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Abstract
In this paper, we propose method-free permutation predictor hypothesis tests in the context of sufficient

dimension reduction. Different from an existing method-free bootstrap approach, predictor hypotheses are eval-
uated based on p-values; therefore, usual statistical practitioners should have a potential preference. Numerical
studies validate the developed theories, and real data application is provided.
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1. Introduction

Sufficient dimension reduction (SDR) in regression of Y |X ∈ Rp pursues the replacement of the orig-
inal p-dimensional predictors X by a lower-dimensional linearly transformed predictor ηTX without
loss of information about selected aspects of the conditional distribution of Y |X, where η is a p × d
matrix with d < p. Its equivalent numerical expression is:

Y f (X)|ηTX, (1.1)

where stands for independence and f (X) varies depending on the selected aspects of Y |X.
A subspace spanned by the columns of η satisfying statement (1.1) is called a dimension reduc-

tion subspace (DRS). Then, naturally, one seeks for the minimal subspace among all possible DRSs.
Hereafter, for notational convenience, a subspace spanned by the columns of a p × q matrix A will be
denoted as S(A).

We explain changes of statement 1.1 and its meaning depending on the form of f (X). If the main
interest in regression is the conditional distribution itself, f (X) is equal to X, and statement 1.1 is:

Y X|ηTX.

In such case, the minimal subspace is called the central subspace SY |X (Cook, 1998b). Then ηTX can
replace X without loss of information on Y |X.

If the conditional mean E(Y |X) is of main interest, then f (X) becomes E(Y |X), and statement 1.1
is:

Y E(Y |X)|ηTX.
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Then the related minimal subspace is called the central mean subspace SE(Y |X) (Cook and Li, 2002).
In this case, ηTX can replace X without loss of information on E(Y |X).

When the first k conditional moments of Y |X is of primary focus, f (X) becomes a set of the
conditional moments of Y |X up to k such as {E(Y |X),M(2)(Y |X), . . . , M(k)(Y |X)}, and statement 1.1 is:

Y
{
E(Y |X),M(2)(Y |X), . . . , M(k)(Y |X)

} ∣∣∣ ηTX,

where M(k)(Y |X) = E[{Y − E(Y |X)}k |X] for k ≥ 2.
Then the minimal space is called the central kth-moment subspace S(k)

Y |X (Yin and Cook, 2002).

Among the three subspaces, the following relation are easily established: SE(Y |X) ⊆ S(k)
Y |X ⊆ SY |X.

For the various target subspaces, their true dimension will be called structural dimension and will be
denoted as d throughout the rest of the paper.

The estimation of the three target subspaces of SY |X, SE(Y |X) and S(k)
Y |X, or equivalently and simply

S(η), should be the primary interest in SDR. Most SDR methods usually connect S(η) to certain
kernel matrix M ∈ Rp×r, fully or partially informative to S(η) and estimable under certain conditions,
such that S(M) ⊆ S(η). Usually it is assumed that S(M) = S(η). Based on this relation, the inference
about S(η), equivalently, η should be done through M.

Selections of predictors significant to regression are often a crucial procedure in model-based
regression; however, selections of predictors have been largely out of focus in SDR context, until
Cook (2004) recently defined predictor hypothesis such that

PHSY |X = Op, (1.2)

where H is an h-dimensional user-selected subspace of predictor space and results in a subset of X,
PH is an orthogonal projection ontoH , and Op indicates the origin in Rp.

If statement (1.2) is rephrased by a conditional independence statement such as (1.1), it would
be more helpful to understand the statement. Let partition the original predictor X as X = (Xh =

PHX,X−h = PH⊥X), where H⊥ is the orthogonal complement of H . The statement in (1.2) holds, if
and only if Y X|X−h. That is, Xh does not contribute to Y |X. Letting H ∈ Rp×h be an orthonormal
basis matrix of H and setting H = ei, i = 1, . . . , p, the predictor hypothesis tests can be considered
as a variable selection procedure, where ei represents a canonical basis with the ith element one and
elsewhere zeros. In addition, Cook (2004) provided implementation in the context of SIR.

