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Abstract
Investigations of biosimilarity between reference drugs and test drugs required statistical tests; in addition,

statistical tests to evaluate biosimilarity have been recently proposed. Ordinal outcome data has been observed
in research; however, appropriate statistical tests to deal with ordinal endpoints for biosimilar have not yet been
proposed. This paper extends existing design for ordinal endpoints. Using measure of nominal-ordinal association
and relative distances between drugs are defined so that testing procedures are developed. Through simulation
studies, we investigate type I error rate and power to show the performance of our suggested method. Furthermore,
a comparison between the statistical tests and other designs is proviede to show significance of ordinal endpoints.
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1. Introduction

Biological products, medicines produced from living organisms, have opened the new approach to the
treatment of several types of diseases such as cancer (Vulto and Jaquez, 2017). However, the use of
biological products is limited due to high costs. As the patents of biological products expire, generic of
biological products, which are called biosimilar (or follow-on biologics), has received interest from the
pharmaceutical industry and related areas. Biosimilar is known to have similar effects with biological
products, but it has considerable advantages in that it allows people to have more affordable access
to drugs than biological products. Biological products have different characteristics from chemical
drugs. In addition, biological products have more complex structures that are likely to have a larger
variance than chemical drugs. A different approach to assess statistical similarity between reference
drugs and test drugs are required due to the fundamental differences between biological products and
chemical products.

Various statistical tests to assess biosimilarity have been proposed (Chen et al., 2017; Shin and
Kang, 2016; Lu et al., 2014; Zhang et al., 2014; Yang et al., 2012; Kang and Chow, 2013). Kang
and Chow (2013) considered statistical tests based on the ratio estimator and linearization method
in a three-arm parallel design to determine biosimilarity between reference drugs and test drugs for
continuous endpoints. Based on the power function, simulation to compare each methods showed
that power of ratio estimator is greater than that of the linearization method. Lu et al. (2014) took
the frequency estimator into account to assess biosimilarity in three-arm parallel design. Absolute
difference between reference drugs and test drugs with an indicator function is considered to formulate
frequency estimator. Power of frequency estimator is compared to that of the ratio estimator and
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linearization method by Kang and Chow (2013), which demonstrated that the frequency estimator is
more powerful than the other two methods when a suitable biosimilar margin is chosen. Kang and
Shin (2015) extended three-arm parallel design to (k + 1)-arm parallel design. Shin and Kang (2016)
extended statistical test based on the ratio estimator for binary endpoints. For the binary endpoints, the
risk difference, the log relative risk, and the log odds ratio were taken for the ratio estimator. A type
I error rate and power are also investigated theoretically and empirically. Chen et al. (2017) recently,
assessed biosimilarity based on tolerance limits in a two-arm parallel design. The biosimilarity index
based on tolerance limits was found to be more stringent and conservative when compared to other
moment-based criterion, especially when variance of biosimilar is larger than that of reference drugs.

Yang et al. (2012) demonstrated that the assessment of biosimilarity in variance should be con-
cerned, so that they considered an adapted F-test, which is an extension of traditional F-test for
homogeneity of variability. To weaken the normal assumption for adapted F-test, nonparametric tests
were also proposed by Zhang et al. (2014). The nonparametric tests were found to be robust in con-
trolling type I error rate, especially when the underlying distribution is skewed or has a heavy tail.
Research on sample size calculation for the assessment of biosimilarity have been also considered
by Kang and Kim (2014) and Kang et al. (2015). US FDA (2015) provided a guideline to develop
biosimilar in which sponsors are required to choose endpoints to demonstrate biosimilarity as well as
to explain the reason why they choose such a design.

Of the proposed methods, Kang and Chow (2013) developed three-arm parallel design utilizing
a relative distance between test drugs and reference drugs as a biosimilarity criterion. In this design,
relative distance is defined as

rd =
d(T,R)

d(R1,R2)
, (1.1)

where distance between test drugs and reference drugs are denoted by d(T,R) and d(R1,R2) represents
the distance between reference drugs from two different batches. With this criterion, they considered
the following statistical tests.

H0 : rd ≥ δ versus HA : rd < δ, (1.2)

where δ (δ > 0) is prespecified margin. For the continuous endpoints, relative distance could be in-
terpreted as absolute value of mean difference between test drugs and reference drugs scaled by the
absolute value of mean difference between reference drugs from different batches. Relative distance
employs distance between reference drugs from different batches as a denominator; therefore, a larger
variability of biological product is considered in assessing biosimilarity, in which two-arm balanced
design fails to accomplish. For more detail, refer to Kang and Chow (2013).

This work makes an extension of three-arm parallel design for ordinal endpoints based on the
advantage of three-arm parallel design. An example of ordinal endpoints could be found in Doll and
Pygott (1952); the change in the size of an ulcer crater after three months of treatment (larger, less
than 2/3 healed, 2/3 or more healed, healed). Ordinal outcome data analyzed after being dichotomized
into the form of binary data are shown to cause some loss of information in ordinal data (Sankey and
Weissfeld, 1998). Roozenbeek et al. (2011) also demonstrated that statistical power can increase when
ordinal analysis is conducted, instead of collapsing data into a binary form. Following this research,
we focus on the statistical tests to assess biosimilarity, when endpoints have the ordinal form.

In the next Section, using summary measures for nominal-ordinal association, relative distance on
new three-arm parallel design for ordinal endpoints are defined. Section 3 describes statistical tests for
biosimilarity. Section 4 theoretically and empirically investigates as well as compares type I error rate



Statistical tests for biosimilarity for ordinal endpoints 3

and power. Section 5 conducts simulation studies to show applicability and the significance of ordinal
endpoints in determining biosimilarity. Finally, Session 6 provides the conclusion and suggestions for
future study.

2. Distances for ordinal endpoints on three-arm parallel design

In this Section, we define relative distance on a new three-arm parallel design for ordinal endpoints.
Section 1 indicated that relative distance is defined as a ratio of two distances; one between test drug
(biosimilar) and reference drugs and another one between reference drugs from different batches.
Two summary measures of the degree of association between a nominal variable and ordinal variable,
which are denoted by ∆ and α, are taken for relative distance. ∆ and α are defined as follows (Agresti,
1981).

