Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.6.482

Research Trends on the Therapeutic Potential of Cordycepin, an Active Ingredient of the Insect Fungus Cordyceps spp., for the Prevention of Sarcopenia  

Kim, Sung Ok (Department of Food and Nutrition, College of Life and Health, Kyungsung University)
Choi, Yung Hyun (Department of Biochemistry, Dong-eui University College of Korean Medicine)
Publication Information
Journal of Life Science / v.32, no.6, 2022 , pp. 482-490 More about this Journal
Abstract
Sarcopenia, a geriatric and multifactorial syndrome characterized by progressive systemic skeletal muscle disorder, may be associated with many comorbidities. Sarcopenia caused by a decrease in muscle mass and muscle strength is accompanied by the aggravation of various pathological conditions, and as life expectancy increases, its prevalence will continue to increase in the future. During the aging process, chronic oxidative stress and increased inflammatory responses act as major contributors to skeletal muscle loss. In addition, disruption of autophagy and apoptosis signals associated with dysfunction of mitochondria, which are essential for energy metabolism, accelerates the loss of muscle proteins. The pharmacological effect of cordycepin, a major physiologically active substance in the genus Cordyceps, which has been widely used for the prevention and treatment of various diseases for a long time, is directly related to its antioxidant and anti-inflammatory actions. In this review, we present the correlation between apoptosis, autophagy, protein catabolism, and satellite cell activity important for muscle regeneration using cordycepin for the prevention and treatment of sarcopenia. Although there have been few studies so far on the use of cordycepin for sarcopenia, previous studies suggest that cordycepin may contribute to inhibiting the age-related weakening of mitochondrial function and blocking the breakdown of muscle proteins. In addition, the protective effect of cordycepin on muscle cell damage is considered to be closely related to its antioxidant and anti-inflammatory activities. Therefore, it is considered that more continuous basic research is needed, focusing on the molecular biological mechanism of cordycepin, which is involved in the anti-aging of muscle cells.
Keywords
Aging; anti-inflammation; antioxidant; cordycepin; sarcopenia;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Marogianni, C., Sokratous, M., Dardiotis, E., Hadjigeorgiou, G. M., Bogdanos, D. and Xiromerisiou, G. 2020. Neurodegeneration and inflammation-an interesting interplay in Parkinson's disease. Int. J. Mol. Sci. 21, 8421.   DOI
2 Peterson, S. J. and Mozer, M. 2017. Differentiating sarcopenia and cachexia among patients with cancer. Nutr. Clin. Pract. 32, 30-39.   DOI
3 Lloyd, N. 2016. AIM coalition announces establishment of ICD-10-CM code for sarcopenia by the Centers for Disease Control and Prevention. Available from: https://www.prweb.com/releases/2016/04/prweb13376057.htm.
4 Kim, S. O., Cha, H. J., Park, C., Lee, H., Hong, S. H., Jeong, S. J., Park, S. H., Kim, G. Y., Lee, S. H., Jin, C. Y., Hwang, E. J. and Choi, Y. H. Cordycepin induces apoptosis in human bladder cancer T24 cells through ROS-dependent inhibition of the PI3K/Akt signaling pathway. Biosci. Trends. 13, 324-333.
5 Arora, D. K., Ajello, L. and Mukerji, K. G. 1991. In handbook of applied mycology. Marcel Dekker Ltd, USA.
6 Cohen, S., Nathan, J. A. and Goldberg, A. L. 2015. Muscle wasting in disease: molecular mechanisms and promising therapies. Nat. Rev. Drug Discov. 14, 58-74.   DOI
7 Ashraf, S. A., Elkhalifa, A. E. O, Siddiqui, A. J., Patel, M., Awadelkareem, A. M., Snoussi, M., Ashraf, M. S. Adnan, M. and Hadi, S. 2020. Cordycepin for health and wellbeing: A potent bioactive metabolite of an entomopathogenic cordyceps medicinal fungus and its nutraceutical and therapeutic potential. Molecules 12, 2735.
