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Graphical Representation of Partially Ranked Data
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Abstract
Partially ranked data refers to the situation in which there are p distinct objects; however each judge specifies

only first s (s < p) choices. The group theoretic formulation for partially ranked data analysis was set up by
Critchlow (1985). We propose a graphical method for partially ranked data by quantifying objects and judges.
In a plot for judges, the interpoint distances can be interpreted as Spearman or Kendall distances between two
rankings given by respective judges. Similarly, we also construct a plot for objects with a sensible relationship to
the previous plot for judges. This study extends the Han and Huh (1995) quantification method of fully ranked
data using Gabriel’s (1971) biplot technique for multivariate data matrix.
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1. Introduction

Partially ranked data are one of the most popular types of survey data. For example, potential buyers
order different brands of personal computers in terms of which one each buyer specifies only first
through s-th choices, where s < p. Statistical analysis of such data were dealt in Critchlow (1985)
and Diaconis (1988) among others.

Let ri j denote the rank given to the object j (= 1, . . . , p) by the judge i (= 1, . . . , n), and write
R = {ri j}. In any partial ranking, there are certain objects which are ‘tied’ in the sense that the judge
does not state any preferences among them. The “tied ranks approach” assigned to these tied objects is
the average of the ranks which they would possess if they were distinguishable. Although this matrix
notation is conventional, we will use two other coding schemes for partially ranked data in this study.
The first one is S = {si j} with n rows and p columns, where

si j = r̄i j −
p + 1

2
,

where r̄i j is the rank given to object j by the judge i if it is less than or equal to s or equal to (s+p+1)/2
otherwise. The second one is K = {ki j} with n rows and p(p−1)/2 (= p∗) columns which are arranged
in lexicographic order among j = (k, l), 1 ≤ k < l ≤ p, where

ki j =


1, if the object k is preferred to l,
−1, if the object l is preferred to k,

0, otherwise.
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The S notation will be useful for the later use of matrix decomposition since redundant row av-
erages, (p + 1)/2, of the raw data matrix R are removed in S . In Spearman’s sense, the squared rank
distance between two rows(or judges) i and i′ is defined by

d2
S (i, i′) =

p∑
j=1

(si j − si′ j)2.

Also, the Spearman rank correlation between two rows i and i′ is given by

1 − 6
d2

S (i, i′)
2s(s + 1)(2s + 1) + 3(p − s)(s + p + 1)2 − 3p(p + 1)2 .

On the other hand, the K notation that are derived directly from pairwise comparison of objects is
convenient in computing rank distances in Kendall’s sense. The Kendall rank distance between two
rows(or judges) i and i′ can be defined by

dK(i, i′) = #
{
ki jki′ j < 0, j = 1, . . . , p∗

}
.

It follows that

dK(i, i′) =
p∗∑
j=1

(ki j − ki′ j)2

4
− (p − s − 1)(p − s)

4
.

And, the Kendall rank correlation between two rows i and i′ is given by

1 − 4
dK(i, i′)

p(p − 1) − 2(p − s − 1)(p − s)
.

2. Spearman-Type Quantification

Consider a lower dimensional reduction of partially ranked data. For the data matrix S , the rows si of
S can be considered as vectors inℜp. Let v be a unit vector inℜp. The magnitude of the projection
vector of si on v is equal to s′iv. Then, the optimization problem can be formulated as

max
v

n∑
i=1

(s′iv)2, subject to v′v = 1.

Adopting a Lagrangian multiplier method, principal component(PC) reduction can be derived from
an eigensystem

(S ′S )v = λv, v ∈ ℜp.