∆ = P(Y1 > Y2) − P(Y2 > Y1) =
∑
i> j

πi|1π j|2 −
∑
i< j

πi|1π j|2, (2.1)

α =
P(Y1 > Y2)
P(Y2 > Y1)

=

∑
i> j πi|1π j|2∑
i< j πi|1π j|2

, (2.2)

where Y1 and Y2 denote independent random variables representing ordinal category numbers of the
response variable for subjects selected at random from group 1 and group 2, respectively. Also, π j|i =
πi j/πi+ with πi j denoting cell probability for the ith row and jth column and πi+ =

∑
j πi j for two-way

contingency tables. In the development of biosimilar, group 1 and group 2 could be patients taking
test drugs (biosimilar) and those taking reference drugs in a clinical trial. ∆ can be interpreted as
the difference of two probabilities; one that group 1 (patients taking test drugs) shows higher ordinal
category numbers (e.g., better response in clinical trial) than group 2 (patients taking reference drugs)
and another that group 2 shows higher ordinal category numbers than group 1. However, α represents
the ratio between two probabilities explained in the case of ∆. These measures utilize ordering of the
levels of the ordinal variables. Furthermore, note that when ordinal category number K = 2, ∆ is equal
to π1|2 − π1|1 while α is equal to (π12π21)/(π11π22) (Agresti, 1981).

The sample versions of these two measures are easily defined by substituting cell probability with
sample proportion,

∆̂ =
∑
i> j

π̂i|1π̂ j|2 −
∑
i< j

π̂i|1π̂ j|2, (2.3)

α̂ =

∑
i> j π̂i|1π̂ j|2∑
i< j π̂i|1π̂ j|2

, (2.4)

where π̂ j|i = π̂i j/π̂i+ with π̂i j denoting sample proportion of ith row and jth column and π̂i+ =
∑

j π̂i j.
Agresti (1981) also demonstrated asymptotic normal distribution for (2.3) and (2.4).

Using ∆ and logα, we define the two relative distances on the three-arm parallel design. Let T ,
R1, and R2 denote test drugs (biosimilar) and reference drugs from two different batches, respec-
tively. Assume that total number of patients, N, are randomized into three groups. The number of
each group is represented by ni, i = 1, 2, 3; number of group 1 taking test drugs (biosimilar), those
of group 2 and group 3 receiving reference drugs from different batches. We employ 1 : 1 : 1 as a
randomization ratio, N = n1 + n2 + n3. By assuming that YT ∼ Multi(n1,πT), YR1 ∼ Multi(n2,πR1 ),
YR2 ∼ Multi(n3,πR2 ), where YT , YR1 ,YR2 are independent random variables denoting ordinal category
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number of the response variables with πT , πR1 , πR2 representing cell probabilities for each group.
Distances with measure ∆ and α are defined as

d∆(T,R) =
∣∣∣∆TR

∣∣∣ = |P(YT > YR) − P(YR > YT )|

=

∣∣∣∣∣∣∣∣
∑
i> j

πi|Tπ j|R −
∑
i< j

πi|Tπ j|R

∣∣∣∣∣∣∣∣ , (2.5)

d∆(R1,R2) =
∣∣∣∆R1R2

∣∣∣
=

∣∣∣∣∣∣∣∣
∑
i> j

πi|R1π j|R2 −
∑
i< j

πi|R1π j|R2

∣∣∣∣∣∣∣∣ , (2.6)

dα(T,R) =
∣∣∣logαTR

∣∣∣
=

∣∣∣∣∣∣∣∣log
∑
i> j

πi|Tπ j|R − log
∑
i< j

πi|Tπ j|R

∣∣∣∣∣∣∣∣ , (2.7)

dα(R1,R2) =
∣∣∣logαR1R2

∣∣∣
=

∣∣∣∣∣∣∣∣log
∑
i> j

πi|R1π j|R2 − log
∑
i< j

πi|R1π j|R2

∣∣∣∣∣∣∣∣ , (2.8)

where ∆R1R2 and logαR1R2 represent measures ∆ and logα from groups taking reference drugs from
batches 1 and 2. With πi|R being defined as the arithmetic mean of πi|R1 and πi|R2 , ∆TR and logαTR

could be seen as each measure from a group taking test drugs and one taking reference drugs.
With these two pairs of distances, relative distance, rd∆ and rdα, can be defined as

rd∆ =
d∆(T,R)

d∆(R1,R2)
=

∣∣∣∣∣∣
∑

i> j πi|Tπ j|R −
∑

i< j πi|Tπ j|R∑
i> j πi|R1π j|R2 −

∑
i< j πi|R1π j|R2

∣∣∣∣∣∣ , (2.9)

rdα =
dα(T,R)

dα(R1,R2)
=

∣∣∣∣∣∣ log
∑

i> j πi|Tπ j|R − log
∑

i< j πi|Tπ j|R

log
∑

i> j πi|R1π j|R2 − log
∑

i< j πi|R1π j|R2 j

∣∣∣∣∣∣ . (2.10)

Assessment of biosimilarity is conducted based on these relative distance with prespecified margin
δ(δ > 0) as follows.

H0 : rd ≥ δ versus HA : rd < δ. (2.11)

Note that (2.11) with measure ∆ and logα could be expressed, respectively, as

H0 :

∣∣∣∣∣∣ ∆TR

∆R1R2

∣∣∣∣∣∣ ≥ δ∆ versus HA :

∣∣∣∣∣∣ ∆TR

∆R1R2

∣∣∣∣∣∣ < δ∆, (2.12)

H0 :

∣∣∣∣∣∣ logαTR

logαR1R2

∣∣∣∣∣∣ ≥ δα versus HA :

∣∣∣∣∣∣ logαTR

logαR1R2

∣∣∣∣∣∣ < δα. (2.13)

3. Statistical tests for biosimilarity

In the last section, we define relative distance using nominal-ordinal association measures, ∆ and
logα. Statistical tests for biosimilarity based on two relative distances are provided in this section. We
derive the asymptotic distribution of the test statistic along with its testing procedure will be explained.
From now on, ∆TR/∆R1R2 and logαTR/logαR1R2 will be denoted as θ∆ and θα, respectively.
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3.1. Statistical tests based on ∆ with k-categories

Note that (2.12) can be decomposed into two one-sided tests such as

H01 : θ∆ ≥ δ∆ versus HA1 : θ∆ < δ∆, (3.1)

and

H02 : θ∆ ≤ −δ∆ versus HA2 : θ∆ > −δ∆, (3.2)

where δ∆(> 0) is predefined margin. When both hypotheses tests are rejected at a significance level,
it could be claimed that test drugs has similar effect with reference drugs. The reasonable test statistic
for θ∆ could be obtained by substituting π j|i with π̂ j|i, and is denoted as θ̂∆.