Cook’s work greatly contributes to test predictor hypothesis in SDR literature by providing general
paradigm for it; however, several limitations encounter its direct application to various SDR methods.
First, the statement in (1.2) holds for SY |X alone. Second, it is not clear to derive test statistics for the
various target subspaces naturally due to the limitation. Third, related tests statistics are developed;
however, it may be problematic in the derivation of their asymptotics.

To overcome these deficits, Yoo (2011) newly defined a unified predictor hypothesis tests appli-
cable to all target subspaces and related SDR methods. In addition, a bootstrap approach to test the
predictor hypothesis was proposed. Yoo’s work provides an unified paradigm for predictor hypothesis
tests through using bootstrapping techniques; however, it has its limitation in practical use because it
does not provide p-values for the tests. Instead, it suggests a general guideline on how to determine
which predictors are important. Therefore, debates for the decisions may occur and there exists no
clear winner in some cases. We will explain this briefly in the later section.

This manuscript develop a way to test the unified predictor hypothesis with supporting p-values.
For this we adopt a permutation approach used in sufficient dimension reduction context. We first
suggest proper test statistics. In addition, their sampling distributions are empirically derived through
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samples constructed by permuting null parts of predictors under the null predictor hypothesis. Then
finally, p-values are computed from the empirical distribution to evaluate the hypothesis.

The manuscript is organized as follows. Section 2 is devoted to a short review of unified predictor
hypothesis and bootstrapping approach. Section 3 develops a permutation unified predictor hypothesis
tests. Section 4 presents numerical studies and real data application. Section 5 summarizes our work.

2. Literature Review

2.1. Popular sufficient dimension reduction methodologies

Here four popular SDR methodologies (among others) are briefly introduced, and those methods will
be used in numerical studies. Please see the references for more details. Hereafter we denote M• to
represent kernel matrices used in each method to estimate one of the three subspaces explained in a
section of Introduction. We will assume that M•s are fully informative to their own target subspaces.

Sliced inverse regression (SIR; Li, 1991):
A method of SIR estimates SY |X through the inverse mean of E(X|Y). Let MSIR = cov{E(X|Y)}.

Then the relation of S(MSIR) ⊆ SY |X holds. If Y is categorical, the construction of a sample version
of E(X|Y) is quite straightforward. In case that Y is many-valued or continuous, Y is partitioned by
dividing its range into h slices.

Sliced average variance estimation (SAVE; Cook and Weisberg, 1991):
While the SIR uses E(X|Y) to restore SY |X, a method of SAVE considers the second inverse con-

ditional moment of cov(X|Y). It can be shown that MSAVE = E{Ip − cov(X|Y)}2 is informative to SY |X,
in sense that S(MSAVE) ⊆ SY |X. The quantity of cov(X|Y) is estimated within each slice of Y just like
the SIR.

Principal Hessian directions (pHd; Li, 1992):
The original proposal of a method of pHd in Li (1992) suggests to construct Σyxx = E[{Y −

E(Y)}XXT] to estimate SY |X. Cook (1998a), however, showed that Σyxx actually estimated SE(Y |X),
not SY |X. In practice, instead of Y in Σyxx, the OLS residuals of ϵ = Y − E(Y) − βT{X − E(X)} are
usually used, where β = Σ−1 cov(X,Y) and Σ = cov(X). Then we construct Σϵxx = E(ϵXXT), and this
approach is called residual-based pHd. Then we have MpHd = Σϵxx.

New class dimension reduction (NCM; Ye and Weiss, 2003):
A new class of dimension reduction was proposed by Ye and Weiss (2003). The Is key idea is to

construct a weighted mean of two kernel matrices among the three methods introduced in (1)–(3), for
example, MNCM = ωMSIR + (1−ω)MSAVE, where 0 < ω < 1. Then Ye and Weiss (2003) showed that
S(MNCM) ⊆ SY |X. A bootstrapping approach was employed to find the optimal ω.

2.2. Unified Predictor hypothesis and bootstrapping approach

A unified predictor hypothesis is a predictor hypothesis directly applicable to all types of target sub-
spaces and it is: PHS f (X) = Op, where S f (X) represents an user-selected target subspace. Then the
hypothesis is equivalently rephrased as the following conditional independence statement: Y f (X)|
PH⊥X. The unified predictor hypothesis implies that the subset PHX does not contribute to the se-
lected aspect of Y |X.

