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Unit Root Tests for Autoregressive Moving Average
Processes Based on M-estimators

Dong-Wan Shin! and Oesook Lee!

ABSTRACT

For autoregressive moving average (ARMA) models, robust unit root
tests are developed using M-estimators. The tests are parametric in the
sense ARMA parameters are estimated jointly with unit roots. A Monte-
Carlo experiment reveals superiority of the parametric tests over the semi-
parametric tests of Lucas (1995a) in terms of both empirical sizes and pow-
ers.
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1. Introduction

Since Dickey and Fuller (1979), various tests for the unit root hypothesis
have been developed. In constructing unit root tests, the ordinary least squares
estimator (OLSE) and the Gaussian maximum likelihood estimator (MLE) are
frequently used, which presume Gaussian errors for good performance. However,
as documented by Fama (1965), Mittnik and Rachev (1993), Lucas (1995a, b),
Shin and So (1999a), and others, there are many situations in which error distri-
butions have heavier tails than Gaussian distributions. In this situation, we need
robust unit root tests which are more resistant to presence of outliers than those
based on the OLSE or the Gaussian MLE.

Recently, some authors applied M-estimation in constructing robust unit root
tests. Knight (1989) considered unit root regressions with infinite variance errors
and derived limiting distributions of M-estimators under proper normalizations.
Cox and Llatas (1991) and Lucas (1995a, b) proposed unit root tests based on
M-estimators of unit roots. Herce (1996) developed unit root tests based on
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least absolute deviation (LAD) estimators. Shin and So (1999a) applied adaptive
M-estimation for constructing unit root tests. Shin and So (1999b) developed
normal tests for models with possibly infinite variance errors. Some authors such
as Lucas (1995a, b) and Herce (1996) adopted the semiparametric adjustment
of Phillips (1987) to account for autocorrelations of error processes. The other
authors focused their attentions on situations of independent errors.

We point out that, in cases of negatively autocorrelated errors, the semi-
parametric robust tests of Lucas (1995a, b) and Herce (1996) suffer from severe
size distortions as reported by Schwert (1989) and Pantula and Hall (1991) for
models with Gaussian errors. Instead of the semiparametric approach of Lucas,
we adopt the parametric approach of ARMA modeling to account for autocorre-
lations of error processes. We develop robust unit root tests by estimating the
ARMA parameters of error processes jointly with unit roots. A Monte-Carlo sim-
ulation shows that the parametric tests have much more stable empirical sizes
than the semiparametric tests of Lucas (1995a). Moreover, it also reveals that
the parametric tests have substantial power advantages over the semiparametric
tests.

Our method follows the spirit of the parametric unit root tests developed for
Gaussian ARMA errors : the tests of Said and Dickey (1985), Said (1991), and
Yap and Reinsel (1995) based on the one-step Gauss-Newton approximations to
the MLE; the tests of Pantula and Hall (1991) based on instrumental variable
estimators of unit roots; the Lagrangian multiplier test of Ahn (1993); the tests
of Shin and Fuller (1998) based on the unconditional MLE.

In the remainder of this paper, a model and tests are described in Section
2, a Monte-Carlo experiment compares our parametric tests favorably with the
semiparametric tests of Lucas (1995a) in Section 3, and proofs of the theoretical
results are provided in Appendix.

2. Model and Tests
Consider the following unit root regression
yp=XB+zt=1---,n, (2.1)

where {y;}7%; is a set of observations, X; = (y—1,1,--,t%), B8 = (p, o,
B1,--+,Bx),and k € {—1,0, 1, ---} is a given integer. Here and in the sequel,
it is understood that x = —1 corresponds to no mean model y; = py;—1 + 2z; with
(X = yg—1, B = p). Note that if x = 0, (2.1) is a mean model y; = Bo + pyt—1 + 2t
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If K =1, (2.1) is a trend model. In general, (2.1) is a model of x-th order polyno-
mial trend. The error process z; is a sequence of unobservable stationary ARMA
errors

