that ALA can be a potential functional agent to prevent inflammatory and oxidative damage.

An Study of Pedestrian Efficiency in Apartment Complexes - Focused on Pedestrian Path in Apartment Complexes - (아파트 단지의 보행효율성에 관한 연구 - 단지 내 보행로를 중심으로 -)

  • Yang, Dongwoo;Yu, Sang-Gyun
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.11
    • /
    • pp.85-94
    • /
    • 2018
  • This study aims to investigate how easy pedestrians get around within/through the "Apartment Complexes (AC), " a common style of high-rise multi-family housing in Korea. Over the past six decades, the AC has been the most conventional way to provide standardized housing efficiently to address the problems of the shortage of housing and the substandard housing, due to the explosion of urban population with the rapid industrialization. The AC is a huge chunk of homeogenous multi-family housing, mostly condos with decent infrastructure, including parks, pedestrian passages, schools, ect. Both in the new town development and urban renewal programs have utilized the advantages of the AC. Since the design principals of AC tend to adopt the "protective design" to prevent cars and pedestrians coming outside from passing it, it has been criticised for dissecting the continuity of socioeconomic context in neighborhoods. The neo-traditional planning urbanists, including Jane Jacobs, emphasize that smaller blocks and grid road newtworks are the key in improving social, cultural, and economic vitality of the neighborhoods, because these design concepts allow more pedestrians and different types of people to be mixed in a neighborhood. In this study, we first adopted objective measures for pedestrian accessibility and pedestrian efficiency. These measures were used to calculate the lengths of shortest paths from residential buildings to the edges of AC. We tested the difference in shortest paths between the current pedestrian networks of AC and hypothetical grid networks on the AC, and the relative difference is considered as the pedestrian efficiency, using the network analysis function of Geographic Information Systems (GIS) and Python programming. We found from the randomly selected 30 ACs that the existing non-grid road networks in ACs are worse than the hypothesized grid networks, in terms of pedestrian efficiency. In average, pedestrians in AC with the conventional road networks have to walk than 25%, 26%, and 27% longer than the networks of $125{\times}45m$, $100{\times}45m$, and $75{\times}45m$, respectively. With the t-test analysis, we found the pedestrian efficiency of AC with the conventional network is lower than grid-networks. Many new urbanists stress, easiness of walking is one of the most import elements for community building and social bonds. With the findings from the objective measures of pedestrian accessibility and efficiency, the AC would have limitations to attract people outside into the AC itself, which would increase dis-connectivity with adjacent areas.

Effects of calcium and magnesium-balanced deep sea water on antioxidation in kidney cells (칼슘과 마그네슘이 조절된 해양심층수가 신장세포에서 항산화에 미치는 영향)

  • Jo, So Min;Nam, Jain;Park, Geonhee;Kim, Byeong Goo;Jeong, Gwi-Hwa;Hurh, Byung Serk;Kim, Ji Yeon
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.165-170
    • /
    • 2021
  • In this study, the antioxidant effects of mineral-containing deep sea water (DSW) on kidney function was confirmed using a cell model. DSW samples were prepared with different mineral concentrations including calcium and magnesium-the main minerals found in DSW-to derive the following sample groups: trace minerals (TM), high magnesium (HM), high magnesium, low salt (HMLS) and high magnesium, high calcium (HMHC). The purpose of this preparation was to determine the optimal calcium/magnesium ratio in DSW. Human embryonic kidney (HEK293) cells were exposed to sodium chloride (NaCl) for 2 h to induce release of reactive oxygen species (ROS). Thereafter, the cells were treated with the respective DSW samples before ROS concentrations, as well as antioxidant enzyme activity and protein levels, were measured. Among the water samples, HMLS showed the most protective effect against ROS, whereas the intracellular glutathione content was highest in cells from the HMLS- and HMHC-treated groups. However, TM- and HMHC-treated cells showed similar tendencies to the control group, in terms of mRNA expression of antioxidant genes. These results suggested that DSW may aid in preventing renal oxidative stress caused by excessive sodium intake. Furthermore, it was determined that HMLS and HMHC water samples displayed good antioxidant effects in the kidney cell model, based on the combined results of ROS concentration and antioxidant marker measurements.