8 Bertheloot, D., Latz, E. and Franklin, B. S. 2021. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol. Immunol. 18, 1106-1121.   DOI
9 Bloemberg, D. and Quadrilatero, J. 2021. Autophagy displays divergent roles during intermittent amino acid starvation and toxic stress-induced senescence in cultured skeletal muscle cells. J. Cell Physiol. 236, 3099-3113.   DOI
10 Choi, Y. H., Kim, G. Y. and Lee, H. H. 2014. Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through Toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways. Drug Des. Dev. Ther. 8, 1941.   DOI
11 Cruz-Jentoft, A. J. and Sayer, A. A. 2019. Sarcopenia. Lancet 29, 2636-2646.   DOI
12 Das, G., Shin, H. S., Leyva-Gomez, G., Prado-Audelo, M. L. D., Cortes, H., Singh, Y. D., Panda, M. K., Mishra, A. P., Nigam, M., Saklani, S., Chaturi, P. K., Martorell, M., Cruz-Martins, N., Sharma, V., Garg, N., Sharma, R. and Patra, J. K. 2021. Cordyceps spp.: A review on its immune-stimulatory and other biological potentials. Front. Pharmacol. 11, 602364.   DOI
13 Deng, M., Lin, C., Zeng, X., Zhang, J., Wen, F., Liu, Z., Wu, H. and Wu, X. 2020. Involvement of p53, p21, and caspase-3 in apoptosis of coronary artery smooth muscle cells in a kawasaki vasculitis mouse model. Med. Sci. Monit. 26, e922429.
14 Elmore, A. 2007. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 35, 498-516.   DOI
15 Dodds, R. M., Syddall, H. E., Cooper, R., Benzeval, M., Deary, I. J., Dennison, E. M., Der, G., Gale, C. R., Inskip, H. M., Jagger, C., Kirkwood, T. B., Lawlor, D. A., Robinson, S. M., Starr, J. M., Steptoe, A., Tilling, K., Kuh, D., Cooper, C. and Sayer, A. A. 2014. Grip strength across the life course: Normative data from twelve British studies. PLoS One 9, e113637.   DOI
16 Dong, C., Vashisht, A. and Hegde, A. N. 2014. Proteasome regulates the mediators of cytoplasmic polyadenylation signaling during late-phase long-term potentiation. Neurosci. Lett. 583, 199-204.   DOI
17 Dumont, N. A., Bentzinger, C. F., Sincennes, M. C. and Rudnicki, M. A. 2015. Satellite cells and skeletal muscle regeneration. Compr. Physiol. 5, 1027-1059.   DOI
18 Frangos, S. M., Bishop, D. J. and Holloway, G. P. 2021. Revisiting the contribution of mitochondrial biology to the pathophysiology of skeletal muscle insulin resistance. Biochem. J. 478, 3809-3826.   DOI
19 Garcia-Prat, L., Martinez-Vicente, M., Perdiguero, E., Ortet, L., Rodriguez-Ubreva, J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S., Ballestar, E., Serrano, A. L., Sandri, M. and Munoz-Canoves, P. 2016. Autophagy maintains stemness by preventing senescence. Nature 529, 37-42.   DOI
20 Haberecht-Muller, S., Kruger, E. and Fielitz, J. 2021. Out of control: The role of the ubiquitin proteasome system in skeletal muscle during inflammation. Biomolecules 11, 1327.   DOI
21 Srisuksai, K., Parunyakul, K., Phaonakrop, N., Roytakul, S. and Fungfuang, W. 2021. The effect of cordycepin on brain oxidative stress and protein expression in streptozotocin-induced diabetic mice. J. Vet. Med. Sci. 15, 1425-1434.