¢(L)z = 6(L)ey,

where
¢(L) :1—¢1L—.~¢pr’ 9(L):1+01L++0qu,

L is the lag operator such that Lz; = 2.1 and e; is a sequence of independent
errors with mean zero and variance 02. We are interested in testing the unit root
hypothesis

HO p= 1

Let & = (¢1,--- ,¢p, O1,--- ,0g) and ¢ = (F, £')". Let & and o be the true
values of the parameters. The M-estimator ¢ is a solution to the M-equation

S dle()/6)ept = 0, (2.2)
t=1

where e;(yp) are recursively computed from

et(SO) =Yt — Xéﬁ - 1Ay — - — ¢pAyt—p - 916t—1(<P) — 9q€t—q(<P)7

egt(1p) = (e, (1), (1)) = Oer(p)/ O are derivatives of e(y), 6 is an estimator
of o, and Ay; = y: — yi—1. The function % is a real-valued function called “quasi-
score” and satisfying assumption Al below. When ¢(z) = z, the M-estimator is
the Gaussian MLE. One of the well-known function for ¢ is the Huber function
given by v, = min(c, max(—c, z)), where ¢ > 0 is a given real number. The
score function 1, discounts z to ¢ if z > ¢ (discount z to —c if z < —c). Other
examples of quasi-scores are found in Martin and Yohai (1985) and in Section
3. By suppressing large values of error terms e;(y), the M-equation produces a
robust M-estimator which is resistant to wild errors. When ¢ is the derivative
of a convex function §, then ¢ is the unique minimizer of > d(e;(¢)). The M-
estimators g, £ and é are the corresponding elements of .

When the absolute value of an error e;(¢) is large, the quasi-score function
1) discounts the error to a smaller value. In order to determine whether e;(¢p) is
large or not, an estimate of a scale parameter of e; is necessary. One of the most
commonly used scale estimator is

b= rrlxgglgln le:(@)]/ 0.6745,
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where ¢ is a consistent initial estimator of ¢ such as the Gaussian MLE or the
OLSE. The median is divided by 0.6745 in order for & to be a consistent estimator
of o in case of Gaussian error.

We now state conditions required for our study.

A1. 9 has the derivative 9 satisfying the first order Lipschitz condition [(z) —
P(y)| < M|z —y| for all z, y € R and for some M < oo and the following
conditions E{t(e;)} = 0; 0 < py = E{tp(es)} < 00; 0 < 012/) = E{t(es)}? < o0.

The conditions in Al are standard in dealing with the limiting behavior of
M-estimators and were imposed in all the studies of the robust unit root tests
discussed in Section 1. For many standard functions %, all conditions of Al
except the differentiability are satisfied. The assumption that 1) is everywhere
differentiable is not satisfied, for example, by the Huber function, which is not
differentiable at two points. However, even if ¢/ does not have derivative at a
finite number of points, all the results established below also hold with some
complication in the proof. Assumption A2 below states that the error process z;
is a stationary and invertible ARMA.

A2. e; is a sequence of independent errors with mean zero and finite variance
o?; all roots of ¢(L) and O(L) lie strictly outside the unit circle, and (L) and
6(L) have no common roots.

Our tests for Hp based on the M-estimator are n(p—1) and 75 = (p—1)/ se(p),
where se(p) is the standard error of  and is the square root of the (1,1) element
of

6 [Yovte/olenc]  [Sotwieso) ench] [ besolends] . @3)

In (2.3) and in the sequel, & and &, are the values of e;(p) and e, evaluated
at ¢ = ¢ and 42 is an estimator of ¢? computed from the residuals &. The
reason for using the covariance estimator (2.3) is explained after establishing the
limiting null distributions of the test statistics in Theorem 1 below.