Based on the unified hypothesis, two types of hypothesis forms might be considered depending
on application-specific requirements:
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Unified marginal predictor hypothesis

HM
0 : PHS f (X) = Op versus HM

1 : PHS f (X) , Op.

Unified conditional predictor hypothesis

HC
0 : PHS f (X) = Op given d = m versus HC

1 : PHS f (X) , Op given d = m.

To highlight the clear difference between the marginal and conditional hypotheses, HM
0 and HC

0 can
be rewritten as:

HM
0 : Y f (X)|PH⊥X and HC

0 : Y f (X)|PS(B)X with PHB = 0, (2.1)

where B ∈ Rp×m stands for an orthonormal basis matrix for any m-dimensional S f (X). As we can see,
the difference is given in the conditioning components. In the marginal hypothesis, no requirement is
given, so PH⊥X must be conditioned, while the specification of d forces that PS(B)X must appear in the
conditioning part with restriction of PHB = 0 for the conditional hypothesis. Due to the difference,
computations of related statistics are different in the bootstrap approach; however, the method to
construct bootstrap samples is the same.

For the marginal case, a distance between S(M̂) and S(PH⊥M̂) is measured, where a p× p matrix
M̂ stands for a sample version of related kernel matrices constructed through various SDR methods
to estimate η. For the criteria of the distance, Yoo (2011) adopted one minus vector correlation
coefficient (Hotelling, 1936). For the conditional case, a distance between S(B̂) and S(PH⊥B̂) is used
as test statistics, where B̂ is a sample version orthonormal basis matrix of a m-dimensional DRS. In
practice B̂ is the eigenvectors of M̂ corresponding to its m largest eigenvalues.

To have empirical distributions of the two statistics, we construct bootstrap samples from pairs of
the original data (Yi,Xi), i = 1, . . . , p, and compute PH⊥M̂ and PH⊥B̂ from the bootstrap samples.
Then the average correlations M̂ and B̂ from the original data and the corresponding quantities from
the bootstrap samples are used for the determination. This procedure is done for all predictors and it is
determined that predictors with relatively larger distances are significant to the regression. Yoo (2011)
suggests 0.8 for the marginal tests and 0.4 or 0.6 for conditional tests; however, the suggested values
can be contingently changed depending on the data. For more details on the bootstrap approach,
readers are recommended to refer to Yoo (2011).

The bootstrap approach has a major limitation in practical use. Guidelines for the determination
are provided; however, the decision should be relative and debatable. In the next section, we de-
velop a permutation approach to provide p-values for the marginal and conditional unified predictor
hypothesis. New test statistics are proposed for the new approach.

3. Permutation Unified Predictor Hypothesis Tests

3.1. Marginal unified permutation predictor hypothesis test

In the marginal predictor hypothesis, the dimension of S f (X), that is, S(η), is not defined. Therefore,
the null hypothesis of HM

0 : PHS f (X) = Op implies that PHX is redundant to regression with respect to
S f (X). Based on this, first, we partition X as X = (XH⊥ = HT

⊥X,XH = HTX), where matrices of H and
H⊥ stand for orthonormal basis matrices ofH and H⊥ respectively, with HT

⊥H = 0. Then the partial
predictor HTX alone is randomly permuted and permutation predictors are constructed accordingly,
such as Xperm = (XH⊥ ,X

perm
H ). Next, recalling that M̂ is the related kernel matrix to estimate η, we
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compute the ordered eigenvalues of λ̂i, i = 1, . . . , p, of M̂, with λ̂1 ≥ · · · ≥ λ̂p ≥ 0. As test statistics to
evaluate the marginal unified predictor hypothesis, we consider the following quantity:

T (H) =
p∑

i=1

λ̂i.