Before deriving the asymptotic distribution of θ̂∆, note that if X ∼ Multi(n,π) with π = (π1, . . . , πk),

√
n



π̂1
π̂2
...
π̂k

 −

π1
π2
...
πk




d−→ Nk




0
0
...
0

 , Σ
 , (3.3)

where Σ = Diag(π) − ππ′. We use multivariate delta method to derive the asymptotic distribution of
θ̂∆. Note that θ∆ can be seen as g1 function of πR1 , πR2 , and πT as follows.

θ∆ = g1(πR1 ,πR2 ,πT)

=

1
2
∑k−1

j=1(π j|R1 + π j|R2 )
(∑k

q= j+1 πq|T
)
− 1

2
∑k−1

j=1 π j|T
(∑k

q= j+1(πq|R1 + πq|R2 )
)

∑k−1
j=1 π j|R2

(∑k
q= j+1 πq|R1

)
−∑k−1

j=1 π j|R1

(∑k
q= j+1 πq|R2

) , (3.4)

where π j|Ri is cell probability of jth category in group taking one of reference drug from batch i,
i = 1, 2 and π j|T is cell probability of jth category in group taking test drugs. Then, it can be seen that
(see Appendix)

√
n1

(
θ̂∆ − θ∆

) d−→ N
(
0, σ2

∆

)
, σ2

∆ = B1ΣB′1, (3.5)

where B1 = (dg1/dπ1|R1 , . . . , dg1/dπk−1|R1 , dg1/dπ1|R2 , . . . , dg1/dπk−1|R2 , dg1/dπ1|T , . . . , dg1/dπk−1|RT )
and Σ is computed as follows.

Σ =

Σ1
Σ2
Σ3

 , (3.6)

where

Σ1 =


π1|R1 (1 − π1|R1 ) −π1|R1π2|R1 · · · −π1|R1πk−1|R1

−π2|R1π1|R1 π2|R1 (1 − π2|R1 ) · · · −π2|R1πk−1|R1

...
...

. . .
...

−πk−1|R1π1|R1 −πk−1|R1π2|R1 · · · πk−1|R1 (1 − πk−1|R1 )

 , (3.7)
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Σ2 =


π1|R2 (1 − π1|R2 ) −π1|R2π2|R2 · · · −π1|R2πk−1|R2

−π2|R2π1|R2 π2|R2 (1 − π2|R2 ) · · · −π2|R2πk−1|R2

...
...

. . .
...

−πk−1|R2π1|R2 −πk−1|R2π2|R2 · · · πk−1|R2 (1 − πk−1|R2 )

 , (3.8)

Σ3 =


π1|T (1 − π1|T ) −π1|Tπ2|T · · · −π1|Tπk−1|T
−π2|Tπ1|T π2|T (1 − π2|T ) · · · −π2|Tπk−1|T

...
...

. . .
...

−πk−1|Tπ1|T −πk−1|Tπ2|T · · · πk−1|T (1 − πk−1|T )

 . (3.9)

Using the asymptotic normal distribution of θ̂∆, hypothesis tests in (3.1) and (3.2) could be conducted
with Z1∆ and Z2∆, respectively. Therefore,

Z1∆ < −zα and Z2∆ > zα, (3.10)

where zα is the 100α upper percentile of the standard normal distribution. Z1∆ and Z2∆ is

Z1∆ =
θ̂∆ − δ∆
σ̂∆/
√

n1
and Z2∆ =

θ̂∆ + δ∆

σ̂∆/
√

n1
, (3.11)

where σ̂∆ can be computed by substituting π j|i with π̂ j|i. If each null hypothesis in (3.1) and (3.2)
is rejected at a significance level α, then we can conclude that test drugs (biosimilar) is similar to
reference drugs.

3.2. Statistical tests based on logα with k-categories

Similarly, (2.13) can be decomposed into two one-sided tests as follows.

H01 : θα ≥ δα versus HA1 : θα < δα, (3.12)

and

H02 : θα ≤ −δα versus HA2 : θα > −δα, (3.13)

where δα (> 0) is predefined margin. Note that θα can be expressed as g2 function of πR1 , πR2 , and πT
such that

θα = g2
(
πR1 ,πR2 ,πT

)
=

log
[∑k−1

j=1
π j|R1+π j|R2

2

(∑k
q= j+1 πq|T

)]
− log

[∑k−1
j=1 π j|T

(∑k
q= j+1

πq|R1+πq|R2
2

)]
log

[∑k−1
j=1 π j|R2

(∑k
q= j+1 πq|R1

)]
− log

[∑k−1
j=1 π j|R1

(∑k
q= j+1 πq|R2

)] . (3.14)

Then, it can also be shown that (see Appendix)

√
n1

(
θ̂α − θα

) d−→ N
(
0, σ2

α

)
, σ2

α = B2ΣB′2, (3.15)

where B2 = (dg2/dπ1|R1 , . . . , dg2/dπk−1|R1 , dg2/dπ1|R2 , . . . , dg2/dπk−1|R2 , dg2/dπ1|T , . . . , dg2/dπk−1|RT )
and Σ is as same as (3.6). Using asymptotic normality of θ̂α, hypotheses tests in (3.12) and (3.13)
can be conducted. As before, we could claim that biosimilarity between test drugs (biosimilar) and
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reference drugs are established if each null hypothesis in (3.12) and (3.13) is rejected at a significance
level α. Therefore,

Z1α < −zα and Z2α > zα, (3.16)

where Z1α = (θ̂α − δα)/(σ̂α/
√

n1), Z2α = (θ̂α + δα)/(σ̂α/
√

n1), and zα = 100α upper percentile of the
standard normal distribution.