Theorem 1. Consider (2.1). Let assumptions A1 and A2 hold. Suppose also
that either of the following two conditions hold:

(a) ¥(z) is the derivative of a convex function § or

(b) An(B—Bo) = 0p(1) and (€—&) = 0,(1), where A, = diag(n}/?,1,n, .- ,n*).
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Foreachk=-1,0,---,ifp=1and fy=p1=---= Bk =0, then

n(p — 1)= {0y (couy)}J’ { / X(r } / X(r)dw*(r),  (24)

Fg=> [J'{/ X(r)X'(r)dr}~ IJ]_I/Z {/ X(r } /X )dW*(r
)

where X (r) = (W(r), 1, r,--- ,7*), W is a standard Brownian motion on [O, 1],

= ¢(1)/ (1),
W* = peyW + (1 — p2y)' W™,

Pey = corr(eg,P(er)), W and W** are two independent standard Brownian mo-
tions, J = (1,0,--- ,0)" is a (k + 2) x 1 vector, and = denotes convergence in
distribution.

Conditions (a) and (b) in Theorem 1 are similar to those adopted by Knight
(1989) and Lucas (1995a) for asymptotic analyses of their robust unit root tests.

From W* = pey W+ (l—pz¢)1/ 2W**, we see that the limiting null distribution
of #¢ is of the form peyDF + (1 — pgw)l/ 2N, where DF is the distribution of 7-
statistic of Dickey and Fuller (1979) and N is the standard normal distribution
independent of DF. If 4)(z) = z is the Gaussian quasi-score, then p.;, = 1 and
the limiting null distribution of 7g is DF. The distribution (2.5) is indexed by
one parameter pey. The percentage points of this distribution is available in Shin
and So (1999a, Table 1). Since pey can be estimated by the sample correlation
Pey of ex() and (e (p)), we can easily find the critical values from Shin and So
(1999a) using pey instead of pey.

The covariance matrix estimator (2.3), if multiplied by n?, has weak limit

o /(copy)? [ / X(r)X'(r)dr}_l

by Lemma A.1-(i) and (A.1) in the Appendix. By taking the (1,1) element of
(2.3) as {se(p)}?, we adjust the scale parameter o,,/(copy,) which appears in the
limiting null distribution (2.4) of n(p — 1). Thus the limiting null distribution
(2.5) of 75 gets free from the scale parameter. Note that, the estimated covariance
matrix (2.3) is based on ég; instead of €y = (€, €,)’. This is to prevent wild
estimation of se(p) in case where MA roots are close to the unit root and the
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matrix 3 1,/}(ét)é(pté{pt is close to a singular matrix. This strategy does not change
the null asymptotics of the test statistics because the limiting null distribution
of 37 g/}(ét)éq,téfpt, when suitably normalized, is block diagonal.

Our tests are parametric counterpart of the semiparametric test of Lucas
(1995a) based on an M-estimator. The estimate jz, of unit root of Lucas (1995a)
is the first element of BL which is a solution to

> (v — XiB)/5:) X, =0, (2.6)
t=1

where &, = median |%|/0.6745, and Z; is the residual in the ordinary least squares
regression of y; on X;. In his model, z; is a general mixing process satis-
fying an invariance principle. The limiting null distributions of the statistics
n(pr — 1) and 7, = (pr — 1)/se(pr) depend on nuisance parameters 0y,y, =
32 oo E{9(2t)¥(2t45)} and Gzy, = 2 oo E{2t¥(2t45)} as those of the semi-
parametric tests of Phillips (1987) depend on &,, = z;i—-oo E(zz4). Lucas
(1995a) adopted the semiparametric approach of Phillips (1987) to adjust the
nuisance parameters and constructed unit root tests as (3.1) below whose limit-

ing null distributions are free from the nuisance parameters.

3. Numerical Study

Using a Monte-Carlo simulation, we compare finite sample properties of our
unit root test 75 with those of 77, of Lucas (1995a) for mean-adjusted model. For
the data generating process, we consider

Yt = PYt—1+ 2,

where z is one of the following : AR(1), z; = ¢z1—1 + e1; MA(L), 21 = €4 + fes_1.
We select three distributions for the error process e; : standard normal, N(0,
1) (NR); t-distribution with 4 degrees of freedom (T4); mixed normal (MN),
0.95N(0,1)+0.05N(0,25). For the quasi-score function +, we consider the normal
score, the Huber score, and the ¢-score with 3 degrees of freedom given by ¢, (z) =
z; Yp(z) =z if |z] < 2.5, ¢ =25 if x> 2.5, ¢, = =2.5 if £ < =2.5; u(z) =
4z/(3 + z?).