22 Han, F., Dou, M., Wang, Y., Xu, C., Li, Y., Ding, X., Xue, W., Zheng, J., Tian, P. and Ding, C. 2020. Cordycepin protects renal ischemia/reperfusion injury through regulating inflammation, apoptosis, and oxidative stress. Acta Biochim. Biophys. Sin (Shanghai). 52, 125-132.   DOI
23 Hall, J. 2020. Guyton & Hall Physiology Review 4th Ed.
24 Hong, S. M and Choi, W. H. 2012. Clinical and physiopathological mechanism of sarcopenia. Kor. J. Intern. Med. 83, 444-454.
25 Jaiboonma, A., Kaok,aen P., Chaicharoenaudomrung, N., Kunhorm, P., Janebodin, K., Noisa, P. and Jitprasertwong, P. 2020. Cordycepin attenuates salivary hypofunction through the prevention of oxidative stress in human submandibular gland cells. Int. J. Med. Sci. 17, 1733.   DOI
26 Jeong, J. W., Jin, C. Y., Kim, G. Y., Lee, J. D., Park, C., Kim, G. D., Kim, W. J., Jung, W. K., Seo, S. K., Choi, I. W. and Choi, Y. H. 2010. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. Int. Immunopharmacol. 10, 1580-1586.   DOI
27 Kalinkovich, A. and Livshits, G. 2017. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res. Rev. 35, 200-221.   DOI
28 Khan, M. A. and Tania, M. Cordycepin in anticancer research: Molecular mechanism of therapeutic effects. Curr. Med. Chem. 27, 983-996.   DOI
29 Kobayasi, Y. 1982. Keys to the taxa of the genera Cordyceps and Torrubiella. Trans. Mycol. Soc. Japan 23, 329-364.
30 Kondrashov, A., Meijer, H. A., Barthet-Barateig, A., Parker, H. N., Khurshid, A., Tessier, S., Sicard, M., Knox, A. J., Pang, L. and De Moor, C. H. 2012. Inhibition of polyadenylation reduces inflammatory gene induction. RNA 18, 2236-2250.   DOI
31 Zheng, Q. W., Gao, S. X., Lv, J., Chen, D. Y., Chen, J., Li, H. H. and Guan, J. C. 2018. Effect of cordycepin on apoptosis and autophagy of tongue cancer cells in vitro and the molecular mechanism. Nan Fang Yi Ke Da Xue Xue Bao. 38, 390-394.
32 Ter Beek, L., Vanhauwaert, E., Slinde, F., Orrevall, Y., Henriksen, C., Johansson, M., Vereecken, C., Rothenberg, E. and Jager-Wittenaar, H. 2016. Unsatisfactory knowledge and use of terminology regarding malnutrition, starvation, cachexia and sarcopenia among dietitians. Clin. Nutr. 35, 1450-1456.   DOI
33 Lee, M. J., Lee, J. C., Hsieh, J. H., Lin, M. Y., Shih, I. A., You, H. L. and Wang, K. 2021. Cordycepin inhibits the proliferation of malignant peripheral nerve sheath tumor cells through the p53/Sp1/tubulin pathway. Am. J. Cancer Res. 15, 1247-1266.
34 Tuli, H. S., Sandhu, S. S. and Sharma, A. K. 2014. Pharmacological and therapeutic potential of Cordyceps with special reference to cordycepin. 3 Biotech. 4, 1-12.   DOI
35 Won, K. J., Lee, S. C., Lee, C. K., Lee, H. M., Lee, S. H., Fang, Z., Choi, O. B., Jin, M., Kim, J., Park, T., Choi, W. S., Kim, S. K. and Kim, B. 2009. Cordycepin attenuates neointimal formation by inhibiting reactive oxygen species-mediated responses in vascular smooth muscle cells in rats. J. Pharmacol. Sci. 109, 403-412.   DOI
36 Yoshida, T. and Delafontaine, P. 2020. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells 9, 1970.   DOI
37 Colleluori, G. and Villareal, D. T. 2021. Aging, obesity, sarcopenia and the effect of diet and exercise intervention. Exp. Gerontol. 155, 111561.   DOI
38 He, W., Zhang, M. F., Ye, J., Jiang, T. T., Fang, X. and Song, Y. 2010. Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 pro-apoptotic molecules. J. Zhejiang Univ. Sci. B. 11, 654-660.   DOI
39 Badanjak, K., Fixemer, S., Smajic, S., Skupin, A. and Grunewald, A. 2021. The contribution of mcroglia to neuroinflammation in Parkinson's disease. Int. J. Mol. Sci. 22, 4676.   DOI
40 Chen, S. Z. and Guan, D. Y. 1995. Freshness-preserved cordyceps and food processing method. Chinese patent CN 1075402.