4. Type I error rate and power function

In this Section, type I error rate and power are investigated based on both measures ∆ and logα.
Shin and Kang (2016) derived power function for binary endpoints; however, we deal with ordinal
endpoints. For predefined margin δ∆ > 0, if zα < δ∆/(σ∆/

√
n1), then type I error rate at θ∆ = δ∆ based

on measure ∆ is

P
(
θ̂∆ + δ∆

σ̂∆/
√

n1
> zα and

θ̂∆ − δ∆
σ̂∆/
√

n1
< −zα|θ∆ = δ∆

)
≃ P

(
Z1∆ > zα −

2δ∆
σ∆/
√

n1
and Z1∆ < −zα|θ∆ = δ∆

)
. (4.1)

Similarly, type I error rate at θ∆ = −δ∆ is

P
(
θ̂∆ + δ∆

σ̂∆/
√

n1
> zα and

θ̂∆ − δ∆
σ̂∆/
√

n1
< −zα|θ∆ = −δ∆

)
(4.2)

= P
(
θ̂∆ − (−δ∆)
σ̂∆/
√

n1
> zα and

θ̂∆ + δ∆ − 2δ∆
σ̂∆/
√

n1
< −zα|θ∆ = −δ∆

)
≃ P

(
Z2∆ > zα and Z2∆ < −zα +

2δ∆
σ∆/
√

n1

∣∣∣∣∣θ∆ = −δ∆) ,
where Z1∆ = (θ̂∆ − δ∆)/(σ̂∆/

√
n1), Z2∆ = (θ̂∆ + δ∆)/(σ̂∆/

√
n1). The power can be computed with

the formulas (4.1) and (4.2) under the alternative hypothesis. In some cases, the condition zα <
δ∆/(σ∆/

√
n1) is not satisfied so that type I error rate and power cannot be computed. Note that formula

for both type I error rate and power based on logα can be derived similarly with (4.1) and (4.2).
Under different settings, theoretical type I error rate and empirical type I error rate based on ∆ and

logα are investigated. For the empirical type I error rate, random samples under null hypothesis are
generated according to sample size. After 5,000 replication, empirical type I error rate is calculated as
the proportion of rejecting null hypothesis. Note that the empirical power can be calculated similarly.
In our simulation settings, number of categories, K, is fixed as 3, but similar results could be obtained
for other cases. Tables 1–4 gives the results.

Tables 1 and 2 indicate that the theoretical type I error rate and empirical type I error rate vary
according to parameter settings. For example, when (π1|T , π2|T , π3|T ) = (0.6, 0.2, 0.2) the empirical
type I error rate based on ∆ is 0.078, whereas the one based on logα is 0.065 for n1 = 1000. When
(π1|T , π2|T , π3|T ) = (0.14, 0.41, 0.45), empirical type I error rate based on ∆ is 0.056; however, the
one based on measure logα is 0.075 for n1 = 1000. It could be found that empirical type I error
rate of both proposed measures becomes closer to the theoretical type I error rate, in general, as
n1 becomes large. Tables 3 and 4 present the theoretical power and empirical power based on both
measures under various settings. As in the case of type I error rate, theoretical power and empirical
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Table 1: Comparison of theoretical and empirical type I error rate (%) based on ∆ at significance level α = 5%

π1|R1 , . . . , π3|R1 π1|R2 , . . . , π3|R2 π1|T , . . . , π3|T θ∆ δ∆
n1 = 500 n1 = 1000

Theoretical Empirical Theoretical Empirical
(0.3, 0.4, 0.3) (0.2, 0.5, 0.3) (0.1, 0.6, 0.3) −1.50 1.50 3.3 5.7 4.9 5.5

(0.2, 0.55, 0.25) (0.05, 0.7, 0.25) (0.1, 0.6, 0.3) −0.56 0.56 4.4 4.6 4.9 5.0
(0.25, 0.4, 0.35) (0.15, 0.42, 0.43) (0.14, 0.41, 0.45) −0.67 0.67 4.8 6.0 5.0 5.6
(0.25, 0.4, 0.35) (0.15, 0.42, 0.43) (0.16, 0.41, 0.43) −0.45 0.45 1.9 4.3 4.9 5.1
(0.3, 0.3, 0.4) (0.1, 0.5, 0.4) (0.2, 0.3, 0.5) −0.67 0.67 4.8 5.6 5.0 5.6

(0.05, 0.65, 0.3) (0.1, 0.5, 0.4) (0.2, 0.5, 0.3) 2.12 2.12 2.2 8.5 4.9 7.9
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.3, 0.38, 0.32) 0.59 0.59 7.9 7.6 5.0 6.3
(0.4, 0.4, 0.2) (0.3, 0.4, 0.3) (0.3, 0.4, 0.3) −0.50 0.50 4.2 6.5 5.0 6.0
(0.4, 0.4, 0.2) (0.5, 0.4, 0.1) (0.3, 0.4, 0.3) 1.50 1.50 5.0 9.1 5.0 8.4
(0.4, 0.4, 0.2) (0.1, 0.4, 0.5) (0.3, 0.4, 0.3) 0.17 0.17 4.8 5.1 5.0 5.1
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.4, 0.38, 0.22) −0.40 0.40 2.0 5.8 4.9 5.6
(0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.5, 0.3, 0.2) −2.78 2.78 4.9 11.7 5.0 9.8
(0.7, 0.2, 0.1) (0.4, 0.4, 0.2) (0.5, 0.3, 0.2) −0.21 0.21 4.7 5.3 5.0 5.1
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.5, 0.38, 0.12) −1.40 1.40 5.0 9.7 5.0 8.7
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.5, 0.4, 0.1) −1.50 1.50 5.0 9.8 5.0 8.7
(0.4, 0.4, 0.2) (0.5, 0.4, 0.1) (0.6, 0.2, 0.2) −0.71 0.71 5.0 8.5 5.0 7.8
(0.5, 0.3, 0.2) (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) −1.50 1.50 4.4 12.2 5.0 11.3
(0.5, 0.1, 0.4) (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) −0.93 0.93 5.0 8.8 5.0 7.4

Table 2: Comparison of theoretical and empirical type I error rate (%) based on logα at significance level
α = 5%

π1|R1 , . . . , π3|R1 π1|R2 , . . . , π3|R2 π1|T , . . . , π3|T θα δα
n1 = 500 n1 = 1000

Theoretical Empirical Theoretical Empirical
(0.3, 0.4, 0.3) (0.2, 0.5, 0.3) (0.1, 0.6, 0.3) −1.50 1.50 3.2 12.7 4.9 10.5