The other parameters are set to n = 200; p = 1, 0.95, 0.90; ¢ = 0, £04,
+0.8; § = 0, £0.4, £0.8. Data y;, t = 1,--- ,n, are simulated starting with
y; = 2z = 0 for t < 0. The normal random numbers e; are generated by RNNOA, a
FORTRAN subroutine in IMSL. The 74 random numbers are simulated using the
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t-statistic of 5 independent normal numbers. Our unit root test 75 = (p—1)/se(p)
is constructed from (2.2) with Xy = (y:—1, 1)’ by fitting AR(2) or ARMA(1,1)
models to data y;, t = 1,--- ,n. In computing &, we use the residuals e;(¢) based
on the Gaussian MLE ¢ of ¢. The counterpart of Lucas is

1= (04, ¢, (Fp.y.)(PL — 1)/se(pL)
(s =) @y} 02w -7} (3)

where oy, 4, = E{(2)}?, 02y, = E{z¥(2)}, § = n1 X wt, fr is computed by
solving (2.6) and se(pr) is the standard error of p; computed from (2.3) with
(Xt, 2, 6,) instead of (égs, &, 6). For adjusting oy,y, and 0.y, in (3.1), we
use n" 1 8 {¥(3)}? and n~1 300 | 24p(2,), respectively, where 2; = y; — XA
For adjusting the long-run covariance parameters &y, y, and .y, in (3.1), we use
the kernel estimate of Andrews (1991) with the Parzen kernel and the “plug in”
optimal bandwidth based on the residuals 2;.

The test statistics 75 and 7, are simulated 5,000 times. Their rejection fre-
quencies for testing Hy against stationary alternative Hy : p < 1 are reported.
The level of the tests is set to 5%. As critical values of 7g, we use the percentage
points from Shin and So (1999a, Table 1). As the critical value of 7, we use
—2.94 from Table 1 of Lucas.

In Table 1, empirical sizes(%) of the two tests are reported. We see that size of
our parametric test 7s is relatively stable for all ranges of ¢ and 6 considered here
having size 16.2% in the worst case. However, size of the semiparametric test 7,
is very sensitive to the values of ARMA coefficients for all error distributions and
quasi-scores. The test 77 has severe size distortion for negatively autocorrelated
errors (¢, 8 = —0.8,—0.4). When the error process is AR(1) with ¢ = —0.8 or
MA(1) with @ = —0.8, size of Lucas’ test 7, is above 80% for all error distributions
and score functions considered here. When the error process z; is a white noise
(¢ =0 or § = 0) or is positively autocorrelated (¢, 8 = 0.4, 0.8), sizes of the two
tests are close to the nominal level 5%.

The null performance of our test 75 is not sensitive to the types of error
distribution and quasi-scores. This is because the limiting null distribution (2.5)
of 75 does not involve any parameters related with error distribution and quasi-
score except pey in W*, which was already adjusted by taking the critical values
from the distribution indexed by pey. Also, as the error distribution and quasi-
score vary, the null performance of the semiparametric test 77 remains stable
except for few cases of AR(1) with ¢ = —0.4 and MA(1) with § = —0.4.
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TABLE 1 Empirical sizes (%) of the mean-adjusted 7-tests for Hy: p =1 against Hy : p <1
based on M -estimators in model y: = Bo + pyt—1 + 2¢

