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Abstract

Bagai et al. (1989) proposed a distribution-free test for stochastic ordering in the competing risk model, and
recently Murakami (2009) utilized a standard saddlepoint approximation to provide tail probabilities for the Bagai
statistic under finite sample sizes. In the present paper, we consider the Gaussian-polynomial approximation
proposed in Ha and Provost (2007) and compare it to the saddlepoint approximation in terms of approximating
the percentiles of the Bagai statistic. We make numerical comparisons of these approximations for moderate
sample sizes as was done in Murakami (2009). From the numerical results, it was observed that the Gaussian-
polynomial approximation provides comparable or greater accuracy in the tail probabilities than the saddlepoint
approximation. Unlike saddlepoint approximation, the Gaussian-polynomial approximation provides a simple
explicit representation of the approximated density function. We also discuss the details of computations.

Keywords: The Bagai statistic, null distribution, numerical comparisons, Gaussian-polynomial
approximation, saddlepoint approximation, cumulant generating function, moments.

1. Introduction

The important procedure in connection with nonparametric test statistics is to determine their null dis-
tributions, from which percentiles can be obtained. Even though combinatorial methods are widely
utilized in order to calculate probabilistic quantities for distribution-free nonparametric test statistics,
it should be pointed out that the combinatorial methods which involve all the possible combinations
of the outcomes, are very complicated and time consuming as the sample size increases. Accordingly
approximation methods are necessary to allow easy computational implementation, and asymptotic
and approximation techniques should play essential roles in nonparametric testing. Recently, vari-
ous higher order asymptotic approximation methods for nonparametric statistics such as Edgeworth
expansion, normal, saddlepoint and uniform approximations have been discussed for numerical com-
parisons in terms of computational accuracy and efficiency, see for instance Bean et al. (2004).

In this paper, we consider three approximations to the null-distribution of the Bagai test statistic,
which is a distribution-free test for stochastic ordering in the competing risk model. The three ap-
proximation methods are the Bagai approximation, the saddlepoint approximation and the Gaussian-
polynomial approximation. Bagai et al. (1989) provided numerical comparisons with the normal
approximation and the exact distribution, and Mukarami (2009) utilized the saddlepoint approxima-
tion which is based on the cumulant generating function of the Bagai statistic and compared it to
the Bagai approximation. For fair numerical comparisons of those three approximation methods, the
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cases involving moderate sample sizes for 5 < n < 20, which was used in Murakami (2009), are
revisited.

The saddlepoint approximations proposed by Daniels (1954, 1987) and developed by Lugannani
and Rice (1980) can be applied to any statistic that admits a cumulant generating function. The sad-
dlepoint method is well known to generate accurate tail probabilities, even for small sample sizes.
Saddlepoint approximations have been used with great success by many authors, and excellent dis-
cussions of their applications to a range of distributional problems can be found for instance Easton
and Ronchetti (1986), Reid (1988), Jensen (1995), Goutis and Casella (1999), Huzurbazar (1999),
Kolassa (2006) and Butler (2007). But it should be mentioned that the saddlepoint approximation is
appropriate for the tail areas of the null distributions. It should also be pointed out that the saddle-
point method requires a numerical method such as the Newton-Raphson algorithm to calculate the
saddlepoint, which is obtained by inverting the derivative of the cumulant generating function of in-
terest. For this reason, saddlepoint method could be crude when the cumulant generating functions
are complicated.

In this paper, we present a simple moment-based approximation method, namely the Gaussian-
polynomial approximation, which was originally proposed by Ha and Provost (2007). It will be shown
that this approach can be successfully utilized to provide accurate percentiles of the Bagai statistic and
that is also very flexible and quickly adapt to the features of the target distributions. In addition, we are
interested in numerical comparisons with respect to the performance and efficiency of other approx-
imation methods. As explained in Ha and Provost (2007), the Gaussian-polynomial approximation
is based on a moment-matching technique. Since the higher order moments can easily be obtained
numerically by differentiating the moment generating function, the Gaussian-polynomial approxima-
tion can be readily utilized. It should be pointed out that the Gaussian-polynomial approximation can
be considered as a refinement of the Bagai approximation which adapts missing features of the target
distribution by utilizing more than the first two moments that are used in the Bagai approximation.