Let λ̂ref
i and λ̂

perm
i , i = 1, . . . , p, be the eigenvalues of M̂ constructed from the original sample

and its permuted samples. To derive an empirical distribution of T (H), sums of eigenvalues of
Tperm(H) =

∑p
i=1 λ̂

perm
i are computed from the k permutation samples. Then, the proportions of

Tperm(H) > Tref(H) are computed, which are the p-values to evaluate the null hypothesis, where
Tref(H) =

∑p
i=1 λ̂

ref
i . The reasoning is as follows. If the null hypothesis is true, we normally expect

relatively high proportions for the case of Tperm(H) > Tref(H), because Xperm
H has the null impacts to

the regression and hence gives only random perturbation to have nothing to with the regression. The
marginal unified permutation predictor hypothesis tests are summarized as:

•Marginal unified permutation predictor hypothesis test

1. Based on H0 : PHS f (X) = Op, partition X into (XH⊥ = HT
⊥X,XH = HTX).

2. Construct a sample version of related kernel matrices, M̂, from the original sample, and compute
Tref(H) =

∑p
i=1 λ̂

ref
i , where λref

i s are its eigenvalues.

3. Permute XH randomly and construct permuted predictors of Xperm = (XH⊥ ,X
perm
H ).

4. From the permutation samples, obtain Tperm(H) =
∑p

i=1 λ̂
perm
i .

5. Repeat steps 3 to 4 k times.

6. Calculate the percentage of Tperm(H) > Tref(H), and report the percentage as a p-value.

3.2. Conditional unified permutation predictor hypothesis test

Recall the conditional hypothesis of HC
0 : PHS f (X) = Op given d = m versus HC

1 : PHS f (X) , Op

given d = m. In HC
0 and HC

1 , the dimension of S f (X) is given. This implies that we had better test the
predictor hypothesis with respect to η, not the related kernel matrix M. Based on H ; therefore, we
can partition η as

η = PH⊥η + PHη.

Under HC
0 , PHη = 0, and hence we have the following relation:

Y f (X)|(PH⊥η)TX.

That is, by given d = m, we do not have to consider p-dimensional predictor X, but, instead,
we consider ηTX. Under HC

0 , the regression of Y |{(PH⊥η)TX, (PHη)TX}, with randomly permuting
(PHη)TX, should be equally informative to the regression of Y |ηTX in the context of specific SDR
methodologies to recover η. The information of the two regressions can be, naturally, measured by
the sum of the m largest eigenvalues computed from the chosen SDR methods. For the conditional
tests, we use the following quantity as a test statistic:

T (H|d) =
m∑

i=1

λ̂i.
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Then the reference test statistic of Tref(H|d) is computed from a regression of Y |η̂TX. Let X1|d =
(PH⊥ η̂)TX and X0|d = (PHη̂)TX. Then the permuted test statistics of Tperm(H|d) are computed from
the regression of Y |(X1|d,X

perm
0|d ).

• Conditional unified permutation predictor hypothesis test

1. Based on H0 : PHS f (X) = Op given d = m, partition η̂TX into (X1|d = (PH⊥ η̂)TX,X0|d =
(PHη̂)TX), where η̂ ∈ Rp×m is the estimate of S f (X) under d = m.

2. Compute the reference test statistics from Y |η̂TX such that

Tref(H|d) =
d∑

i=1

λ̂ref
i ,

where λref
i s are its eigenvalues.

3. Permute X0|d randomly and construct permuted predictors of Xperm
d = (X1|d,X

perm
0|d ).

4. From the permutation samples, obtain Tperm(H|d) =
∑d

i=1 λ̂
perm
i .

5. Repeat steps 3 to 4 k times.

6. Calculate the percentage of Tperm(H|d) > Tref(H|d), and report the percentage as p-values.

4. Numerical Studies and Data Analysis

4.1. Numerical studies

We consider two artificial models for numerical studies. The following predictor configurations were
used in the two models. The coordinates of X = (X1, . . . , X5)T were independently generated from
N(0, 1). A random error ε, independent of X, was also sampled from N(0, 1). Then, the next four
models were constructed:

Model 1 Y |X = X1 + ε; Model 2 Y |X = X2
1 + ε;

Model 3 Y |X = X2
1 + X2

2 + ε; Model 4 Y |X = X1 + X2
2 + ε.

