DOI QR코드

DOI QR Code

Review on additive manufacturing of dental materials

치과용 재료의 적층가공에 대한 문헌고찰

  • Won, Sun (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Kang, Hyeon-Goo (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Ko, Kyung-Ho (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Huh, Yoon-Hyuk (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Park, Chan-Jin (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University) ;
  • Cho, Lee-Ra (Department of Prosthodontics and Research Institute of Oral Science, College of Dentistry, Gangneung-Wonju National University)
  • 원선 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 강현구 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 고경호 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 허윤혁 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 박찬진 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소) ;
  • 조리라 (강릉원주대학교 치과대학 보철학교실 및 구강과학연구소)
  • Received : 2021.01.04
  • Accepted : 2021.01.25
  • Published : 2021.03.31

Abstract

Additive manufacturing (AM) for dental materials can produce more complex forms than conventional manufacturing methods. Compared to milling processing, AM consumes less equipment and materials, making sustainability an advantage. AM can be categorized into 7 types. Polymers made by vat polymerization are the most suitable material for AM due to superior mechanical properties and internal fit compared to conventional self-polymerizing methods. However, polymers are mainly used as provisional restoration due to their relatively low mechanical strength. Metal AM uses powder bed fusion methods and has higher fracture toughness and density than castings, but has higher residual stress, which requires research on post-processing methods to remove them. AM for ceramic use vat polymerization of materials mixed with ceramic powder and resin polymer. The ceramic materials for AM needs complex post-processing such as debinding of polymer and sintering. The low mechanical strength and volumetric accuracy of the products made by AM must be improved to be commercialized. AM requires more research to find the most suitable fabrication process conditions, as the mechanical properties and surface of any material will vary depending on the processing condition.

치과용 재료의 적층가공제작은 기존 제작방식에 비해 복잡한 형태까지 제작할 수 있으며 절삭가공에 비해서도 기구나 재료의 소모가 적어 지속가능성이 장점으로 대두되고 있다. 적층가공 제작은 7가지 방식으로 분류할 수 있는데, 폴리머는 적층가공에 가장 적합한 재료로 용기중합방식으로 제작하며 기존 자가중합방식에 비해 높은 물성과 적합도를 가져 상용화에 더 적합하지만 상대적으로 낮은 강도로 인해 임시수복물로 주로 이용된다. 금속은 PBF (powder bed fusion) 방식을 주로 이용하며 주조방식에 비해 파괴인성과 밀도가 높지만 잔류응력이 높아 이를 제거하기 위한 후처리방식에 대한 연구가 필요하다. 세라믹은 분말과 레진폴리머를 혼합한 재료를 용기중합하는 방식이 일반적이다. 제작 후 폴리머제거나 소결과 같은 후처리 과정이 복잡하다. 상용화되려면 세라믹 적층가공에 의한 결과물의 낮은 강도와 체적정확성이 개선되어야 한다. 적층가공은 어떤 재료이건 공정조건에 따라 물성과 표면환경이 달라지므로 가장 적합한 공정조건을 찾기 위한 연구가 더 많이 필요하다고 사료된다.