(0.2, 0.55, 0.25) (0.05, 0.7, 0.25) (0.1, 0.6, 0.3) −0.55 0.55 4.4 6.4 5.0 6.3
(0.25, 0.4, 0.35) (0.15, 0.42, 0.43) (0.14, 0.41, 0.45) −0.68 0.68 4.8 7.9 5.0 7.5
(0.25, 0.4, 0.35) (0.15, 0.42, 0.43) (0.16, 0.41, 0.43) −0.45 0.45 1.6 6.0 4.9 6.1
(0.3, 0.3, 0.4) (0.1, 0.5, 0.4) (0.2, 0.3, 0.5) −0.68 0.68 4.8 7.9 5.0 7.1

(0.05, 0.65, 0.3) (0.1, 0.5, 0.4) (0.2, 0.5, 0.3) 1.99 1.99 2.1 13.2 4.9 10.9
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.3, 0.38, 0.32) 0.58 0.58 4.8 7.6 5.0 6.8
(0.4, 0.4, 0.2) (0.3, 0.4, 0.3) (0.3, 0.4, 0.3) −0.49 0.49 4.2 7.2 5.0 6.4
(0.4, 0.4, 0.2) (0.5, 0.4, 0.1) (0.3, 0.4, 0.3) 1.43 1.43 5.0 9.8 5.0 7.6
(0.4, 0.4, 0.2) (0.1, 0.4, 0.5) (0.3, 0.4, 0.3) 0.15 0.15 4.8 5.3 5.0 5.1
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.4, 0.38, 0.22) −0.40 0.40 1.7 4.9 4.9 5.8
(0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.5, 0.3, 0.2) −2.15 2.15 5.0 10.7 5.0 9.2
(0.7, 0.2, 0.1) (0.4, 0.4, 0.2) (0.5, 0.3, 0.2) −0.20 0.20 4.7 4.5 5.0 5.0
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.5, 0.38, 0.12) −1.46 −1.46 5.0 8.9 5.0 7.7
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.5, 0.4, 0.1) −1.58 1.58 5.0 8.7 5.0 7.6
(0.4, 0.4, 0.2) (0.5, 0.4, 0.1) (0.6, 0.2, 0.2) −0.70 0.70 4.9 5.0 5.0 6.5
(0.5, 0.3, 0.2) (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) −1.65 1.65 4.3 11.2 5.0 9.8
(0.5, 0.1, 0.4) (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) −1.04 1.04 5.0 7.8 5.0 6.9

power depend on parameter settings. Both measure ∆ and logα yield a similar power. For example,
when (π1|T , π2|T , π3|T ) = (0.4, 0.38, 0.22), theoretical power based on measure ∆ is 0.956; however, the
one based on measure logα is 0.961 for n1 = 500. In addition, it also could be seen that both powers
increases as sample size increases.

5. Numerical results

We assume that ordinal data with categories K = 4 are dichotomized into binary data; first and sec-
ond ordinal categories are collapsed into one category and the other ordinal categories are collapsed
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Table 3: Comparison of theoretical and empirical power (%) based on ∆ at significance level α = 5%

π1|R1 , . . . , π3|R1 π1|R2 , . . . , π3|R2 π1|T , . . . , π3|T θ∆ δ∆
n1 = 500 n1 = 1000

Theoretical Empirical Theoretical Empirical
(0.3, 0.4, 0.3) (0.2, 0.5, 0.3) (0.1, 0.6, 0.3) −1.50 3.5 81.0 62.3 97.3 76.1

(0.2, 0.55, 0.25) (0.05, 0.7, 0.25) (0.1, 0.6, 0.3) −0.56 1.5 97.6 85.2 99.9 97.2
(0.25, 0.4, 0.35) (0.15, 0.42, 0.43) (0.14, 0.41, 0.45) −0.67 1.7 97.6 93.6 99.9 99.6
(0.25, 0.4, 0.35) (0.15, 0.42, 0.43) (0.16, 0.41, 0.43) −0.45 1.3 95.9 81.5 99.9 95.6

(0.3, 0.3, 0.4) (0.1, 0.5, 0.4) (0.2, 0.3, 0.5) −0.67 1.4 84.3 71.2 98.2 87.6
(0.05, 0.65, 0.3) (0.1, 0.5, 0.4) (0.2, 0.5, 0.3) 2.12 5.0 78.0 60.3 96.2 74.2

(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.3, 0.38, 0.32) 0.59 1.3 85.2 73.1 98.4 91.3
(0.4, 0.4, 0.2) (0.3, 0.4, 0.3) (0.3, 0.4, 0.3) −0.50 1.2 87.6 76.1 98.9 91.8
(0.4, 0.4, 0.2) (0.5, 0.4, 0.1) (0.3, 0.4, 0.3) 1.50 2.5 75.1 64.3 94.9 83.2
(0.4, 0.4, 0.2) (0.1, 0.4, 0.5) (0.3, 0.4, 0.3) 0.17 0.4 95.8 92.9 99.9 99.7
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.4, 0.38, 0.22) −0.40 1.2 95.6 83.9 99.9 96.4
(0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.5, 0.3, 0.2) −2.78 4.8 70.0 60.4 92.2 77.6
(0.7, 0.2, 0.1) (0.4, 0.4, 0.2) (0.5, 0.3, 0.2) −0.21 0.5 88.0 88.4 99.0 98.7
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.5, 0.38, 0.12) −1.40 2.4 80.8 67.7 97.2 84.2
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.5, 0.4, 0.1) −1.50 2.5 78.2 65.6 96.2 82.1
(0.4, 0.4, 0.2) (0.5, 0.4, 0.1) (0.6, 0.2, 0.2) −0.71 1.4 78.5 70.0 96.3 87.8
(0.5, 0.3, 0.2) (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) −1.50 3.0 65.5 58.2 89.3 71.5
(0.5, 0.1, 0.4) (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) −0.93 1.7 92.8 80.7 99.7 94.6

Table 4: Comparison of theoretical and empirical power (%) based on logα at significance level α = 5%

π1|R1 , . . . , π3|R1 π1|R2 , . . . , π3|R2 π1|T , . . . , π3|T θα δα
n1 = 500 n1 = 1000

Theoretical Empirical Theoretical Empirical
(0.3, 0.4, 0.3) (0.2, 0.5, 0.3) (0.1, 0.6, 0.3) −1.50 3.5 72.4 59.2 93.6 72.4

