Acknowledgement
This research is supported by Modelling and simulation laboratory of Nano Science and Technology and Research Centre of Sri Ramakrishna Engineering College, Coimbatore, India.
References
- Alexandre, P., Rocha, C., Sousa, R.C.D., Andrade, C.F.D. and Eugenia M. (2012), "Comparison of seven numerical methods for determining Weibull parameters for wind energy generation in the northeast region of Brazil", Appl. Energy, 89(1), 395-400. https://doi.org/10.1016/j.apenergy.2011.08.003.
- Amirinia, G., Mafi, S. and Mazaheri, S. (2017), "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS", Renew. Energy, 113, 915-929. https://doi.org/10.1016/j.renene.2017.06.070.
- Bassyouni, M., Gutub, S.A., Javaid, U., Awais, M., Rehman, S., Hamid, S.S.A. and Shafeek, H. (2015), "Assessment and analysis of wind power resource using weibull parameters", Energy Explor. Exploit., 33(1), 105-122. https://doi.org/10.1260%2F0144-5987.33.1.105. https://doi.org/10.1260%2F0144-5987.33.1.105
- Bhattacharya, P. and Bhattacharjee. R. (2010), "A study on Weibull distribution for estimating the parameters", J. Appl. Quantitative Meth., 5(2), 234-241.
- Chang, T.P. (2011), "Estimation of wind energy potential using different probability density functions", Appl. Energy, 88(5),1848-56. https://doi.org/10.1016/j.apenergy.2010.11.010.
- Hong, H.P. and Li, S.H. (2014), "Plotting positions and approximating first two moments of order statistics for Gumbel distribution: estimating quantiles of wind speed", Wind Struct., 19(4), http://dx.doi.org/10.12989/was.2014.19.4.371.
- Kaoga, D.K., Sergeb, D.Y., Raidandic, D. and Djongyangd, N. (2014), "Performance assessment of two-parameter Weibull distribution methods for wind energy applications in the district of Maroua in Cameroon", Int. J. Sci. Basic Appl. Res. 17(1), 39-59.
- Katinas, V., Marciukaitis, M., Gecevicius, G. and Markevicius, A. (2017), "Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania", Renew. Energy, 113, 190-201. https://doi.org/10.1016/j.renene.2017.05.071.
- Khambalkar, V.P. and Kalbande, S.R. (2017), "Estimation of wind power potential and turbine rating selection", Int. J. Current Microbiol. Appl. Sci., 6(2), 1204-1213 https://doi.org/10.20546/ijcmas.2017.602.137
- Kiwan, S. (2017), "Effect Weibull distribution parameters calculating methods on energy output of a wind turbine: A study case", Int. J. Thermal Environ. Eng., 14(2), 163-173
- Sedghi, M., Hannani, S.K. and Boroushaki, M. (2015), "Estimation of weibull parameters for wind energy application in Iran's cities", Wind Struct., 21(2), 203-221. https://doi.org/10.12989/was.2015.21.2.203.
- Mo, H.M., Hong, H.P. and Fan, F. (2015), "Estimating the extreme wind speed for regions in China using surface wind observations and reanalysis data", J. Wind Eng. Ind. Aerod., 143, 19-33. https://doi.org/10.1016/j.jweia.2015.04.005.
- Ouammi, A., Ghigliotti, V., Robba, M., Mimet, A. and Sacile, R. (2012), "A decision support system for the optimal exploitation of wind energy on regional scale", Renew. Energy, 37(1), 299-309. https://doi.org/10.1016/j.renene.2011.06.027.
- Pryor, S.C., Shepherd, T.J. and Barthelmie, R.J. (2018), "Interannual variability of wind climates and wind turbine annual energy production", Wind Energy Sci., 3(2), 651. https://doi.org/10.5194/wes-3-651-2018.
- Sarkar, A., Singh, S. and Mitra, D. (2011), "Wind climate modeling using Weibull and extreme value distribution", Int. J. Eng. Sci. Technol., 3(5), 100-106.
- Soukissian, T. (2013), "Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution", Appl. Energy, 111, 982-1000. https://doi.org/10.1016/j.apenergy.2013.06.050.
- Sukkiramathi, K. and Seshaiah, C.V. (2016). "A mathematical model to estimate the wind power using three parameter Weibull distribution", Wind Struct., 22(4), 393-408. https://doi.org/10.12989/was.2016.22.4.393.
- Sukkiramathi, K. and Seshaiah, C.V. (2020), "Analysis of wind power potential by the three-parameter Weibull distribution to install a wind turbine", Energy Explorat. Exploit., 38(1), 158-174. https://doi.org/10.1177%2F0144598719871628. https://doi.org/10.1177%2F0144598719871628
- Sukkiramathi, K., Raj Kumar, R. and Seshaiah, C.V. (2020), "Evaluation of wind power potential for selecting suitable wind turbine", Wind Struct., 31(4), 311-319. https://doi.org/10.12989/was.2020.31.4.311.
- Oner, Y., Ozcira, S., Bekiroglu, N. and Senol, I. (2013), "A comparative analysis of wind power density prediction methods for Canakkale, Intepe region, Turkey", Renew. Sustain. Energy Rev., 23, 491-502. https://doi.org/10.1016/j.rser.2013.01.052.
- Hulio, Z.H., Jiang, W. and Rehman, S. (2017), "Technical and economic assessment of wind power potential of Nooriabad, Pakistan", Energy, Sustain. Soc., 7(1), 35. https://doi.org/10.1186/s13705-017-0137-9.