Ts TrL s  TL Ts TrL Ts TL Ts 7L
zt =21+ et

Dist. o ¢ =208 ¢=04 ¢ =0.0 ¢=-04 ¢ =-0.8
NR ¢, 75 106 69 31 71 45 71 307 106 945
NR ¢ 76 111 70 34 71 47 81 320 106 942
NR 7.4 97 63 30 71 47 75 23 109 914
T4 Yvn 48 105 44 35 49 62 51 396 76 96.2
T4 Y 92 110 87 41 83 90 85 438 128 96.5
T4 Ye 6.5 9.7 55 29 65 50 6.7 309 91 944
MN ¢, 42 104 32 22 39 33 41 318 77 965
MN ¢, 74 104 68 36 71 54 75 362 109 96.6
MN 6.2 85 56 23 62 31 68 207 89 924

zt = ey + fes_1

Dist. 6=0.8 =04 8=0.0 6=-04 =-08
NR ¢¥n. 6.2 61 67 39 70 44 79 181 156 97.2
NR ¢n 7.2 62 64 41 70 42 77 205 161 981
NR i 6.7 56 66 37 71 47 73 140 148 91.0
T4 Y, 3.6 74 42 54 45 6.0 54 301 104 96.1
T4 vr 9.8 86 7.7 63 84 84 11.0 389 162 999
T4 Py 7.2 59 6.0 31 64 47 69 243 11.7 969
MN ¢, 38 53 32 31 39 31 41 173 10.7 812
MN ¢» 105 67 66 37 72 50 84 315 160 99.1
MN ¢ 7.7 44 59 29 58 30 65 141 11.7 905

NOTE : n = 200, nominal level = 5%, number of replications = 5, 000.

We next investigate empirical powers of the tests at p = 0.95, 0.90 given in
Table 2.

When ¢, § = —0.4, —0.8, direct power comparison of 77, and 7g is meaningless
because sizes of 71 and 75 substantially different from each other. On the other
hand, when ¢, 8 = 0, 0.4, 0.8, power comparison of 77 and 7g is meaningful
because sizes of 77, and 75 are similar.

The most interesting point is that our test 7¢ is much more powerful than 7y,
for ¢, 8 = 0.4, 0.8 and p = 0.95, 0.90. For example, for (p = 0.95, T4, 9,), powers
of (7s, 71) are (56.6%, 0.1%) and (71.1%, 31.2%) for ¢ = 0.8, 6 = 0.8, respectively.
For p = 0.95, 0.90 and AR(1) error with ¢ = 0.8, 0.4, the semiparametric test
77, has almost no power or very small power for all error distributions and score
functions considered here. On the other hand, our test 75 has substantial power
for p = 0.95, 0.90 and AR(1) error with ¢ = 0.8, 0.4. For p = 0.95, 0.90 and
MA(1) error with 8 = 0.8, 0.4, the semiparametric test 77 has some power, which
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TABLE 2 Empirical powers (%) of the mean-adjusted T-tests for Ho : p =1 against Hy : p< 1
based on M -estimators in model y: = Bo + pys—1 + 2¢

s 7L s 7L s 7L Ts 7L s 7L
2= Pzt-1+ et

Dist. ¥ p  $=08 6 =04 ¢ =0.0 b= —0.4 =08
NR ¢, 095 254 00 337 12 375 284 426 93.7 57.1 100.0
NR ¢y 282 0.0 360 1.6 397 316 436 93.6 59.6 100.0
NR (N 248 0.2 305 16 347 242 376 880 543 100.0
T4 Un 306 0.0 399 41 417 442 476 974 63.0 100.0
T4 Yn 56.6 0.1 689 6.7 708 62.1 748 99.0 83.5 100.0
T4 [ 57.6 1.5 66.7 86 70.1 549 741 97.3 826 100.0
MN ¢, 30.9 0.0 390 22 427 416 497 935 63.6 100.0
MN ¢ 585 0.1 71.0 7.7 754 699 788 99.1 858 100.0
MN W 58.8 2.9 71.1 157 721 59.7 76.3 96.0 828 100.0
NR ¢, 090 564 00 791 95 863 763 904 998 96.7 100.0
NR ¢» 589 00 816 104 863 774 913 99.9 976 100.0
NR (N 495 0.1 696 96 762 662 80.8 99.6 91.8 100.0
T4 Un 59.2 00 813 229 873 885 90.7 99.9 96.2 100.0
T4 (73 77.1 0.2 926 364 96.2 96.6 97.5 100.0 99.3 100.0
T4 [N 75.9 1.3 912 346 939 934 959 999 989 100.0
MN o, 63.3 0.0 831 163 87.2 84.8 90.5 994 956 100.0
MN 4 89.1 0.1 97.3 41.2 989 981 99.2 100.0 99.8 100.0
MN e 84.5 5.2 948 443 968 945 97.7 998 99.2 100.0