We conducted marginal and conditional permutation predictor tests based on SIR (Li, 1991) for Model
1 and pHd (Li, 1992) and SAVE (Cook and Weisberg, 1991) for Model 2. And, for Model 3, the
method of pHd alone was considered, and NCM (Ye and Weiss, 2003) to combine the two methods
of SIR and SAVE with two weights of ω = 0.5 and ω = 0.7 for SIR was used for Model 4. Five
and four slices were considered for SIR and SAVE respectively. For the conditional bootstrap and
permutation tests, the true dimensions of d = 1 for Models 1–2 and d = 2 for Models 3–4 were
used. In addition, each model was iterated 100 times with 500 permutations for n = 50 and n =
100 respectively. In all tests, level 5% was used. As the summary of the studies, we report the
rejection percentages of the null hypotheses for testing each coordinate effect. In Models 1–2, X1 alone
contributes to the regression, and X1 and X2 do to the regression for Models 3–4. Thus, in Models
1–2, the rejection percentages of X1 should be close to 100%, which indicate the observed powers.
In addition, the rejection percentages for all other predictors should be close to the nominal level
5%, which represent the observed levels. The difference for Models 3–4 is highlighted to X2 because
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Table 1: Percentages of rejection of the null hypothesis for Models 1–4 in section 4.1; M1SIR, Model 1 by SIR;
M2pHd, Model 2 by pHd ; M2SAVE, Model 2 by SAVE; M3pHd, Model 3 by pHd; M4NCA, Model 4 by New Class
Approach

Marginal Permutation Tests Conditional Permutation Tests
X1 X2 X3 X4 X5 X1 X2 X3 X4 X5

M1SIR n = 50 100 3.00 2.00 4.00 6.00 100 3.00 6.00 6.00 9.00
n = 100 100 5.00 6.00 5.00 4.00 100 5.00 6.00 5.00 4.00

M2pHd n = 50 100 3.00 7.00 5.00 1.00 100 2.00 7.00 4.00 12.0
n = 100 100 2.00 6.00 6.00 4.00 100 4.00 3.00 6.00 4.00

M2SAVE n = 50 75.0 4.00 5.00 6.00 2.00 100.0 7.00 6.00 8.00 6.00
n = 100 100 5.00 5.00 7.00 3.00 100 7.00 5.00 4.00 6.00

M3phd n = 50 97.0 96.0 3.00 3.00 7.00 98.0 98.0 7.00 3.00 7.00
n = 100 100 100 4.00 4.00 3.00 100 100 6.00 4.00 6.00

M4NCA n = 50 31.0 66.0 3.00 4.00 4.00 75.0 80.0 9.00 6.00 3.00
ω = 0.5 n = 100 90.0 100 6.00 4.00 6.00 100 100 5.00 7.00 6.00
M4NCA n = 50 75.0 44.0 7.00 6.00 7.00 85.0 61.0 9.00 8.00 4.00
ω = 0.7 n = 100 100 95.0 7.00 8.00 5.00 100 100 5.00 8.00 6.00

the predictor contributes to the regressions; therefore, the rejection percentage for X2 represents the
observed level in the models. Table 1 summarizes the rejection percentages for Xi, i = 1, . . . 5, for the
four models.

Table 1 shows that the marginal and conditional permutation tests are almost equally good, al-
though the conditional tests turns out more powerful in Model 2 through the SAVE and Model 4. Both
tests provide reasonably good observed powers and levels with n = 100 in all models. Comparing
the test performances between pHd and SAVE, the method of pHd shows more reliable performances
than SAVE especially with smaller sample size n = 50. This is because of implementation of the
methods itself. The method of SAVE methodologically requires covariance matrices for each slice.
Thus, with smaller samples, the covariances within each slice may be not well-estimated, which may
cause relatively worse test results than pHd. For Model 4, with n = 50, the performances for testing
X1 and X2 are quite different, especially in the marginal test. With ω = 0.5, the effect of X1 is not
tested well, while the tests for X2 is not good with ω = 0.7. In the model, the effect of X1 is accounted
by SIR and that of X2 is explained by SAVE. With ω = 0.5, SAVE is more preferable than SIR, so the
contribution of X1 to the regression is relatively weakly measured. However, with ω = 0.7, SIR has
more weight than SAVE, so the effect of X1 is tested better than that of X2. The same story goes on the
conditional tests, but the differences in the rejection percentages are not as dramatic as the marginal
tests. With n = 100, either of ω = 0.5 or 0.7 provides reliable test results in both tests.