(0.2, 0.55, 0.25) (0.05, 0.7, 0.25) (0.1, 0.6, 0.3) −0.55 1.5 97.1 83.5 99.9 95.9
(0.25, 0.4, 0.35) (0.15, 0.42, 0.43) (0.14, 0.41, 0.45) −0.68 1.7 96.0 93.3 99.9 99.4
(0.25, 0.4, 0.35) (0.15, 0.42, 0.43) (0.16, 0.41, 0.43) −0.45 1.3 94.2 81.3 99.8 95.2

(0.3, 0.3, 0.4) (0.1, 0.5, 0.4) (0.2, 0.3, 0.5) −0.68 1.4 76.7 66.7 95.6 85.0
(0.05, 0.65, 0.3) (0.1, 0.5, 0.4) (0.2, 0.5, 0.3) 1.99 5.0 84.6 61.6 98.3 74.8

(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.3, 0.38, 0.32) 0.58 1.3 87.6 75.1 98.9 91.0
(0.4, 0.4, 0.2) (0.3, 0.4, 0.3) (0.3, 0.4, 0.3) −0.49 1.2 89.6 76.2 99.3 92.8
(0.4, 0.4, 0.2) (0.5, 0.4, 0.1) (0.3, 0.4, 0.3) 1.43 2.5 83.5 68.8 98.0 87.3
(0.4, 0.4, 0.2) (0.1, 0.4, 0.5) (0.3, 0.4, 0.3) 0.15 0.4 98.3 96.7 99.9 99.8
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.4, 0.38, 0.22) −0.40 1.2 96.1 84.1 99.9 97.0
(0.8, 0.1, 0.1) (0.7, 0.2, 0.1) (0.5, 0.3, 0.2) −2.15 4.8 98.5 79.2 99.9 92.1
(0.7, 0.2, 0.1) (0.4, 0.4, 0.2) (0.5, 0.3, 0.2) −0.20 0.5 96.7 94.2 99.9 99.6
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.5, 0.38, 0.12) −1.46 2.4 71.7 62.3 93.2 81.0
(0.3, 0.4, 0.3) (0.4, 0.4, 0.2) (0.5, 0.4, 0.1) −1.58 2.5 66.5 57.9 90.0 76.3
(0.4, 0.4, 0.2) (0.5, 0.4, 0.1) (0.6, 0.2, 0.2) −0.70 1.4 81.7 70.6 97.5 88.1
(0.5, 0.3, 0.2) (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) −1.65 3.0 51.2 50.8 76.6 64.6
(0.5, 0.1, 0.4) (0.6, 0.2, 0.2) (0.7, 0.1, 0.2) −1.04 1.7 75.5 65.5 95.1 84.8

into the other category. To show the significance of ordinal endpoints in evaluating biosimilarity, we
compare the following probabilities based on a simulation study.

Po = the probability of biosimilarity using ordinal data,
Pb = the probability of biosimilarity using dichotomized data.

For Pb, we utilize method by Shin and Kang (2016) in which relative distances for binary endpoints
are proposed as biosimilarity criterion. They take risk difference and log odds ratio as a component
of relative distance. Under parameter settings and a predefined margin, n1 = 500 random samples
are generated. With 5000 replication, Po and Pb are calculated as proportion that biosimilarity is
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Table 5: Comparison of po and pb based on ∆ and risk difference at significance level α = 5%

π1|R1 , . . . , π4|R1 π1|R2 , . . . , π4|R2 π1|T , . . . , π4|T π∗1 |R1, π
∗
2 |R1 π∗1 |R2, π

∗
2 |R2 π∗1 |T, π

∗
2 |T δ∆ Po Pb

(0.2, 0.35, 0.35, 0.1) (0.3, 0.3, 0.3, 0.1) (0.5, 0.15, 0.2, 0.15) (0.55, 0.45) (0.6, 0.4) (0.65, 0.35) 2.0 0.146 0.256
(0.3, 0.2, 0.25, 0.25) (0.1, 0.4, 0.4, 0.1) (0.18, 0.22, 0.25, 0.35) (0.5, 0.5) (0.5, 0.5) (0.4, 0.6) 2.0 0.005 0.015

(0.2, 0.3, 0.3, 0.2) (0.2, 0.4, 0.3, 0.1) (0.6, 0.2, 0.1, 0.1) (0.4, 0.6) (0.6, 0.4) (0.8, 0.2) 2.0 0.000 0.022
(0.2, 0.3, 0.3, 0.2) (0.3, 0.3, 0.3, 0.1) (0.1, 0.1, 0.1, 0.7) (0.5, 0.5) (0.6, 0.4) (0.2, 0.8) 5.0 0.000 0.002
(0.4, 0.4, 0.2, 0.2) (0.3, 0.5, 0.1, 0.1) (0.1, 0.4, 0.1, 0.4) (0.8, 0.2) (0.8, 0.2) (0.5, 0.5) 5.0 0.000 0.224
(0.6, 0.1, 0.2, 0.1) (0.5, 0.1, 0.2, 0.2) (0.2, 0.4, 0.3, 0.1) (0.7, 0.3) (0.6, 0.4) (0.6, 0.4) 0.5 0.225 0.896

(0.2, 0.2, 0.25, 0.35) (0.22, 0.25, 0.2, 0.33) (0.25, 0.1, 0.05, 0.6) (0.4, 0.6) (0.47, 0.53) (0.35, 0.65) 0.5 0.032 0.428
(0.5, 0.2, 0.15, 0.15) (0.6, 0.25, 0.1, 0.05) (0.25, 0.3, 0.4, 0.05) (0.7, 0.3) (0.85, 0.15) (0.55, 0.45) 5.0 0.149 0.460
(0.05, 0.05, 0.4, 0.5) (0.1, 0.25, 0.3, 0.35) (0.4, 0.2, 0.3, 0.1) (0.1, 0.9) (0.35, 0.65) (0.6, 0.4) 1.0 0.071 0.726

Table 6: Comparison of po and pb based on logα and log odds ratio at α = 5%

π1|R1 , . . . , π4|R1 π1|R2 , . . . , π4|R2 π1|T , . . . , π4|T π∗1 |R1, π
∗
2 |R1 π∗1 |R2, π

∗
2 |R2 π∗1 |T, π

∗
2 |T δα Po Pb

(0.2, 0.35, 0.35, 0.1) (0.3, 0.3, 0.3, 0.1) (0.5, 0.15, 0.2, 0.15) (0.55, 0.45) (0.6, 0.4) (0.65, 0.35) 2.0 0.159 0.259
(0.3, 0.2, 0.25, 0.25) (0.1, 0.4, 0.4, 0.1) (0.18, 0.22, 0.25, 0.35) (0.5, 0.5) (0.5, 0.5) (0.4, 0.6) 2.0 0.004 0.014