Keywords

References

  1. Huang SH, Liu P, Mokasdar A, Hou L. Additive manufacturing and its societal impact: a literature review. Int J Adv Manuf Technol 2013;67:1191-203. https://doi.org/10.1007/s00170-012-4558-5
  2. Guo N, Leu MC. Additive manufacturing: technology, applications and research needs. Front Mech Eng 2013;8:215-43. https://doi.org/10.1007/s11465-013-0248-8
  3. Jockusch J, Ozcan M. Additive manufacturing of dental polymers: An overview on processes, materials and applications. Dent Mater J 2020;39:345-54. https://doi.org/10.4012/dmj.2019-123
  4. Galante R, Figueiredo-Pina CG, Serro AP. Additive manufacturing of ceramics for dental applications: A review. Dent Mater 2019;35:825-46. https://doi.org/10.1016/j.dental.2019.02.026
  5. ASTM International. Standard terminology for additive manufacturing technologies. 2012.
  6. Hull C. Apparatus for production of three-dimensional objects by stereolithography. US Patent 1986;638905.
  7. Chen Z, Li Z, Li J, Liu C, Lao C, Fu Y, Liu C, Li Y, Wang P. He Y. 3D printing of ceramics: A review. J Eur Ceram Soc 2019;39:661-87. https://doi.org/10.1016/j.jeurceramsoc.2018.11.013
  8. Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater 2016;32:54-64. https://doi.org/10.1016/j.dental.2015.09.018
  9. Infuehr R, Pucher N, Heller C, Lichtenegger H, Liska R, Schmidt V, Kuna L, Haase A, Stampfl J. Functional polymers by two-photon 3D lithography. Appl Surf Sci 2007;254:836-40. https://doi.org/10.1016/j.apsusc.2007.08.011
  10. Liska R, Cziferszky M, Infuhr R, Turecek C, Fritscher C, Seidl B, Schmidt V, Kuna L, Haase A, Varga F, Lichtenegger HC, Stampfl J. Photopolymers for rapid prototyping. J Coat Technol Res 2007;4:505-10. https://doi.org/10.1007/s11998-007-9059-3
  11. Griffith ML, Halloran JW. Freeform fabrication of ceramics via stereolithography. J Am Ceram Soc 1996;79:2601-8. https://doi.org/10.1111/j.1151-2916.1996.tb09022.x
  12. Revilla-Leon M, Meyer MJ, Zandinejad A, Ozcan M. Additive manufacturing technologies for processing zirconia in dental applications. Int J Comput Dent 2020;23:27-37.
  13. Revilla-Leon M, Meyers MJ, Zandinejad A, Ozcan M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restor Dent 2019;31:51-7. https://doi.org/10.1111/jerd.12438
  14. Ngo TD, Kashani A, Imbalzano G, Nguyen KT, Hui D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos B Eng 2018;143:172-96. https://doi.org/10.1016/j.compositesb.2018.02.012
  15. Strub JR, Rekow ED, Witkowski S. Computeraided design and fabrication of dental restorations: current systems and future possibilities. J Am Dent Assoc 2006;137:1289-96. https://doi.org/10.14219/jada.archive.2006.0389
  16. Beuer F, Schweiger J, Edelhoff D. Digital dentistry: an overview of recent developments for CAD-CAM generated restorations. Br Dent J 2008;204:505-11. https://doi.org/10.1038/sj.bdj.2008.350
  17. Lebon N, Tapie L, Duret F, Attal JP. Understanding dental CAD-CAM for restorations-dental milling machines from a mechanical engineering viewpoint. Part A: chairside milling machines. Int J Comput Dent 2016;19:45-62.
  18. Digholkar S, Madhav VNV, Palaskar J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J Indian Prosthodont Soc 2016;16:328-34. https://doi.org/10.4103/0972-4052.191288
  19. Peng CC, Chung KH, Yau HT, Ramos V Jr. Assessment of the internal fit and marginal integrity of interim crowns made by different manufacturing methods. J Prosthet Dent 2020;123:514-22. https://doi.org/10.1016/j.prosdent.2019.02.024
  20. Burns DR, Beck DA, Nelson SK, Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J Prosthet Dent 2003;90:474-97. https://doi.org/10.1016/S0022-3913(03)00259-2
  21. Park JY, Jeong ID, Lee JJ, Bae SY, Kim JH, Kim WC. In vitro assessment of the marginal and internal fits of interim implant restorations fabricated with different methods. J Prosthet Dent 2016;116:536-42. https://doi.org/10.1016/j.prosdent.2016.03.012
  22. Reeponmaha T, Angwaravong O, Angwarawong T. Comparison of fracture strength after thermomechanical aging between provisional crowns made with CAD-CAM and conventional method. J Adv Prosthodont 2020;12:218-24. https://doi.org/10.4047/jap.2020.12.4.218