Effects of Organizational Citizenship Behavior on Turnover Intentions in Marine Officers as Mediated by Organizational Commitment (해기사의 조직시민행동이 조직몰입을 매개로 이직의도에 미치는 영향)

  • LEE, Chang-Young
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.787-797
    • /
    • 2020
  • The marine officer plays a pivotal role in the shipping organization as a professional who performs a complex and diverse function. On the sea, unlike land duty, the possibility of turnover increases due to characteristics such as living in isolated spaces, continuous shift work during a set sailing period, high intensity work tension, stress, and social isolation. In this study, the impact of the organization's civic actions on the intention of turnover as a mediator of organizational immersion was divided into three groups of large companies, small and medium-sized enterprises, and public enterprises to check the differences between each category in a structural manner. Analysis showed that there were statistically significant differences between the groups in loyalty and turnover intention when the sub-factors of organizational commitment and organizational citizen behavior of the marine officer, and the size of turnover intention were included. Organization citizen behavior did not directly affect turnover intention, but when indirect effects were included, there was an effect through loyalty, and relationship-oriented organizational citizen behavior negatively affected turnover intention through loyalty. Excluding public enterprises, the non-standardization path coefficients were -0.229±0.117 and -0.319±0.068, respectively, showing a statistically significant effect in large companies and SMEs. These results indicate that in order to lower the employee turnover intention in large corporations and small and medium-sized shipping companies, it is necessary to consider not only organizational citizen behavior but also measures to increase organizational commitment.

Concept and application of implant connection systems: Part I. Placement and restoration of internal conical connection implant (임플란트 연결부의 개념과 적용: Part 1. 원추형 내부연결 임플란트의 식립과 보철)

  • Ko, Kyung-Ho;Kang, Hyeon-Goo;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.36 no.4
    • /
    • pp.211-221
    • /
    • 2020
  • The typical biomechanical properties of an internal conical connection (ICC) are axial displacement and loss of preload. The axial displacement of an ICC without a vertical stop can cause the loss of preload and a lowered occlusion. The stress of an ICC is concentrated on the contact interface of the abutment and not on the screw, and during placement, it is important to choose a wider coronal wall thickness as much as possible. The ICC should also be placed below the level of the bone crest. During the restoration of an ICC, care should be taken to ensure an appropriate abutment shape and an accurate connection. To get the best clinical results, it is important to select its wall thickness and place it in the appropriate position to restore it adequately.

A Feasibility Study of Seawater Injection Nozzle Prototype Development by Using 3D Printing (3D 프린팅을 이용한 해수분사용 노즐 시제품 개발의 가능성 연구)

  • Yoon, Seok-Tea;Park, Jong-Chun;Cho, Yong-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.51-57
    • /
    • 2021
  • The seawater cooling system of naval ships is installed to remove the toxic substances generated by CBR (Chemical, Biological, and Radiological) warfare and reduce the infrared signature of naval ships from outside the hull. The dispersion range of the nozzle is determined according to the injection pressure of seawater and the nozzle type. Therefore, it is necessary to select the appropriate injection pressure and design the optimal nozzles to increase the seawater dispersion area and maximize the efficiency of the cooling system. In this study, the applying feasibility of 3D printing technology to produce an injection nozzle for the seawater cooling system was examined. To this end, the extruded plastic specimens were fabricated by 3D printing, and the physical properties of the specimens were estimated through tensile testing. After this, the strain and stress of the nozzle as a function of the pressure were simulated by applying the estimated results to the finite element analysis. The finite element analysis results showed that the nozzle remained within the elastic range at the optimal pressure. The nozzle was estimated to be structurally stable, and the possibility of this study was confirmed.

Review on additive manufacturing of dental materials (치과용 재료의 적층가공에 대한 문헌고찰)

  • Won, Sun;Kang, Hyeon-Goo;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.37 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • Additive manufacturing (AM) for dental materials can produce more complex forms than conventional manufacturing methods. Compared to milling processing, AM consumes less equipment and materials, making sustainability an advantage. AM can be categorized into 7 types. Polymers made by vat polymerization are the most suitable material for AM due to superior mechanical properties and internal fit compared to conventional self-polymerizing methods. However, polymers are mainly used as provisional restoration due to their relatively low mechanical strength. Metal AM uses powder bed fusion methods and has higher fracture toughness and density than castings, but has higher residual stress, which requires research on post-processing methods to remove them. AM for ceramic use vat polymerization of materials mixed with ceramic powder and resin polymer. The ceramic materials for AM needs complex post-processing such as debinding of polymer and sintering. The low mechanical strength and volumetric accuracy of the products made by AM must be improved to be commercialized. AM requires more research to find the most suitable fabrication process conditions, as the mechanical properties and surface of any material will vary depending on the processing condition.