41 Cunningham, K. G., Manson, W., Spring, F. S. and Hutchinson, S. A. 1950. Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) Link. Nature 166, 949.
42 Deng, Q., Li, X., Fang, C., Li, X., Zhang, J., Xi, Q., Li, Y. and Zhang, R. 2022. Cordycepin enhances anti-tumor immunity in colon cancer by inhibiting phagocytosis immune checkpoint CD47 expression. Int. Immunopharmacol. 16, 107.
43 Dou, C., Cao, Z., Ding, N., Hou, T., Luo, F., Kang, F., Yang, X., Jiang, H., Xie, Z., Hu, M., Xu, J. and Dong, S. 2016. Cordycepin prevents bone loss through inhibiting osteoclastogenesis by scavenging ROS generation. Nutrients 8, 231.   DOI
44 Ferrucci, L., de Cabo, R., Knuth, N. D. and Studenski, S. 2012. Of Greek heroes, wiggling worms, mighty mice, and old body builders. J. Gerontol. A. Biol. Sci. Med. Sci. 67, 13-16.
45 Sinaki, M., Khosla, S., Limburg, P. J., Rogers, J. W. and Murtaugh, P. A. 1993. Muscle strength in osteoporotic versus normal women. Osteoporos. Int. 3, 8-12.
46 Yao, L. H., Meng, W., Song, R. F., Xiong, Q. P., Sun, W., Luo, Z. Q., Yan, W. W., Li, Y. P., Li, X. P., Li, H. H. and Xiao, P. 2014. Modulation effects of cordycepin on the skeletal muscle contraction of toad gastrocnemius muscle. Eur. J. Pharmacol. 5, 9-15.
47 Lei, J., Wei, Y., Song, P., Li, Y., Zhang, T., Feng, Q. and Xu, G. 2018. Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress. Eur. J. Pharmacol. 5, 110-114.
48 Li, S. Z., Ren, J. W., Fei, J., Zhang, X. D. and Du, R. L. 2019. Cordycepin induces Bax-dependent apoptosis in colorectal cancer cells. Mol. Med. Rep. 19, 901-908.
49 Liang Y. L., Liu, Y., Yang, J. W. and Liu, C. X. 1997. Studies on pharmacological activities of cultivated Cordyceps sinensis. Phytotheraphy Res. 11, 237-241.   DOI
50 Song, H., Huang, L. P., Li, Y., Liu, C., Wang, S., Meng, W., Wei, S., Liu, X. P., Gong, Y. and Yao, L. H. 2018. Neuroprotective effects of cordycepin inhibit Aβ-induced apoptosis in hippocampal neurons. Neurotoxicology 68, 73-80.   DOI
51 Su, J., Dou, Z., Hong, H., Xu, F., Lu, X., Lu, Q., Ye, T. and Huang, C. 2022. KRIBB11: A promising drug that promotes microglial process elongation and suppresses neuroinflammation. Front. Pharmacol. 13, 857081.   DOI
52 Wang, M., Tan, Y., Shi, Y., Wang, X., Liao, Z. and Wei, P. 2020. Diabetes and sarcopenic obesity: Pathogenesis, diagnosis, and treatments. Front. Endocrinol. (Lausanne) 11, 568.   DOI
53 Wang, X., Xi, D., Mo, J., Wang, K., Luo, Y., Xia, E., Huang, R., Luo, S., Wei, J. and Ren, Z. 2020. Cordycepin exhibits a suppressive effect on T cells through inhibiting TCR signaling cascade in CFA-induced inflammation mice model. Immunopharmacol. Immunotoxicol. 42, 119-127.   DOI
54 Yang, R., Wang, X., Xi, D., Mo, J., Wang, K., Luo, S., Wei, J., Ren, Z., Pang, H. and Luo, Y. 2020. Cordycepin attenuates IFN-γ-induced macrophage IP-10 and mig expressions by inhibiting STAT1 activity in CFA-induced inflammation mice model. Inflammation 43, 752-764.   DOI
