DOI QR코드

DOI QR Code

Mathematical representation to assess the wind resource by three parameter Weibull distribution

  • Sukkiramathi, K. (Department of Mathematics, Sri Ramakrishna Engineering College) ;
  • Rajkumar, R. (Department of Mathematics, Kumaraguru college of Technology) ;
  • Seshaiah, C.V. (Department of Basic Science and Humanities, GMR Institute of technology)
  • Received : 2018.07.19
  • Accepted : 2020.11.20
  • Published : 2020.11.25

Abstract

Weibull distribution is a conspicuous distribution known for its accuracy and its usage for wind energy analysis. The two and three parameter Weibull distributions are adopted in this study to fit wind speed data. The daily mean wind speed data of Ennore, Tamil Nadu, India has been used to validate the procedure. The parameters are estimated using maximum likelihood method, least square method and moment method. Four statistical tests namely Root mean square error, R2 test, Kolmogorov-Smirnov test and Anderson-Darling test are employed to inspect the fitness of Weibull probability density functions. The value of shape factor, scale factor, wind speed and wind power are determined at a height of 100m using extrapolation of numerical equations. Also, the value of capacity factor is calculated mathematically. This study provides a way to evaluate feasible locations for wind energy assessment, which can be used at any windy site throughout the world.

Keywords

Acknowledgement

This research is supported by Modelling and simulation laboratory of Nano Science and Technology and Research Centre of Sri Ramakrishna Engineering College, Coimbatore, India.

References

  1. Alexandre, P., Rocha, C., Sousa, R.C.D., Andrade, C.F.D. and Eugenia M. (2012), "Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil", Appl. Energy, 89(1), 395-400. https://doi.org/10.1016/j.apenergy.2011.08.003.
  2. Amirinia, G., Mafi, S. and Mazaheri, S. (2017), "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS", Renew. Energy, 113, 915-929. https://doi.org/10.1016/j.renene.2017.06.070.
  3. Bassyouni, M., Gutub, S.A., Javaid, U., Awais, M., Rehman, S., Hamid, S.S.A. and Shafeek, H. (2015), "Assessment and analysis of wind power resource using weibull parameters", Energy Explor. Exploit., 33(1), 105-122. https://doi.org/10.1260%2F0144-5987.33.1.105. https://doi.org/10.1260%2F0144-5987.33.1.105
  4. Bhattacharya, P. and Bhattacharjee. R. (2010), "A study on Weibull distribution for estimating the parameters", J. Appl. Quantitative Meth., 5(2), 234-241.
  5. Chang, T.P. (2011), "Estimation of wind energy potential using different probability density functions", Appl. Energy, 88(5),1848-56. https://doi.org/10.1016/j.apenergy.2010.11.010.
  6. Hong, H.P. and Li, S.H. (2014), "Plotting positions and approximating first two moments of order statistics for Gumbel distribution: estimating quantiles of wind speed", Wind Struct., 19(4), http://dx.doi.org/10.12989/was.2014.19.4.371.
  7. Kaoga, D.K., Sergeb, D.Y., Raidandic, D. and Djongyangd, N. (2014), "Performance assessment of two-parameter Weibull distribution methods for wind energy applications in the district of Maroua in Cameroon", Int. J. Sci. Basic Appl. Res. 17(1), 39-59.
  8. Katinas, V., Marciukaitis, M., Gecevicius, G. and Markevicius, A. (2017), "Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania", Renew. Energy, 113, 190-201. https://doi.org/10.1016/j.renene.2017.05.071.
  9. Khambalkar, V.P. and Kalbande, S.R. (2017), "Estimation of wind power potential and turbine rating selection", Int. J. Current Microbiol. Appl. Sci., 6(2), 1204-1213 https://doi.org/10.20546/ijcmas.2017.602.137
  10. Kiwan, S. (2017), "Effect Weibull distribution parameters calculating methods on energy output of a wind turbine: A study case", Int. J. Thermal Environ. Eng., 14(2), 163-173
  11. Sedghi, M., Hannani, S.K. and Boroushaki, M. (2015), "Estimation of weibull parameters for wind energy application in Iran's cities", Wind Struct., 21(2), 203-221. https://doi.org/10.12989/was.2015.21.2.203.
  12. Mo, H.M., Hong, H.P. and Fan, F. (2015), "Estimating the extreme wind speed for regions in China using surface wind observations and reanalysis data", J. Wind Eng. Ind. Aerod., 143, 19-33. https://doi.org/10.1016/j.jweia.2015.04.005.
  13. Ouammi, A., Ghigliotti, V., Robba, M., Mimet, A. and Sacile, R. (2012), "A decision support system for the optimal exploitation of wind energy on regional scale", Renew. Energy, 37(1), 299-309. https://doi.org/10.1016/j.renene.2011.06.027.
  14. Pryor, S.C., Shepherd, T.J. and Barthelmie, R.J. (2018), "Interannual variability of wind climates and wind turbine annual energy production", Wind Energy Sci., 3(2), 651. https://doi.org/10.5194/wes-3-651-2018.
  15. Sarkar, A., Singh, S. and Mitra, D. (2011), "Wind climate modeling using Weibull and extreme value distribution", Int. J. Eng. Sci. Technol., 3(5), 100-106.
  16. Soukissian, T. (2013), "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution", Appl. Energy, 111, 982-1000. https://doi.org/10.1016/j.apenergy.2013.06.050.
  17. Sukkiramathi, K. and Seshaiah, C.V. (2016). "A mathematical model to estimate the wind power using three parameter Weibull distribution", Wind Struct., 22(4), 393-408. https://doi.org/10.12989/was.2016.22.4.393.
  18. Sukkiramathi, K. and Seshaiah, C.V. (2020), "Analysis of wind power potential by the three-parameter Weibull distribution to install a wind turbine", Energy Explorat. Exploit., 38(1), 158-174. https://doi.org/10.1177%2F0144598719871628. https://doi.org/10.1177%2F0144598719871628
  19. Sukkiramathi, K., Raj Kumar, R. and Seshaiah, C.V. (2020), "Evaluation of wind power potential for selecting suitable wind turbine", Wind Struct., 31(4), 311-319. https://doi.org/10.12989/was.2020.31.4.311.
  20. Oner, Y., Ozcira, S., Bekiroglu, N. and Senol, I. (2013), "A comparative analysis of wind power density prediction methods for Canakkale, Intepe region, Turkey", Renew. Sustain. Energy Rev., 23, 491-502. https://doi.org/10.1016/j.rser.2013.01.052.
  21. Hulio, Z.H., Jiang, W. and Rehman, S. (2017), "Technical and economic assessment of wind power potential of Nooriabad, Pakistan", Energy, Sustain. Soc., 7(1), 35. https://doi.org/10.1186/s13705-017-0137-9.