(0.2, 0.3, 0.3, 0.2) (0.2, 0.4, 0.3, 0.1) (0.6, 0.2, 0.1, 0.1) (0.4, 0.6) (0.6, 0.4) (0.8, 0.2) 2.0 0.000 0.005
(0.2, 0.3, 0.3, 0.2) (0.3, 0.3, 0.3, 0.1) (0.1, 0.1, 0.1, 0.7) (0.5, 0.5) (0.6, 0.4) (0.2, 0.8) 5.0 0.000 0.000
(0.4, 0.4, 0.2, 0.2) (0.3, 0.5, 0.1, 0.1) (0.1, 0.4, 0.1, 0.4) (0.8, 0.2) (0.8, 0.2) (0.5, 0.5) 5.0 0.000 0.459
(0.6, 0.1, 0.2, 0.1) (0.5, 0.1, 0.2, 0.2) (0.2, 0.4, 0.3, 0.1) (0.7, 0.3) (0.6, 0.4) (0.6, 0.4) 0.5 0.442 0.911

(0.2, 0.2, 0.25, 0.35) (0.22, 0.25, 0.2, 0.33) (0.25, 0.1, 0.05, 0.6) (0.4, 0.6) (0.47, 0.53) (0.35, 0.65) 0.5 0.015 0.392
(0.5, 0.2, 0.15, 0.15) (0.6, 0.25, 0.1, 0.05) (0.25, 0.3, 0.4, 0.05) (0.7, 0.3) (0.85, 0.15) (0.55, 0.45) 5.0 0.244 0.814
(0.05, 0.05, 0.4, 0.5) (0.1, 0.25, 0.3, 0.35) (0.4, 0.2, 0.3, 0.1) (0.1, 0.9) (0.35, 0.65) (0.6, 0.4) 1.0 0.088 0.996

concluded. Table 5 represents Po and Pb for ∆ and risk difference. Po is less than Pb since noticeable
difference of parameters in ordinal categories become unclear when categories are dichotomized,
which can result in a greater probability of concluding biosimilarity. For example, under the following
settings based on ∆ and risk difference,

π1|R1, . . . , π4|R1 = (0.6, 0.1, 0.2, 0.1),
π1|R2, . . . , π4|R2 = (0.5, 0.1, 0.2, 0.2),
π1|T, . . . , π4|T = (0.2, 0.4, 0.3, 0.1)

parameters for reference drugs and test drugs (biosimilar) show significant difference, but this differ-
ence becomes obscure after being dichotomized as follows.

π∗1|R1, π
∗
2|R1 = (0.7, 0.3),

π∗1|R2, π
∗
2|R2 = (0.6, 0.4),

π∗1|T, π∗2|T = (0.6, 0.4),

where π∗1|Ri, π∗2|Ri are collapsed cell probabilities of Ri, i = 1, 2, and π∗1|T , π∗2|T are collapsed cell
probabilities of T . In this case, Po = 0.225 means that chance of claiming biosimilarity is 22.5%.
However, Pb = 0.896 means that there is a 89.6% chance that biosimilarity would be concluded,
which is greater than Po. Similar results can be seen in Table 6 when po and pb are computed based
on measures logα and log odds ratio. In this sense, one may conclude that assessing biosimilarity using
original ordinal data might result in different results from those using dichotomized data. It would be
reasonable not to claim biosimilarity if ordinal parameters for simulation settings show significant
difference between reference drugs and test drugs. In that sense, our numerical results show that using
ordinal data as original might be more appropriate than dichotomized data.
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6. Conclusion and future study

Biosimilar, which has a more affordable price than biological products, could provide people with
alternative treatments for several types of disease. Existing statistical methods to assess similarity be-
tween reference drugs and test drugs cannot be used directly due to fundamental differences between
biological products and chemical products. Accordingly, numerous research to show biosimilarity in
a statistical aspect has been conducted. In particular, Shin and Kang (2016) considered three-arm par-
allel design for binary endpoints. However, determining biosimilarity with ordinal endpoints has not
been studied. Unless there exists biosimilarity criterion for ordinal endpoints, ordinal data should be
dichotomized, which might cause some loss of information in ordinal data.

We propose two biosimilarity criteria for ordinal endpoints by making an extension of three-
arm parallel design, and define relative distances based on ∆ and α. Type I error rate and power are
investigated after theoretically and empirically deriving the asymptotic sampling distributions of each
relative distance. The type I error rate are shown to depend on parameter settings. The theoretical and
empirical type I error rate become close to a significance level as the sample size increases. Similar
results could be found in the case for power.

We also compare the probability of biosimilarity using ordinal data and the one using dichotomized
data to show the significance of assessing biosimilarity with ordinal endpoints. The probabilities of
biosimilarity are shown to be different when a remarkable difference between parameters for reference
drugs and those for test drugs becomes ambiguous after being dichotomized. This result indicates that
careful consideration should precede dichotomizing data in assessing biosimilarity.

This work incorporates a prespecified margin in a three-arm parallel design. A prespecified mar-
gin should be statistically and clinically justified; however, they remain controversial. Determining a
prespecified margin for evaluating biosimilarity is an important topic for future study. We believe that
justified prespecified margin could result in a more accurate assessment of biosimilarity.

There can be more choices for nominal-ordinal association. For example, Piccarreta (2001) pro-
posed new measure of nominal-ordinal association. Comparing the performance of three-arm parallel
design using other choices represents an interesting topic for future study. Also, the discussion of our
study is restricted to two different batches in calculating the distance between reference drugs. As a
future study, our discussion can be extended to (k + 1)-arm parallel design for ordinal endpoints.

Appendix:

By the multivariate central limit theorem,

√
n1





π̂1|R1

...
π̂k−1|R1

π̂1|R2

...
π̂k−1|R2

π̂1|T
...

π̂k−1|T



−



π1|R1

...
πk−1|R1

π1|R2

...
πk−1|R2

π1|T
...