55 Zhang, X. L., Huang, W. M., Tang, P. C., Sun, Y., Zhang, X., Qiu, L., Yu, B. C., Zhang, X. Y., Hong, Y. X., He, Y. and Ge, X. Q. 2021. Anti-inflammatory and neuroprotective effects of natural cordycepin in rotenone-induced PD models through inhibiting Drp1-mediated mitochondrial fission. Neurotoxicology 84, 1-13.   DOI
56 McGrath, M. J., Eramo, M. J., Gurung, R., Sriratana, A., Gehrig, S. M., Lynch, G. S., Lourdes, S. R., Koentgen, F., Feeney, S. J., Lazarou, M., McLean, C. A. and Mitchell, C. A. 2021. Defective lysosome reformation during autophagy causes skeletal muscle disease. J. Clin. Invest. 131, e135124.   DOI
57 Liu, C., Qi, M., Li, L., Yuan, Y., Wu, X. and Fu, J. 2020. Natural cordycepin induces apoptosis and suppresses metastasis in breast cancer cells by inhibiting the Hedgehog pathway. Food Funct. 11, 2107-2116.   DOI
58 Liu, S., Meng, F., Zhang, D., Shi, D., Zhou, J., Guo, S. and Chang, X. 2022. Lonicera caerulea berry polyphenols extract alleviates exercise fatigue in mice by reducing oxidative stress, inflammation, skeletal muscle cell apoptosis, and by increasing cell proliferation. Front. Nutr. 9, 853225.
59 Manini, T. M., Hong, S. L. and Clark, B. C. 2013. Aging and muscle: a neuron's perspective. Curr. Opin. Clin. Nutr. Metab. Care 16, 21-26.   DOI
60 McKendry, J., Stokes, T., Mcleod, J. C. and Phillips, S. M. 2021. Resistance exercise, aging, disuse, and muscle protein metabolism. Compr. Physiol. 11, 2249-2278.
61 Narici, M. V., Reeves, N. D., Morse, C. I. and Maganaris, C. N. 2004. Muscular adaptations to resistance exercise in the elderly. J. Musculoskelet. Neuronal Interact. 4, 161-164
62 Riuzzi, F., Sorci, G., Arcuri, C., Giambanco, I., Bellezza, I., Minelli, A. and Donato, R. 2018. Cellular and molecular mechanisms of sarcopenia: The S100B perspective. J. Cachexia Sarcopenia Muscle 9, 1255-1268.   DOI
63 Ziaaldini, M. M., Marzetti, E., Picca, A. and Murlasits, Z. 2017. Biochemical pathways of sarcopenia and their modulation by physical exercise: A narrative review. Front Med. 4, 167.   DOI
64 Zuo, S. Q., Li, C., Liu, Y. L., Tan, Y. H., Wan, X., Xu, T., Li, Q., Wang L., Wu, Y. L., Deng, F. M. and Tang, B. 2021. Cordycepin inhibits cell senescence by ameliorating lysosomal dysfunction and inducing autophagy through the AMPK and mTOR-p70S6K pathway. FEBS Open Bio. 11, 2705-2714.   DOI
65 Zhang, D. W., Wang, Z. L., Qi, W., Lei, W. and Zhao, G. Y. 2014. Cordycepin (3'-deoxyadenosine) down-regulates the proinflammatory cytokines in inflammation-induced osteoporosis model. Inflammation 37, 1044-1049.   DOI
66 Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., Landi, F., Martin, F. C., Michel, J. P., Rolland, Y., Schneider, S. M., Topinkova, E., Vandewoude, M. and Zamboni, M. 2010. European working group on sarcopenia in older people. Sarcopenia: European consensus on definition and diagnosis: report of the european working group on sarcopenia in older people. Age Ageing 39, 412-423.   DOI
67 Kusama, K., Miyagawa, M., Ota, K., Kuwabara, N., Saeki, K., Ohnishi, Y., Kumaki, Y., Aizawa, T., Nakasone, T., Okamatsu, S., Miyaoka, H. and Tamura, K. 2020. Cordyceps militaris fuit body extract decreases testosterone catabolism and testosterone-stimulated prostate hypertrophy. Nutrients 26, 50.
