• Title/Summary/Keyword: statistical representation

Search Result 168, Processing Time 0.023 seconds

On Numerical Computation of Pickands Constants

  • Choi, Hyemi
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.277-283
    • /
    • 2015
  • Pickands constant $H_{\alpha}$ appears in the classical result about tail probabilities of the extremes of Gaussian processes and there exist several different representations of Pickands constant. However, the exact value of $H_{\alpha}$ is unknown except for two special Gaussian processes. Significant effort has been made to find numerical approximations of $H_{\alpha}$. In this paper, we attempt to compute numerically $H_{\alpha}$ based on its representation derived by $H{\ddot{u}}sler$ (1999) and Albin and Choi (2010). Our estimates are compared with the often quoted conjecture $H_{\alpha}=1/{\Gamma}(1/{\alpha})$ for 0 < ${\alpha}$ ${\leq}$ 2. This conjecture does not seem compatible with our simulation result for 1 < ${\alpha}$ < 2, which is also recently observed by Dieker and Yakir (2014) who devised a reliable algorithm to estimate these constants along with a detailed error analysis.

Further Results on Characteristic Functions Without Contour Integration

  • Song, Dae-Kun;Kang, Seul-Ki;Kim, Hyoung-Moon
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.5
    • /
    • pp.461-469
    • /
    • 2014
  • Characteristic functions play an important role in probability and statistics; however, a rigorous derivation of these functions requires contour integration, which is unfamiliar to most statistics students. Without resorting to contour integration, Datta and Ghosh (2007) derived the characteristic functions of normal, Cauchy, and double exponential distributions. Here, we derive the characteristic functions of t, truncated normal, skew-normal, and skew-t distributions. The characteristic functions of normal, cauchy distributions are obtained as a byproduct. The derivations are straightforward and can be presented in statistics masters theory classes.

Graphical Representation of Partially Ranked Data

  • Han, Sang-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.5
    • /
    • pp.637-644
    • /
    • 2011
  • Partially ranked data refers to the situation in which there are p distinct objects; however each judge specifies only first s (s < p) choices. The group theoretic formulation for partially ranked data analysis was set up by Critchlow (1985). We propose a graphical method for partially ranked data by quantifying objects and judges. In a plot for judges, the interpoint distances can be interpreted as Spearman or Kendall distances between two rankings given by respective judges. Similarly, we also construct a plot for objects with a sensible relationship to the previous plot for judges. This study extends the Han and Huh (1995) quantification method of fully ranked data using Gabriel's (1971) biplot technique for multivariate data matrix.

Uncertainty Analysis for Parameter Estimation of Probability Distribution in Rainfall Frequency Analysis Using Bootstrap (강우빈도해석에서 Bootstrap을 이용한 확률분포의 매개변수 추정에 대한 불확실성 해석)

  • Seo, Young-Min;Park, Ki-Bum
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.321-327
    • /
    • 2011
  • Bootstrap methods is the computer-based resampling method that estimates the standard errors and confidence intervals of summary statistics using the plug-in principle for assessing the accuracy or uncertainty of statistical estimates, and the BCa method among the Bootstrap methods is known much superior to other Bootstrap methods in respect of the standards of statistical validation. Therefore this study suggests the method of the representation and treatment of uncertainty in flood risk assessment and water resources planning from the construction and application of rainfall frequency analysis model considersing the uncertainty based on the nonparametric BCa method among the Bootstrap methods for the assessement of the estimation of probability rainfall and the effect of uncertainty considering the uncertainty of the parameter estimation of probability in the rainfall frequency analysis that is the most fundamental in flood risk assessement and water resources planning.

Mathematical representation to assess the wind resource by three parameter Weibull distribution

  • Sukkiramathi, K.;Rajkumar, R.;Seshaiah, C.V.
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.419-430
    • /
    • 2020
  • Weibull distribution is a conspicuous distribution known for its accuracy and its usage for wind energy analysis. The two and three parameter Weibull distributions are adopted in this study to fit wind speed data. The daily mean wind speed data of Ennore, Tamil Nadu, India has been used to validate the procedure. The parameters are estimated using maximum likelihood method, least square method and moment method. Four statistical tests namely Root mean square error, R2 test, Kolmogorov-Smirnov test and Anderson-Darling test are employed to inspect the fitness of Weibull probability density functions. The value of shape factor, scale factor, wind speed and wind power are determined at a height of 100m using extrapolation of numerical equations. Also, the value of capacity factor is calculated mathematically. This study provides a way to evaluate feasible locations for wind energy assessment, which can be used at any windy site throughout the world.