More efficiently, biplot of partially ranked data can be obtained from singular value decomposi-
tion(SVD) of the data matrix S (Lebart et al., 1984). Let

S = UDV ′,



Graphical Representation of Partially Ranked Data 639

where U is the n × p matrix with orthonormal columns, V = (v1, v2, . . . , vp) is the p × p orthogonal
matrix, and D is the p × p diagonal matrix with singular values, λ1 ≥ · · · ≥ λp−1 > (λp = 0) as its
diagonal elements. Then two-dimensional row plot points are given by the rows of

G∗(2) = S (v1 : v2) = UDV ′(v1 : v2) = U(2)D(2),

where U(2) is the n × 2 submatrix of U and D(2) is the 2 × 2 diagonal submatrix of D. One particular
merit in the row plot is that Spearman’s distances between rankings given bu judges(rows of S ) are
approximately preserved. Therefore, the goodness-of-approximation of the two-dimensional row plot
is given by

GOArow(2) = 1 −

∣∣∣∣∣∣∣∣S V −
(
G∗(2) : O2n×(p−2)

)∣∣∣∣∣∣∣∣2
||S V ||2

=
λ2

1 + λ
2
2

λ2
1 + · · · + λ2

p
.

For the plot of columns(or objects), we use the same PC axis vector v and a group of hypothetical
supplementary rows(or judges). Specifically, to locate the first object for instance, consider (p −
1)!/(p − s)! rankings(

1, 2, 3, . . . , s,
(p + s + 1)

2
, . . . ,

(p + s + 1)
2

)
,

(
1, 2,

(p + s + 1)
2

, . . . , s,
(p + s + 1)

2
, . . . , 3

)
, . . . ,

which give rank 1 to the first object. Then the centroid of these rankings is given by

c1 =

(
1,

(p + 2)
2

,
(p + 2)

2
, . . . ,

(p + 2)
2

)′
.

When the size p vector c1 is projected on the PC axis vector v, it is positioned at c′1v. Similarly , c j

are defined for j = 2, . . . , p and their projections on v can be carried out individually. Finally, the p
objects can be positioned, say in a column plot, at(

c′1v1, c′1v2

)
,
(
c′2v1, c′2v2

)
,
(
c′3v1, c′3v2

)
, . . . ,

(
c′pv1, c′pv2

)
.

Since S 1 = 0 for 1 = (1, . . . , 1)′, by coding definition, implies that

U′(UDV ′1) = 0 or DV ′1 = 0,

or v′j1 = 0 for j = 1, . . . , p − 1. Hence, two-dimensional column plot points can be obtained from the
rows of

H∗(2) = V(2),

where V(2) is the n × 2 submatrix of V. Therefore, the goodness-of-approximation of the two dimen-
sional column plot is given by

GOAcol(2) = 1 −

∣∣∣∣∣∣∣∣V[p] −
(
V(2) : Op×(p−3)

)∣∣∣∣∣∣∣∣2∣∣∣∣∣∣V[p]
∣∣∣∣∣∣2 =

2
p − 1

,

where V[p] is the p× (p− 1) submatrix of V . Row and column plots together may be called a biplot of
partially ranked data.
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3. Kendall-Type Quantification

The same idea in the Spearman-type quantification of Section 2 can be also applied to another coding
matrix K for ranked data in a similar way. Since K has n rows and p(p − 1)/2 (= p∗) columns, the
rows of K can be considered as vectors inℜp∗ . Therefore, the principal component(PC) reduction of
the rows can be derived from an eigensystem

(K′K)v = λv, v ∈ ℜp∗ .

Assume n ≥ p∗, for notational convenience, and consider SVD of the matrix K:

K = UDV ′,

where U is the n × p∗ matrix with orthonormal columns, V is the p∗ × p∗ orthonormal matrix, and
D is the p∗ × p∗ diagonal matrix with singular values, λ1 ≥ · · · ≥ λp∗ as its diagonal elements. The
two-dimensional row plot points are given by

G∗(2) = K(v1 : v2) = UDV ′(v1 : v2) = U(2)D(2),

where U(2) is the n × 2 submatrix of U and D(2) is the 2 × 2 diagonal submatrix of D.
In the row plot, interpoint distances are approximations of Kendall rank distance (up to the scale

factor 4) between corresponding rankings given by judges with overall goodness-of-approximation

GOArow(2) = 1 −

∣∣∣∣∣∣∣∣KV −
(
G∗(2) : On×(p∗−2)

)∣∣∣∣∣∣∣∣2
||KV ||2 ,

where G∗(2) = K(v1 : v2) = (r1 : r2). It turns out that

GOArow(2) =

{
λ2

1 + λ
2
2

}{
λ2

1 + · · · + λ2
p∗
} .