Based on simulation studies with mild sample sizes, it can be concluded that the proposed permu-
tation tests may not be a cause of concern in practice.

4.2. Data analysis - Swiss banknote data

For an illustration purpose, the Swiss banknote data analyzed in Shao et al. (SCW; 2007) was con-
sidered. In the data, the following seven variables were used. The response is a binary variable to
indicate the status of a banknote as genuine or counterfeit. All the other six variables are predictors of
length of bill (Length), width of left edge (Left), width of right edges (Right), top margin width (Top),
bottom margin width (Bottom), and length of image diagonal (Diagonal), and the six predictors are
measured in millimeters. Following SCW, the method of SAVE was adopted and it was considered
that d̂ = 2.

In the analysis, we considered three different cases. In the first case, the method of SAVE was fitted
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with all 6 predictors, and the dimension tests were conducted. In addition, the five kinds of coordinate
tests were considered: the SCW-marginal coordinate tests, the marginal bootstrap coordinate tests,
the conditional bootstrap coordinate tests given d = 2, the marginal permutation coordinate tests, and
the conditional coordinate permutation tests given d = 2. According to Yoo (2011), the values of 0.8
and 0.4 for the marginal and conditional bootstrap coordinate tests, respectively, are recommended
for making decisions, and we follow a more general rule to select predictors distinguished with the
others along with the former guidelines.

The second case was based on the same selection results (Left, Bottom and Diagonal) of predictors
by the SCW-marginal tests and the bootstrap tests. So, instead of the original six predictors, the data
was refitted through SAVE with the selected three predictors. Then the dimension tests and the five
kinds of the coordinate tests under consideration were conducted again.

The third case was based on the selection results (Left, Top, Bottom and Diagonal) by the proposed
permutation tests. The method of SAVE was fitted on a regression of the response given the selected
four predictors. Moreover, accordingly, the dimension tests and the five coordinate tests were re-
performed.

For each case, the p-values by the SCW-coordinate tests and the proposed permutation tests and
the distances by the bootstrap tests are summarized in Table 2. In addition, Table 3 reports the p-
values for the dimension tests computed in each case. We will use level 5% to make a decision, and a
notation of “ • ” in Table 2 indicates the removals of the corresponding predictors in SAVE fits.

According to Table 3, for case 1, which all six predictors were used in, it can be concluded that
d̂ = 2 with p-value = 0.217. Reading Table 2, since all values for the marginal bootstrap coordinate
tests are less than 0.8, the criteria value for the tests decreases to 0.7 from 0.8. Then, for the SCW-
marginal coordinate tests and the proposed marginal and conditional permutation coordinate tests,
p-values for two predictors of Bottom and Diagonal are both 0.000. The distances for Bottom and
Diagonal are 0.701 and 0.708 with the marginal bootstrap coordinate tests, and 0.805 and 0.774 for
the conditional bootstrap coordinate tests in order. The two predictors of Bottom and Diagonal among
the six predictors can be determined to be significant to the regression; in addition, the predictor of
Left is determined to be significant by the four coordinate tests except the conditional permutation
coordinate test (p-value = 0.416). Oddly, the conditional bootstrap coordinate tests decide that all the
predictors are significant, because all distances are over the suggested value of 0.4. This implies that
the bootstrap conditional coordinate tests clearly overestimate the importance of predictors. Based on
the results, it can be reasonably concluded that both the SCW and bootstrap tests select three predictors
of Left, Bottom and Diagonal, while the permutation tests determine that the four predictors of Left
Top, Bottom and Diagonal are important.