ⳑ-Methionine inhibits 4-hydroxy-2-nonenal accumulation and suppresses inflammation in growing rats

  • Zhengxuan, Wang;Mingcai, Liang;Hui, Li;Bingxiao, Liu;Lin, Yang
    • Nutrition Research and Practice
    • /
    • v.16 no.6
    • /
    • pp.729-744
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: 4-Hydroxy-2-nonenal (HNE) is a biomarker for oxidative stress to induce inflammation. Methionine is an essential sulfur-containing amino acid with antioxidative activity. On the other hand, the evidence on whether and how methionine can depress HNE-derived inflammation is lacking. In particular, the link between the regulation of the nuclear factor-κB (NF-κB) signaling pathway and methionine intake is unclear. This study examined the link between depression from HNE accumulation and the anti-inflammatory function of ⳑ-methionine in rats. MATERIALS/METHODS: Male Wistar rats (3-week-old, weighing 70-80 g) were administered different levels of ⳑ-methionine orally at 215.0, 268.8, 322.5, and 430.0 mg/kg body weight for two weeks. The control group was fed commercial pellets. The hepatic HNE contents and the protein expression and mRNA levels of the inflammatory mediators were measured. The interleukin-10 (IL-10) and glutathione S-transferase (GST) levels were also estimated. RESULTS: Compared to the control group, hepatic HNE levels were reduced significantly in all groups fed ⳑ-methionine, which were attributed to the stimulation of GST by ⳑ-methionine. With decreasing HNE levels, ⳑ-methionine inhibited the activation of NF-κB by up-regulating inhibitory κBα and depressing phosphoinositide 3 kinase/protein kinase B. The mRNA levels of the inflammatory mediators (cyclooxygenase-2, interleukin-1β, interleukin-6, inducible nitric oxide synthase, tumor necrotic factor alpha) were decreased significantly by ⳑ-methionine. In contrast, the protein expression of these inflammatory mediators was effectively down regulated by ⳑ-methionine. The anti-inflammatory action of ⳑ-methionine was also reflected by the up-regulation of IL-10. CONCLUSIONS: This study revealed a link between the inhibition of HNE accumulation and the depression of inflammation in growing rats, which was attributed to ⳑ-methionine availability. The anti-inflammatory mechanism exerted by ⳑ-methionine was to inhibit NF-κB activation and to up-regulate GST.

Research Trends on the Therapeutic Potential of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., for the Prevention of Sarcopenia (동충하초(Cordyceps spp.)의 유효 생리활성 성분인 cordycepin의 근감소증 예방에 대한 연구 동향)

  • Kim, Sung Ok;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.482-490
    • /
    • 2022
  • Sarcopenia, a geriatric and multifactorial syndrome characterized by progressive systemic skeletal muscle disorder, may be associated with many comorbidities. Sarcopenia caused by a decrease in muscle mass and muscle strength is accompanied by the aggravation of various pathological conditions, and as life expectancy increases, its prevalence will continue to increase in the future. During the aging process, chronic oxidative stress and increased inflammatory responses act as major contributors to skeletal muscle loss. In addition, disruption of autophagy and apoptosis signals associated with dysfunction of mitochondria, which are essential for energy metabolism, accelerates the loss of muscle proteins. The pharmacological effect of cordycepin, a major physiologically active substance in the genus Cordyceps, which has been widely used for the prevention and treatment of various diseases for a long time, is directly related to its antioxidant and anti-inflammatory actions. In this review, we present the correlation between apoptosis, autophagy, protein catabolism, and satellite cell activity important for muscle regeneration using cordycepin for the prevention and treatment of sarcopenia. Although there have been few studies so far on the use of cordycepin for sarcopenia, previous studies suggest that cordycepin may contribute to inhibiting the age-related weakening of mitochondrial function and blocking the breakdown of muscle proteins. In addition, the protective effect of cordycepin on muscle cell damage is considered to be closely related to its antioxidant and anti-inflammatory activities. Therefore, it is considered that more continuous basic research is needed, focusing on the molecular biological mechanism of cordycepin, which is involved in the anti-aging of muscle cells.