In Section 2, the Bagai statistic is briefly introduced including its moment generating function
and its moments. In Section 3, a brief introduction to the main approximation methods including the
Bagai, saddlepoint and Gaussian-polynomial approximations, is provided. In Section 4, we describe
in detail steps required to construct an optimal Gaussian-polynomial approximant and provide nu-
merical comparisons for the approximations to the null distribution of the Bagai statistic for various
combinations of two independent sample sizes. As well, relevant computational issues are discussed.

2. The Bagai Statistic

In this section, the Bagai statistic is briefly introduced. This statistic considers the competing risks
set-up wherein a unit is subject to failure due to one of two risks. We denote by X and Y the notional
lifetimes of a unit under these two risks and X, ..., X, and Y,..., Y, individuals in the two random
samples of independent observations of size n from two continuous distributions, F(-) and G(-), T =
Min(X, Y) is the time at which the unit fails and 7; = Min(X;, Y;) is the observed time to failure for
the i sample. On letting 6 = I(X > Y) be the indicator for the cause of failure, we can observe
(Ty,61),...,(Ty, 6,) where 6; = I(X; > Y;) is an indicator for the i unit. On the basis of these data
types, we are interested in testing the following hypothesis:

Hy : F(x) = G(x) against Hy : F(x) < G(x). 2.1)
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Further denoting R; the rank of 7; among T, ..., T,, Bagai et al. (1989) proposed a test statistic

n 3 _ 1
S=2 ;(Zn —1—R)S; - % 2.2)

Bagai et al. (1989) provided the explicit expressions for the important statistical quantities such as the
mean and variance

n(n - 1)(14n - 13)

ES)=0 and Var(S)= z

2.3)

under the null hypothesis as well as the moment generating function M(¢) corrected by Murakami
(2009) as follows:

3 -1 n+l
y) [ T+ exp@r@n - . (2.4)

j=2

M(@) =27"exp (

3. Approximations

Three approximation methods are briefly reviewed in this section. First, the Bagai approximation is
simply a normal approximation on the basis of the first two moments of the distribution. The saddle-
point approximation makes use of the cumulant generating function. When higher order moments can
easily be computed numerically by differentiating the moment generating function, such moments
can be utilized in moment based approximation methods such as the Gaussian-polynomial approx-
imation. The Gaussian-polynomial approximation can be considered as an extension of the Bagai
approximation which utilizes more moments in order to refine the Bagai approximation by making
use of a polynomial adjustment.

3.1. The Bagai approximation

Given the expected value and variance of the Bagai statistic given in Equation (2.3), the Bagai ap-
proximation, denoted by fp(x), can simply be expressed as the following normal density function:

3.1)

- E 2
fal) = (L EOD )

1
27 Var(S) eXp( 2 Var(S)

3.2. The Saddlepoint approximation

We briefly describe the saddlepoint approximation proposed by Daniels (1954, 1987) and the formula
developed by Lugannani and Rice (1980), from which accurate approximated tail percentiles to the
distribution of the Bagai statistic can be obtained. The cumulant generating function of the S statistic
denoted by «(s) can be easily obtained by taking logarithm on the moment generating function M(s)
of the Bagai statistic S, that is,

n+1
k(s) = log[M(s)] = —nlog2 — M + Z log[1 + exp(2s(2n — j))]. (3.2)
=2
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The first two derivatives of its cumulant generating function are as follows:

kV(s) =

n+1 . 1
3= 5 2@n - exp@s@n — ) (3.3)

2 1 +exp(2s(2n — j)

n+l

4(j — 2}1)2 exp(2s(j + 2n))
@y —
< Z [exp(2)s) + exp(4ns — j)]z’

(3.4)

=2

where «(-) denotes the i derivative. When a unique solution (s = §) is obtained from equating
«D(s) = v, the saddlepoint approximation to the probability density function denoted by fsp(x) is