The Cluster Damage in a $extsc{k}th-Order$ Stationary Markov Chain

  • Yun, Seokhoon
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.235-251
    • /
    • 1999
  • In this paper we examine extremal behavior of a $textsc{k}$th-order stationary Markov chain {X\ulcorner} by considering excesses over a high level which typically appear in clusters. Excesses over a high level within a cluster define a cluster damage, i.e., a normalized sum of all excesses within a cluster, and all excesses define a damage point process. Under some distributional assumptions for {X\ulcorner}, we prove convergence in distribution of the cluster damage and obtain a representation for the limiting cluster damage distribution which is well suited for simulation. We also derive formulas for the mean and the variance of the limiting cluster damage distribution. These results guarantee a compound Poisson limit for the damage point process, provided that it is strongly mixing.

  • PDF

A Comparative Study on the Performance of Bayesian Partially Linear Models

  • Woo, Yoonsung;Choi, Taeryon;Kim, Wooseok
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.885-898
    • /
    • 2012
  • In this paper, we consider Bayesian approaches to partially linear models, in which a regression function is represented by a semiparametric additive form of a parametric linear regression function and a nonparametric regression function. We make a comparative study on the performance of widely used Bayesian partially linear models in terms of empirical analysis. Specifically, we deal with three Bayesian methods to estimate the nonparametric regression function, one method using Fourier series representation, the other method based on Gaussian process regression approach, and the third method based on the smoothness of the function and differencing. We compare the numerical performance of three methods by the root mean squared error(RMSE). For empirical analysis, we consider synthetic data with simulation studies and real data application by fitting each of them with three Bayesian methods and comparing the RMSEs.

Numerical Comparisons for the Null Distribution of the Bagai Statistic

  • Ha, Hyung-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.2
    • /
    • pp.267-276
    • /
    • 2012
  • Bagai et al. (1989) proposed a distribution-free test for stochastic ordering in the competing risk model, and recently Murakami (2009) utilized a standard saddlepoint approximation to provide tail probabilities for the Bagai statistic under finite sample sizes. In the present paper, we consider the Gaussian-polynomial approximation proposed in Ha and Provost (2007) and compare it to the saddlepoint approximation in terms of approximating the percentiles of the Bagai statistic. We make numerical comparisons of these approximations for moderate sample sizes as was done in Murakami (2009). From the numerical results, it was observed that the Gaussianpolynomial approximation provides comparable or greater accuracy in the tail probabilities than the saddlepoint approximation. Unlike saddlepoint approximation, the Gaussian-polynomial approximation provides a simple explicit representation of the approximated density function. We also discuss the details of computations.

Comparison Density Representation of Traditional Test Statistics for the Equality of Two Population Proportions

  • Jangsun Baek
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.1
    • /
    • pp.112-121
    • /
    • 1995
  • Let $p_1$ and $p_2$ be the proportions of two populations. To test the hypothesis $H_0 : p_1 = p_2$, we usually use the $x^2$ statistic, the large sample binomial statistic Z, and the Generalized Likelihood Ratio statistic-2log $\lambda$developed based on different mathematical rationale, respectively. Since testing the above hypothesis is equivalent to testing whether two populations follow the common Bernoulli distribution, one may also test the hypothesis by comparing 1 with the ratio of each density estimate and the hypothesized common density estimate, called comparison density, which was devised by Parzen(1988). We show that the above traditional test statistics ate actually estimating the measure of distance between the true densities and the common density under $H_0$ by representing them with the comparison density.

  • PDF

Testing for a Unit Root in an ARIMA(p,1,q) Signal Observed with Measurement Error

  • Lee, Jong-Hyup;Shin, Dong-Wan
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.481-493
    • /
    • 1995
  • An ARIMA signal observed with measurement error is shown to have another ARIMA representation with nonlinear restrictions on parameters. For this model, the restricted Newton-Raphson estimator(RNRE) of the unit root is shown to have the same limiting distribution as the ordinary least squares estimator of the unit root in an AR(1) model tabulated by Dickey and Fuller (1979). The RNRE of parameters of the ARIMA(p,1,k) process and unit root tests base on the RNRE are developed.

  • PDF