πk−1|T





d−→ N3k−3





0
...
...
...
...
...
0


, Σ


, (A.1)
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where

Σ =

Σ1
Σ2
Σ3

 , (A.2)

where

Σ1 =


π1|R1 (1 − π1|R1 ) −π1|R1π2|R1 · · · −π1|R1πk−1|R1

−π2|R1π1|R1 π2|R1 (1 − π2|R1 ) · · · −π2|R1πk−1|R1

...
...

. . .
...

−πk−1|R1π1|R1 −πk−1|R1π2|R1 · · · πk−1|R1 (1 − πk−1|R1 )

 ,

Σ2 =


π1|R2 (1 − π1|R2 ) −π1|R2π2|R2 · · · −π1|R2πk−1|R2

−π2|R2π1|R2 π2|R2 (1 − π2|R2 ) · · · −π2|R2πk−1|R2

...
...

. . .
...

−πk−1|R2π1|R2 −πk−1|R2π2|R2 · · · πk−1|R2 (1 − πk−1|R2 )

 ,

Σ3 =


π1|T (1 − π1|T ) −π1|Tπ2|T · · · −π1|Tπk−1|T
−π2|Tπ1|T π2|T (1 − π2|T ) · · · −π2|Tπk−1|T

...
...

. . .
...

−πk−1|Tπ1|T −πk−1|Tπ2|T · · · πk−1|T (1 − πk−1|T )

 ,
and π̂ j|R1 , π̂ j|R2 , π̂ j|T denote sample proportions for reference groups from batch 1 and 2, and test group.

(1) measure ∆

Note that relative distance based on measure ∆ can be seen as g1 function of πR1 ,πR2 ,πT such that

θ∆ = g1(πR1 , πR2 ,πT)

=

1
2
∑k−1

j=1(π j|R1 + π j|R2 )
(∑k

q= j+1 πq|T
)
− 1

2
∑k−1

j=1 π j|T
(∑k

q= j+1(πq|R1 + πq|R2 )
)

∑k−1
j=1 π j|R2

(∑k
q= j+1 πq|R1

)
−∑k−1

j=1 π j|R1

(∑k
q= j+1 πq|R2

) ≡ x
y
, (A.3)

where π j|Ri is cell probability of jth category in group taking reference drug from batch i, i = 1, 2, and
π j|T is cell probability of jth category in group taking test drugs. Then, by multivariate delta method,
it can be seen that

√
n1

(
θ̂∆ − θ∆

) d−→ N
(
0, σ2

∆

)
, σ2

∆ = B1ΣB′1, (A.4)

where Σ is the same as (6.2) and B1 = (dg1/dπ1|R1 , . . . , dg1/dπk−1|R1 , dg1/dπ1|R2 , . . . , dg1/dπk−1|R2 , dg1/
dπ1|T , . . . , dg1/dπk−1|RT ).

dg1

dπ j|R1

=

[
1
2
∑k

q= j+1 πq|T +
1
2
∑k−1

q= j πq|T
]

y − x
[
(−1)

∑k−1
q= j πq|R2 −

∑k
q= j+1 πq|R2

]
y2 ,

dg1

dπ j|R2

=

[
1
2
∑k

q= j+1 πq|T +
1
2
∑k−1

q= j πq|T
]

y − x
[∑k

q= j+1 πq|R1 +
∑k−1

q= j πq|R1

]
y2 ,

dg1

dπ j|T
=
− 1

2
∑k−1

q= j

(
πq|R1 + πq|R2

)
− 1

2
∑k

q= j+1

(
πq|R1 + πq|R2

)
y

.
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(2) measure logα

Note that θα can be expressed as g2 function of πT ,πR1 , and πR2 such that

θα = g2
(
πT ,πR1 ,πR2

)
=

log
[∑k−1

j=1
π j|R1+π j|R2

2

(∑k
q= j+1 πq|T

)]
− log

[∑k−1
j=1 π j|T

(∑k
q= j+1

πq|R1+πq|R2
2

)]
log

[∑k−1
j=1 π j|R2

(∑k
q= j+1 πq|R1

)]
− log

[∑k−1
j=1 π j|R1

(∑k
q= j+1 πq|R2

)] ≡ x
y
, (A.5)

where π j|R1 , π j|R2 , and π j|T are defined as same as the Section 3.1. Then, it can also be seen by multi-
variate delta method that

√
n1

(
θ̂α − θα

) d−→ N
(
0, σ2

α

)
, σ2

α = B2ΣB′2, (A.6)

where B2 = (dg2/dπ1|R1 , . . . , dg2/dπk−1|R1 , dg2/dπ1|R2 , . . . , dg2/dπk−1|R2 , dg2/dπ1|T , . . . , dg2/dπk−1|RT )
and Σ is the same as (6.2). Then, dg2/dπ j|R1 = (x′y − xy′)/y2, where

x′ =
1
2
∑k

q= j+1 πq|T[∑k−1
m=1

πm|R1+πm|R2
2

(∑k
p=m+1 πp|T

)] − − 1
2
∑k−1

q= j πq|T[∑k−1
m=1 πm|T

(∑k
p=m+1

πp|R1+πp|R2
2

)] ,
y′ =

(−1)
∑k−1

q= j πq|R2[∑k−1
m=1 πm|R2

(∑k
p=m+1 πp|R1

)] − ∑k
q= j+1 πq|R2[∑k−1

m=1 πm|R1

(∑k
p=m+1 πp|R2

)] .
Similarly, dg2/dπ j|R2 = (x′y − xy′)/y2, where

x′ =
1
2
∑k

q= j+1 πq|T[∑k−1
m=1

πm|R1+πm|R2
2

(∑k
p=m+1 πp|T

)] − − 1
2
∑k−1

q= j πq|T[∑k−1
m=1 πm|T

(∑k
p=m+1

πp|R1+πp|R2
2

)] ,
y′ =

∑k
q= j+1 πq|R1[∑k−1

m=1 πm|R2

(∑k
p=m+1 πp|R1

)] − (−1)
∑k−1

q= j πq|R1[∑k−1
m=1 πm|R1

(∑k
p=m+1 πp|R2

)] .
Also, dg2/dπ j|T = x′/y, where

x′ =
− 1

2
∑k−1

q= j(πq|R1 + πq|R2 )[∑k−1
m=1

πm|R1+πm|R2
2

(∑k
p=m+1 πp|T

)] − 1
2
∑k

q= j+1(πq|R1 + πq|R2 )[∑k−1
m=1 πm|T

(∑k
p=m+1

πp|R1+πp|R2
2

)] .
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