Ssp(x) = 27 k(8) exp(k(S) — x 3). (3.5)

Since the saddlepoint approximation to the probability density function is not an integrable func-
tion, the generalized Lugannani and Rice formula for nonnormal distributions suggested by Wood et
al. (1993) to determine the saddlepoint approximation to Pr(S > v) is

Pr(S=>v)~1-®dW) + qﬁ(ﬁ/)(% - %) (3.6)

where W = V2(5v — «(5)) sgn(§), &t = §+/k@(8), sgn(§) = 1, 0 if § is positive, negative, or zero,
and ¢(-) is the standard normal density function and ®(-) is the corresponding cumulative distribution
function.

3.3. The Gaussian-polynomial approximation

We utilize a general semi parametric approach, the so-called Gaussian-polynomial approximation,
which was proposed in Ha and Provost (2007). Let S be a random variable whose raw moments
E(S™) be denoted by ug(h), h = 0,1,... . We are interested in approximating the probability density
functions of the random variable S. A polynomially adjusted Gaussian approximation of degree d,
denoted by f;(x), is

d
fax) = g0 )" 6 (3.7)
i=0

This approximant is expressed as the product of the Bagai approximation and a polynomial adjust-
ment. The Gaussian approximation obtained on the basis of the first two moments is

Ry
L oo (—M] (3.8)
\ /2ﬂ0’§

202
where the parameters u, and o-§ are determined from the first two moments of the target distribution
as gy = ps(1) and o7 = s (2) — (us (1)),
By matching the first d moments obtained from Equation (3.7) to those of S, we can obtain
the coefficients 6; of the polynomial adjustment. Accordingly, the coefficients 6; are such that the

g(x) =
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following matrix form equation:

) (0  m() e pd=1) ) I
0 | | () @ o mld) pd+ ) || s
. = . : .. . . . ’ (39)
60 ) \ped) pe@+1) - pQd—1)  p2d) s (d)

where p,(h) is the h™ moment of the corresponding Gaussian approximation obtained on the basis of
matching the first two moments. It should be noted that since the Gaussian-polynomial density ap-
proximant has a simple explicit representation, the corresponding distribution approximant, denoted
by F4(w), can easily be obtained by numerical integration. The continuity correction should be con-
sidered to approximate nonparametric discrete distributions via continuous function. Since the Bagai
statistic takes on successive integer values, the Gaussian-polynomial distribution approximant is taken
to be

w+1

Fa(w) = Ja(x)dx. (3.10)

When using this approach, an important step is the determination of optimal degree of the polynomial
adjustment. Several methods have been proposed to determine the optimal degree, see for instance
Ha and Provost (2007) and Provost ef al. (2009). A suitable degree for a density approximation can
be determined by a de visu inspection of the density plots of approximants of successive degrees,
as explained in Ha and Provost (2007). More specifically, one would be satisfied that a density ap-
proximant of degree d is adequate if no noticeable differences between approximants of successive
orders are observed. Provost ef al. (2009) proposed making use of measures of discrepancy such
as the integrated squared differences between density or distribution approximants of successive de-
grees. Entropy minimization could also be considered as an alternative for optimal degree selection.
Since an appropriate optimal degree selection criterion should be chosen according to the purpose of
the use of the approximation methods, a de visu approach would be appropriate. Since our purpose
is numerical comparisons between the saddlepoint and Gaussian-polynomial approximations, we are
aiming via a de visu rule to show that the Gaussian-polynomial approximation can outperform or at
least be comparable to saddlepoint approximation in terms of approximation accuracy in the null dis-
tribution of the Bagai statistic. That is, we stop increasing the degree of polynomial adjustment of the
Gaussian-polynomial approximation when it seems reasonable to posit that it outperforms the saddde-
point approximation. It should be noted that the null odd moments of the symmetric target distribution
do not contribute to increasing in any way the precision of the Gaussian-polynomial approximation.
This can be inferred from the fact that the odd degree coefficients of a polynomial adjustment are zero.
More details in connection with approximating the symmetric distribution are described in Ha (2007).
Therefore, in connection with the use of a de visu rule, the accuracy of saddlepoint approximation
shall be taken to be the tolerance for the Gaussian-polynomial approximation and two degrees shall
be added to the polynomial adjustment when the approximant used is deemed to not provide enough
precision. This rule was implemented in the numerical examples considered in the next section.