2zt = ey + 0esy

Dist. ¥ p 9=08 9=04 9=0.0 §=-04 §=-08
NR ¢, 095 350 152 359 128 360 235 39.0 690 476 99.8
NR o 371 172 366 14.0 383 252 40.0 73.0 494 100.0
NR Py 325 14.2 328 126 352 21.1 365 56.0 46.2 99.0
T4 Un 385 238 413 21.8 421 395 446 834 512 994
T4 173 711 31.2 693 308 701 559 705 96.1 70.7 100.0
T4 Pt 717 342 705 296 T70.7 51.2 723 880 728 999
MN tn 416 186 424 16.2 43.3 37.6 450 66.6 54.0 96.7
MN ¢ 749 424 751 331 751 653 749 94.8 74.1 100.0
MN Pt 73.2 468 73.1 384 725 554 734 81.0 739 99.1
NR ¢, 090 87.0 292 869 310 843 629 822 926 81.7 999
NR ¢ 88.7 31.0 879 343 864 663 84.5 94.8 81.9 100.0
NR Pt 75.9 266 758 29.0 756 53.7 75.0 83.0 769 99.8
T4 Un 86.8 404 867 470 87.0 80.2 839 948 816 99.3
T4 U 96.4 559 96.1 605 958 929 939 99.9 89.7 100.0
T4 Pt 946 58.7 940 60.7 936 87.7 93.3 97.9 89.2 100.0
MN Yn 88.4 28.2 869 364 869 T7.0 84.6 85.6 83.4 97.4
MN ¢y 99.0 67.6 98.7 66.3 984 952 979 994 948 100.0
MN ¢ 974 716 96.8 68.2 96.2 89.9 96.2 94.8 93.5 100.0

NOTE : n = 200, nominal level = 5%, number of replications = 5, 000.



310 Dong-Wan Shin and Oesook Lee

is greatly dominated by the power of the parametric test ¥g5. Power advantage of
75 over 7, for positively autocorrelated errors (¢, 8 = 0.4, 0.8) is more conspicuous
for AR(1) error than for MA(1) error. This is because AR(1) error with ¢ = 0.4,
0.8 has stronger positive autocorrelation that MA(1) error with 8 = 0.4, 0.8.
When z; is white noise, empirical powers of 7g are slightly larger than those of
71. However, this small power advantage of 75 dues to the slightly higher sizes
as shown in Table 1 and may not be a real advantage.

When error is not normal (T4, MN), power gains of the tests based on the
nonnormal quasi-score functions (1), ;) over those based on the normal score
(1n) are obvious uniformly over all parameters considered here. For example, for
error T4 with p = 0.95 and 6 = 0.8, the tests 75 and 71 have powers (41.6%,
74.9%, 73.2%) and (18.6%, 42.4%, 46.8%), respectively, for the quasi-scores (¢r,,
¥h, ¥t). When error is normal, power loss due to using the false score 1)y, or 3¢
instead of the true score v, is not significant for all ¢ and @ considered here. For
example, for the normal error NR with p = 0.95 and § = 0.8, the tests 75 and 71,
have powers (35.0%, 37.1%, 32.5%) and (15.2%, 17.2%, 14.2%), respectively, for
the quasi-scores (¥n, ¥p, ¥t).

From this Monte-Carlo study, we conclude that, when the error process z
is AR(1) or MA(1), 7s has more stable size than 7 for a wider range of the
parameters of z;, especially for negatively autocorrelated errors. Also, when the
error process has positive autocorrelation, 75 has higher power than 77,. This size
and power advantage of 75 over 71, seems to be uniform for a wide range of error
distributions and quasi-score functions.