We re-did the tests with the selected three predictors of Left, Bottom, and Diagonal, following the
selection results by the SCW and bootstrap tests. According to Table 2, two predictors of Bottom and
Diagonal are still determined to be significant in the SCW tests (Bottom, 0.000 and Diagonal, 0.001),
the conditional bootstrap tests (0.654 and 0.549), and the two permutation tests (0.000 and 0.000).
However, the marginal bootstrap tests determine that no predictors are important to the regression
because no values are greater than 0.7. This is clear contradiction to the dimension estimation of d̂ = 2
in Table 3. The predictor of Left is significant in the SCW test (0.010) and the marginal permutation
test (0.001). However, one unexpected issue occurs in the estimation of d, if comparing case 1.
Table 3 shows that the hypothesis of d = 2 is rejected with p-value = 0.013, so d̂ is suggested to be
greater than 2. This is partially because the SCW and the bootstrap tests eliminate more variables than
necessary. Assuming the estimation of d̂ > 2 to be correct, the selection of two predictors of Bottom
and Diagonal by the bootstrap conditional tests result in a contradiction. Based on the discussion, the
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Table 2: Coordinate tests for banknote data in section 4.2; MargSCW, marginal coordinate tests by Shao et al.
(2007); Margboot, marginal bootstrap coordinate tests by Yoo (2011); Condboot, conditional bootstrap coordinate
tests given d = 2 by Yoo (2011) Margperm, marginal permutation coordinate tests; Condperm, conditional
permutation coordinate tests given d = 2

Length Left Right Top Bottom Diagonal
MargSCW 0.361 0.002 0.396 0.240 0.000 0.000
Margboot 0.642 0.744 0.679 0.512 0.701 0.708

Case 1 Condboot 0.643 0.632 0.588 0.587 0.805 0.774
Margperm 0.305 0.016 0.124 0.004 0.000 0.000
Condperm 0.084 0.416 0.334 0.000 0.000 0.000
MargSCW • 0.010 • • 0.000 0.001
Margboot • 0.187 • • 0.624 0.524

Case 2 Condboot • 0.189 • • 0.654 0.549
Margperm • 0.001 • • 0.000 0.000
Condperm • 0.124 • • 0.000 0.000
MargSCW • 0.026 • 0.160 0.000 0.006
Margboot • 0.728 • 0.243 0.727 0.610

Case 3 Condboot • 0.487 • 0.418 0.718 0.547
Margperm • 0.001 • 0.000 0.000 0.000
Condperm • 0.036 • 0.000 0.000 0.000

Table 3: Structural dimension tests for banknote data in Section 4.2
d = 0 d = 1 d = 2

Case 1 0.000 0.001 0.217
Case 2 0.000 0.000 0.013
Case 3 0.000 0.000 0.084

analysis of case 2 seems not reasonable to represent the regression.
Following the guidance by the permutation tests (which is case 3) the data was fitted with four

predictors of Left, Top, Bottom, and Diagonal. Table 2 shows that the permutation tests determine
that all four predictors are significant, while the SCW tests decide that the predictor of Top alone is
not significant with p-value = 0.160. The marginal bootstrap tests decide that the two predictors of
Left (0.728) and Bottom (0.727) are significant among the four, while the conditional bootstrap tests
determine that all four predictors are significant. Therefore, the two permutation tests and the condi-
tional bootstrap tests produce the same results. One important thing is that the structural dimension
is still decided to be two with p-value = 0.084, which is consistent with case 1. Therefore, we can
conclude that, in the banknote data, the structural dimension should be equal to two when involving
four predictors of Left, Top, Bottom, and Diagonal to discriminate and classify fake banknotes.

5. Discussion

In this paper, we propose method-free permutation predictor hypothesis tests in the context of suffi-
cient dimension reduction. Marginal and conditional permutation predictor hypothesis tests are sug-
gested; subsequently, one can do the tests adequately in their own context. The proposed permutation
tests provides p-values; therefore, usual statistical practitioner can make decisions to evaluate the
predictor hypotheses just as they do in other tests.

The tests can also be directly applied to various sufficient dimension reduction methods. Thus it
is expected that the tests can enhance real application strengths in practice.

We need to admit that the proposed permutation tests do not overwhelm other predictor hypothesis
tests existing in sufficient dimension reduction. However, we believe that the proposed tests can
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provide reliable additional evidence for variable selection in sufficient dimension context. If one
adopts the proposed tests along with the other tests, they will be in the better position to make variable
selections correctly. The codes for the proposed permutation tests are available upon request.
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