  23. Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, Ferracane JL, Bertassoni LE. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater 2018;34:192-200. https://doi.org/10.1016/j.dental.2017.10.003
  24. Scotti CK, de Amoedo Campos Velo MM, Rizzante FAP, de Lima Nascimento TR, Mondelli RFL, Bombonatti JFS. Physical and surface properties of a 3D-printed composite resin for a digital workflow. J Prosthet Dent 2020;124:614.e1-e5. https://doi.org/10.1016/j.prosdent.2020.03.029
  25. Jeong KW, Kim SH. Influence of surface treatments and repair materials on the shear bond strength of CAD/CAM provisional restorations. J Adv Prosthodont 2019;11:95-104. https://doi.org/10.4047/jap.2019.11.2.95
  26. Alharbi N, Alharbi S, Cuijpers VM, Osman RB, Wismeijer D. Three-dimensional evaluation of marginal and internal fit of 3D-printed interim restorations fabricated on different finish line designs. J Prosthodont Res 2018;62:218-26. https://doi.org/10.1016/j.jpor.2017.09.002
  27. Shim JS, Kim JE, Jeong SH, Choi YJ, Ryu JJ. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J Prosthet Dent 2020;124:468-75. https://doi.org/10.1016/j.prosdent.2019.05.034
  28. Bae EJ, Kim JH, Kim WC, Kim HY. Bond and fracture strength of metal-ceramic restorations formed by selective laser sintering. J Adv Prosthodont 2014;6:266-71. https://doi.org/10.4047/jap.2014.6.4.266
  29. Kruth JP, Levy G, Klocke F, Childs THC. Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Annals 2007;56:730-59. https://doi.org/10.1016/j.cirp.2007.10.004
  30. Zhou Y, Li N, Yan J, Zeng Q. Comparative analysis of the microstructures and mechanical properties of Co-Cr dental alloys fabricated by different methods. J Prosthet Dent 2018;120:617-23. https://doi.org/10.1016/j.prosdent.2017.11.015
  31. Kajima Y, Takaichi A, Kittikundecha N, Nakamoto T, Kimura T, Nomura N, Kawasaki A, Hanawa T, Takahashi H, Wakabayashi N. Effect of heat-treatment temperature on microstructures and mechanical properties of Co-Cr-Mo alloys fabricated by selective laser melting. Mater Sci Eng A 2018;726:21-31. https://doi.org/10.1016/j.msea.2018.04.048
  32. Takaichi A, Suyalatu, Nakamoto T, Joko N, Nomura N, Tsutsumi Y, Migita S, Doi H, Kurosu S, Chiba A, Wakabayashi N, Igarashi Y, Hanawa T. Microstructures and mechanical properties of Co29Cr-6Mo alloy fabricated by selective laser melting process for dental applications. J Mech Behav Biomed Mater 2013;21:67-76. https://doi.org/10.1016/j.jmbbm.2013.01.021
  33. Meacock CG, Vilar R. Structure and properties of a biomedical Co-Cr-Mo alloy producedby laser powder microdeposition. J Laser Appl 2009;21:88-95. https://doi.org/10.2351/1.3120214
  34. Tonelli L, Fortunato A, Ceschini L. CoCr alloy processed by Selective Laser Melting (SLM): effect of Laser Energy Density on microstructure, surface morphology, and hardness. J Manufac Process 2020;52:106-19. https://doi.org/10.1016/j.jmapro.2020.01.052
  35. Yan X, Lin H, Wu Y, Bai W. Effect of two heat treatments on mechanical properties of selectivelaser-melted Co-Cr metal-ceramic alloys for application in thin removable partial dentures. J Prosthet Dent 2018;119:1028.e1-e6. https://doi.org/10.1016/j.prosdent.2018.04.002
  36. Yan X, Xu YX, Wu Y, Lin H. Effects of heat treatment on metal-ceramic combination of selectivelaser-melted cobalt-chromium alloy. J Prosthet Dent 2018;120:319.e1-e6. https://doi.org/10.1016/j.prosdent.2018.05.012
  37. Beaman JJ, Barlow JW, Bourell DL, Crawford RH, Marcus HL, McAlea KP. Solid Freeform Fabrication: A New Direction in Manufacturing. Springer US, NY 1997.
  38. Sachs E, Cima M, Williams P, Brancazio D, Cornie J. Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J Manufac Sci Eng 1992;114:481-8.
  39. Hinczewski C, Corbel S, Chartier T. Ceramic suspensions suitable for stereolithography. J Eur Ceram Soc 1998;18:583-90. https://doi.org/10.1016/S0955-2219(97)00186-6