68 Nikawa, T., Ulla, A. and Sakakibara, I. 2021. Polyphenols and their effects on muscle atrophy and muscle health. Molecules 26, 4887.   DOI
69 Norbury, C. J. and Hickson, I. D. Cellular responses to DNA damage. Annu. Rev. Pharmacol. Toxicol. 41, 367-401.   DOI
70 Park, C., Jeong, J. W. and Choi, Y. H. 2017. Induction of muscle atrophy by dexamethasone and hydrogen peroxide in differentiated C2C12 myotubes. J. Life Sci. 27, 1479-1785.   DOI
71 Radhi, M., Ashraf, S., Lawrence, S., Tranholm, A. A., Wellham, P. A. D., Hafeez, A., Khamis, A. S., Thomas, R., McWilliams, D. and de Moor, C, H. 2021. A systematic review of the biological effects of cordycepin. Molecules 26, 5886.   DOI
72 Parunyakul, K., Srisuksai, K., Charoenlappanit, S., Phaonakrop, N., Roytrakul, S. and Fungfuang, W. 2021. Metabolic impacts of cordycepin on hepatic proteomic expression in streptozotocin-induced type 1 diabetic mice. PLoS One 16, e0256140.   DOI
73 Pasiakos, S. M., Berryman, C. E., Carrigan, C. T., Young, A. J. and Carbone, J. W. 2017. Muscle protein turnover and the molecular regulation of muscle mass during hypoxia. Med. Sci. Sports Exerc. 49, 1340-1350.   DOI
74 Paterson, R. R. 2008. Cordyceps: A traditional Chinese medicine and another fungal therapeutic biofactory? Phytochemistry 69. 1469-1495.   DOI
75 Payette, H., Hanusaik, N., Boutier, V., Morais, J. A. and Gray-Donald, K. 1998. Muscle strength and functional mobility in relation to lean body mass in free-living frail elderly women. Eur. J. Clin. Nutr. 52, 45-53.   DOI
76 Pette, D., and Staron, R. S. 2000. Myosin isoforms, muscle fiber types, and transitions. Microsc. Res. Tech. 50, 500-509.   DOI
77 Ramesh, T., Yoo, S. K., Kim, S. W., Hwang, S. Y., Sohn, S. H., Kim, I. W. and Kim, S. K. 2012. Cordycepin (3'deoxyadenosine) attenuates age-related oxidative stress and ameliorates antioxidant capacity in rats. Exp. Gerontol. 47, 979-987.   DOI
78 Sakuma, K. and Yamaguchi, A. 2018. Recent advances in pharmacological, hormonal, and nutritional intervention for sarcopenia. Pflugers Arch. 470, 449-460.   DOI
79 Schakman, O., Kalista, S., Barbe, C., Loumaye, A. and Thissen, J. P. 2013. Glucocorticoid-induced skeletal muscle atrophy. Int. J. Biochem. Cell Biol. 45, 2163-2172.   DOI
80 Schiaffino, S. and Reggiani, C. 2011. Fiber types in mammalian skeletal muscles. Physiol Rev. 91, 1447-1531.   DOI
81 Rosenberg, I. H. 1997. Sarcopenia: Origins and clinical relevance. J. Nutr. 127, 990S-991S.   DOI