Appendix : Proofs

Lemma A.1. Under assumptions A1-A2, we have, uniformly in &,
(i) n7tAtS egte;itA;I:B fol X(r)X'(r)drB,
(i) n™tAZT Y eprer, = op(1),
(iii) n=' 3 egrel, — 0T (£) = 0p(1),
(iv) n_l/QA;l Y vlees = — oyB fol X (r)dW*(r),
(v) n‘l/?zw(et)egt = 0y Npiq,

where B = diag(co,1,1,--- ,1), and Npyq is a (p + q)-variate normal random
vector having mean zero and covariance mairiz o*T'(£), the Fisher information
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matriz of £.

Proof. The proof is similar to that of Lemma A.2 of Shin and Lee (1999) and
is omitted. (W

Proof of Theorem 1 under (a)

Let D, = diag(n'/? Ay, n*/?I,1,) and Z,(u) = 3°,[6(et(po + Djlu)) — 6(er)].
Then, @ = Dy (¢ — o) = [n/2A,(8 — Bo)', n/?(€ — &)']' is the unique solution
to the M-equation

DpdZn(u)/0u =Y th(ec(o + Dy u))egi(po + Dy'u) = 0.
t

A Taylor expansion around u = 0 together with e;(yg) = e; gives
Za(w) = WD Y tler)et + 056D S {dedepyel’ + el Da'u,
t t

where e = 8%e4(10) /00y, €f, €%, and e, are evaluated at ¢ = ¢* which is
between g and (wo + D,;1u). According to the same argument for (A.8)—(A.9)
of Shin and Lee (1999)

u' Dt Z {z/}(ef)e;te’[pt' - E{z/}(et)}ewefpt} Dty = op(1), (A1)

t
WD Y Y(e})ehu Dyt u = Op(n™/?)
t
uniformly over u in compact sets. Therefore,
Zn(u) = u' D7) " (er)epr + 0.5u' D1 Y h(er)eprely Dy tu + op(1)
t t

and by Lemma A.1, Z,(u)=-Z(u), where

1 /
Z(u) = doy |:—B/0 X' (r)ydw*(r), Np+q]
1
+0.5pyu'diag [B/O X(r)X'(r)drB, UZI‘(§)] u.

Since Z,(u) is convex and Z(u) has unique minimizer, Lemma A of Knight (1989)
implies that the sequence of minimizers of Z,(u) converges in distribution to
the minimizer of Z(u). Now, setting the derivative of Z(u) to zero, we get
the limiting distribution of n(p — 1). Limiting distribution of 7s follows from
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that of n(p — 1) and the fact that (2.3), if multiplied by n?, has weak limit
[ow/(copy)?[f X (s)X'(s)ds]~ by Lemma A.1-(i) and (A.1). a

Proof of Theorem 1 under (b)
Note that the condition (b) is n='/2D, (¢ — @) = op(1). Taylor expansion of
the M-equation yields

0=D;" t(er)eyt + Dt > " dler)eptely Dy Du($ — o) + R,
i i

where

R, = (’r‘1n + Ton + 7'3n)n_1/2Dn(95 - (PO),
rin = n'/2D;1 Z{d’(et) - 1/’(€Z)}e*<pte;t’D;1’
t

-1 h -1
ron = n!2D; Y " (e {eprel,, — elely YD,
t
_ -1 -1
Tspn = 1N 1/2Dn Z"/’(e:)e;(ptDn ’
t

and ey, and e, are evaluated at ¢ = ¢* which lies between ¢y and ¢. By similar
arguments leading to (A.10) and (A.9) of Shin and Lee (1999), r1, = Op(1) and
ran = Op(1). Since (¢* — g) = 0,(n/2D;'), we have ro, = O,(1). Therefore,
R, = Op(1)op(1) = 0p(1). Now, the result follows from Lemma A.l and

1
Du(¢ — o) = — | D' D dler)epe Dt +0p(1)| D7t > wh(er)ep.
t t [
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