  40. Doreau F, Chaput C, Chartier T. Stereolithography for manufacturing ceramic parts. Adv Eng Mater 2000;2:493-6. https://doi.org/10.1002/1527-2648(200008)2:8<493::AID-ADEM493>3.0.CO;2-C
  41. Bertsch A, Jiguet S, Renaud P. Microfabrication of ceramic components by microstereolithography. J Micromech Microeng 2003;14:197-203. https://doi.org/10.1088/0960-1317/14/2/005
  42. Branco AC, Silva R, Santos T, Jorge H, Rodrigues AR, Fernandes R, Bandarra S, Barahona I, Matos APA, Lorenz K, Polido M, Colaco R, Serro AP, Figueiredo-Pina CG. Suitability of 3D printed pieces of nanocrystalline zirconia for dental applications. Dent Mater 2020;36:442-55. https://doi.org/10.1016/j.dental.2020.01.006
  43. Baumgartner S, Gmeiner R, Schonherr JA, Stampfl J. Stereolithography-based additive manufacturing of lithium disilicate glass ceramic for dental applications. Mater Sci Eng C Mater Biol Appl 2020;116:111180. https://doi.org/10.1016/j.msec.2020.111180
  44. Li H, Song L, Sun J, Ma J, Shen Z. Stereolithography-fabricated zirconia dental prostheses: concerns based on clinical requirements. Adv Appl Ceram 2020;119:236-43. https://doi.org/10.1080/17436753.2019.1709687
  45. Harrer W, Schwentenwein M, Lube T, Danzer R. Fractography of zirconia-specimens made using additive manufacturing (LCM) technology. J Eur Ceram Soc 2017;37:4331-8. https://doi.org/10.1016/j.jeurceramsoc.2017.03.018
  46. Xing H, Zou B, Li S, Fu X. Study on surface quality, precision and mechanical properties of 3D printed ZrO2 ceramic components by laser scanning stereolithography. Ceram Int 2017;43:16340-7. https://doi.org/10.1016/j.ceramint.2017.09.007
  47. Johansson E, Lidstrom O, Johansson J, Lyckfeldt O, Adolfsson E. Influence of Resin Composition on the Defect Formation in Alumina Manufactured by Stereolithography. Materials 2017;10:138. https://doi.org/10.3390/ma10020138
  48. Marsico C, Oilo M, Kutsch J, Kauf M, Arola D. Vat Polymerization-Printed Partially Stabilized Zirconia: Mechanical Properties, Reliability and Structural defects. Addit Manuf 2020;36:101450.
  49. O'Masta MR, Stonkevitch E, Porter KA, Bui PP, Eckel ZC, Schaedler TA. Additive manufacturing of polymer-derived ceramic matrix composites. J Am Ceram Soc 2020;103:6712-23. https://doi.org/10.1111/jace.17275
  50. Chartier T, Badev A, Abouliatim Y, Lebaudy P, Lecamp L. Stereolithography process: influence of the rheology of silica suspensions and of the medium on polymerization kinetics-cured depth and width. J Eur Ceram Soc 2012;32:1625-34. https://doi.org/10.1016/j.jeurceramsoc.2012.01.010
  51. Chartier T, Dupas C, Lasgorceix M, Brie J, Champion E, Delhote N, Chaput C. Additive manufacturing to produce complex 3D ceramic parts. J Ceram Sci Technol 2014;6:95-104.
  52. Dehurtevent M, Robberecht L, Hornez JC, Thuault A, Deveaux E, Behin P. Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturing. Dent Mater 2017;33:477-85. https://doi.org/10.1016/j.dental.2017.01.018
  53. Liu W, Wu H, Zhou M, He R, Jiang Q, Wu Z, Cheng Y, Song X, Chen Y, Wu S. Fabrication of fine-grained alumina ceramics by a novel process integrating stereolithography and liquid precursor infiltration processing. Ceram Int 2016;42:17736-41. https://doi.org/10.1016/j.ceramint.2016.08.099
  54. Wang W, Yu H, Liu Y, Jiang X, Gao B. Trueness analysis of zirconia crowns fabricated with 3-dimensional printing. J Prosthet Dent 2019;121:285-91. https://doi.org/10.1016/j.prosdent.2018.04.012
  55. Ucar Y, AysanMeric, Ekren O. Layered manufacturing of dental ceramics: fracture mechanics, microstructure, and elemental composition of lithography-sintered ceramic. J Prosthodont 2019;28:e310-8. https://doi.org/10.1111/jopr.12701
  56. Lian Q, Sui W, Wu X, Yang F, Yang S. Additive manufacturing of ZrO2 ceramic dental bridges by stereolithography. Rapid Prototyp J 2018;24:114-19. https://doi.org/10.1108/RPJ-09-2016-0144
  57. Zandinejad A, Methani MM, Schneiderman ED, Revilla-Leon M, Bds DM. Fracture Resistance of Additively Manufactured Zirconia Crowns when Cemented to Implant Supported Zirconia Abutments: An in vitro Study. J Prosthodont 2019;28:893-97. https://doi.org/10.1111/jopr.13103