• 제목/요약/키워드: statistical tests

검색결과 1,825건 처리시간 0.027초

Statistical tests for biosimilarity based on relative distance between follow-on biologics for ordinal endpoints

  • Yoo, Myung Soo;Kim, Donguk
    • Communications for Statistical Applications and Methods
    • /
    • 제27권1호
    • /
    • pp.1-14
    • /
    • 2020
  • Investigations of biosimilarity between reference drugs and test drugs required statistical tests; in addition, statistical tests to evaluate biosimilarity have been recently proposed. Ordinal outcome data has been observed in research; however, appropriate statistical tests to deal with ordinal endpoints for biosimilar have not yet been proposed. This paper extends existing design for ordinal endpoints. Using measure of nominal-ordinal association and relative distances between drugs are defined so that testing procedures are developed. Through simulation studies, we investigate type I error rate and power to show the performance of our suggested method. Furthermore, a comparison between the statistical tests and other designs is proviede to show significance of ordinal endpoints.

Power Analysis of Distributions between Nonparametric Tests

  • Chan Keun Park
    • Communications for Statistical Applications and Methods
    • /
    • 제5권2호
    • /
    • pp.417-429
    • /
    • 1998
  • This paper compares powers of the two nonparametric tests under a variety of population distributions through a simulation study. Both tests require that the two underlying populations have the same variance, but this assumption is relaxed in some of the comparisons.

  • PDF

Some Nonparametric Tests for Change-points with Epidemic Alternatives

  • Kim, Kyung-Moo
    • Communications for Statistical Applications and Methods
    • /
    • 제4권2호
    • /
    • pp.427-434
    • /
    • 1997
  • The purpose of this paper is to discuss distribution-free tests of hypothesis that the random samples are identically distributed against the epidemic alternative. But most tests that have been considered are depended only on specific null distribution. Two nonparametric tests are considered and compared with a likelihood ratio test by the empirical powers.

  • PDF

線型回歸係數의 二變量 t 有意性 檢定 (On Bivariate-t Significance Tests of Linear Regression Coefficients)

  • 김강균
    • Journal of the Korean Statistical Society
    • /
    • 제5권1호
    • /
    • pp.3-18
    • /
    • 1976
  • To test simultaneous significance of more than two linear regression coefficients, we can consider multivariate-t tests with critical regions in t-space instead of F-tests where t-values are t-statistics of significance tests of one coefficient. In this paper bivariate-t distributions and bivariate-t tests of two coefficients such as maxmod, minmod, one-tailed maxmod and one-tailed minmod tests are studied. Through the calculation of powers of test, it is learned that in some cases bivariate-t test are more powerful than F-tests.

  • PDF

NEW LM TESTS FOR UNIT ROOTS IN SEASONAL AR PROCESSES

  • Oh, Yu-Jin;So, Beong-Soo
    • Journal of the Korean Statistical Society
    • /
    • 제36권4호
    • /
    • pp.447-456
    • /
    • 2007
  • On the basis of marginal likelihood of the residual vector which is free of nuisance mean parameters, we propose new Lagrange Multiplier seasonal unit root tests in seasonal autoregressive process. The limiting null distribution of the tests is the standardized ${\chi}^2-distribution$. A Monte-Carlo simulation shows the new tests are more powerful than the tests based on the ordinary least squares (OLS) estimator, especially for large number of seasons and short time spans.

Unit Root Tests for Autoregressive Moving Average Processes Based on M-estimators

  • Shin, Dong-Wan;Lee, Oesook
    • Journal of the Korean Statistical Society
    • /
    • 제31권3호
    • /
    • pp.301-314
    • /
    • 2002
  • For autoregressive moving average (ARMA) models, robust unit root tests are developed using M-estimators. The tests are parametric in the sense ARMA parameters are estimated jointly with unit roots. A Monte-Carlo experiment reveals superiority of the parametric tests over the semipararmetric tests of Lucas (1995a) in terms of both empirical sizes and powers.

Tests of Hypotheses in Multiple Samples based on Penalized Disparities

  • Park, Chanseok;Ayanendranath Basu;Ian R. Harris
    • Journal of the Korean Statistical Society
    • /
    • 제30권3호
    • /
    • pp.347-366
    • /
    • 2001
  • Robust analogues of the likelihood ratio test are considered for testing of hypotheses involving multiple discrete distributions. The test statistics are generalizations of the Hellinger deviance test of Simpson(1989) and disparity tests of Lindsay(1994), obtained by looking at a 'penalized' version of the distances; harris and Basu (1994) suggest that the penalty be based on reweighting the empty cells. The results show that often the tests based on the ordinary and penalized distances enjoy better robustness properties than the likelihood ratio test. Also, the tests based on the penalized distances are improvements over those based on the ordinary distances in that they are much closer to the likelihood ratio tests at the null and their convergence to the x$^2$ distribution appears to be dramatically faster; extensive simulation results show that the improvement in performance of the tests due to the penalty is often substantial in small samples.

  • PDF

Method-Free Permutation Predictor Hypothesis Tests in Sufficient Dimension Reduction

  • Lee, Kyungjin;Oh, Suji;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • 제20권4호
    • /
    • pp.291-300
    • /
    • 2013
  • In this paper, we propose method-free permutation predictor hypothesis tests in the context of sufficient dimension reduction. Different from an existing method-free bootstrap approach, predictor hypotheses are evaluated based on p-values; therefore, usual statistical practitioners should have a potential preference. Numerical studies validate the developed theories, and real data application is provided.

Alternative Tests for the Nested Error Component Regression Model

  • Song, Seuck-Heun;Jung, Byoung-Cheol
    • Journal of the Korean Statistical Society
    • /
    • 제29권1호
    • /
    • pp.63-80
    • /
    • 2000
  • We consider the panel data regression model with nested error componets. In this paper, the several Lagrange Multipler tests for the nested error component model are derived. These tests extend the earlier work of Honda(1985), Moulton and Randolph(1989), Baltagi, et al.(1992) and King and Wu(1997) to the nested error component case. Monte Carlo experiments are conducted to study the performance of these LM tests.

  • PDF