Next, we will construct the column plot. Specifically, to locate the first object for instance, con-
sider (p − 1)!/(p − s)! rankings(

1, 2, 3, . . . , s,
(p + s + 1)

2
, . . . ,

(p + s + 1)
2

)
,

(
1, 3, 2, . . . , s,

(p + s + 1)
2

, . . . ,
(p + s + 1)

2

)
, . . . ,

all of which give rank 1 to the first object. In the K notation, they corresponds to

(1, 1, . . . , 1, 0, . . . , 0), (1, 1, . . . ,−1, 1, . . . , 1, 0, . . . , 0), . . . .

Then the centroid of these vectors is given by

c1 = (1, 1, . . . , 1, 0, . . . , 0, 0, 0)′,

that is, the first p − 1 elements are 1′s and remaining p∗ − (p − 1) elements are zeros. Similarly we
can define c2, . . . , cp. When the size p∗ vector c1 is projected on the PC axis vector v, it is positioned
at c′1v. Finally, the p objects can be positioned in a two-dimensional column plot at(

c′1v1, c′1v2

)
,
(
c′2v1, c′2v2

)
,
(
c′3v1, c′3v2

)
, . . . ,

(
c′pv1, c′pv2

)
.
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Hence the column points for objects in the two dimensional column plot points are given by the
rows of 

c′1
...

c′j
...

c′p


[v1 : v2] = Ks[v1 : v2] = KsV(2),

where Ks is a p× p∗ matrix and V(2) is the p∗×2 submatrix of V . Then, the goodness-of-approximation
of the two dimensional column plot is given by

GOAcol(2) = 1 −

∣∣∣∣∣∣∣∣KsV −
(
KsV(2) : Op×(p∗−2)

)∣∣∣∣∣∣∣∣2
||KsV ||2

.

4. A Numerical Example

To illustrate the proposed quantification plots, consider a partially ranked data from Critchlow(1985).
Twenty-two preschool boys and sixteen mothers of preschool children tasted five types of crackers.
Each person then provided a partial ranking of the five crackers, by specifying their first, second, and
third choices. The list of crackers are:

A = Animal crackers, C = Cheese crackers,
G = Graham crackers, R = Ritz crackers, S = Saltines.

The row plot by Spearman-type quantification is shown in Figure 1 with the goodness-of approx-
imation 71%. Thus seventy-one percent of the total variation among judges is explained by the first
two PC axes. Also, the column plot by Spearman-type quantification is shown in Figure 2 with the
goodness-of-approximation at 50%.

By looking at Figure 1, an interesting fact emerges. There seems to be a significant difference
between the preference of the boys and mothers. By superimposing the row and column plots, we
obtain a Spearman-type biplot of partially ranked data. In Figure 1, a big cluster of boys is found in
the right-side region along the first axis except only b8(Boy No.8).

Their opposite position in Figure 2 is occupied by the A(animal crackers) and shows that this major
group of boys liked animal crackers the most. In addition, a big cluster of mothers is located in the left
and upper-side region along the axes in Figure 1. Their opposite position in Figure 2 is occupied by
the S(saltines). Therefore, we may interpret that the major group of mothers liked saltines the most.
This result is quite similar to the multidimensional scaling result obtained by Critchlow (1985).

Similar interpretations can be made from Figure 3 and Figure 4 which are obtained by Kendall-
type quantification. Figure 3, a row plot with goodness-of-approximation 60.5%, is similar to Figure
1. Figure 4 is the column plot with with goodness-of-approximation 45.3%. In this particular case,
Kendall-type quantification plots are close to Spearman-type quantification plots.
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Figure 1: Row plot for thirty-eight judges by Spearman-type quantification (GOArow(2) = 71%)

Figure 2: Column plot for five crackers by Spearman-type quantification (GOAcol(2) = 50%)
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Figure 3: Row plot for thirty-eight judges by Kendall-type quantification (GOArow(2) = 60.5%)

Figure 4: Column plot for five crackers by Kendall-type quantification (GOAcol(2) = 45.3%)
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