4. Numerical Comparisons
4.1. Gaussian-polynomial approximation

In this subsection, we describe in detail the steps needed to construct a Gaussian-polynomial approx-
imation. Consider the Bagai statistic when n = 8. The first six exact moments of the Bagai statistic
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Table 1: Numerical results for the 1% significance level

n S Exact Bagai Saddlepoint GP(4)

7 51 0.0156 0.0183 0.016256 0.016465
8 68 0.0117 0.0126 0.010587 0.010849
9 84 0.0117 0.0113 0.009430 0.009659
10 99 0.0107 0.0117 0.010029 0.010216
11 115 0.0102 0.0118 0.010393 0.010548
12 134 0.0105 0.0186 0.009538 0.009672
13 152 0.0102 0.0109 0.009701 0.009814
14 169 0.0106 0.0116 0.010537 0.010634
15 191 0.0103 0.0107 0.009674 0.009759
16 210 0.0105 0.0111 0.010161 0.010235
17 232 0.0100 0.0181 0.009895 0.009961
18 255 0.0100 0.0105 0.009595 0.009654
19 275 0.0104 0.0110 0.010205 0.010257
20 298 0.0104 0.0109 0.010201 0.010248

when n = 8, that is, us(h), h = 1,2,...,6, which can be numerically obtained by differentiating
its moment generating function, are 0, 924, 0, 2310504, 0 and 8661316704. Note that all the odd
moments are zero since the Bagai statistic is symmetric about the point of zero. The two parameters
Mg and o-f, of normal distribution given in Equation (3.8) are determined from the first two moments
us(1) = 0 and pus(2) = 924, that is, u, = 0 and a’§ = 924. It should be noted that this normal dis-
tribution is in fact the Bagai approximation. Since the Bagai approximation can not be considered to
outperform saddlepoint approximation as can be seen in Table 2, we utilize the polynomially adjusted
Gaussian approximation by increasing the power of polynomial adjustment by two degrees at once. It
is observed that the 4" degree Gaussian-polynomial approximation can be considered to outperform
saddlepoint approximation, as can be seen in Table 2, because out of the 14 cases corresponding to
7 < n < 20, which were presented in Murakami (2009), the 4" degree Gaussian-polynomial approxi-
mation provides more accuracy than the saddlepoint approximation in 12 cases except for n = 7 and
n = 11. (Note that the 4" degree Gaussian-polynomial approximation outperforms the saddlepoint
approximation when n = 9 and n = 15). As determined from Equation (3.8), we could obtain the fol-
lowing fourth-degree Gaussian-polynomial density approximant to the density function of the Bagai
statistic:

4
fix) = g(0) ) (1)
i=0
=0.0131242 exp [—0.000541126x2] (0.963277 +0.0000794865x% — 1.43374 x 10*8x4) )

Dashed line in Figure 2 shows the source of improvement of the fourth-degree Gaussian-polynomial
density approximant.

4.2. Approximating the 1% significance level

Table 1 shows the numerical results for the saddlepoint and fourth degree Gaussian-polynomial ap-
proximations in the case of a 1 % significance level in addition to the exact probability and Bagai
approximation calculated in Bagai et al. (1989). The differences between the exact probability of the
Bagai statistic and the approximations are given in Table 2. In Tables 1 ~ 4, we denote by S and n the
exact critical value of the Bagai statistic and the sample size, respectively. The bolded numbers rep-
resent the minimum difference between the exact and approximate values. We make comparisons for



Numerical Comparisons for the Null Distribution of the Bagai Statistic 273

Table 2: Difference between the exact values and approximations

n Bagai Saddlepoint GP(2) GP4)

7 0.0027 0.000656 0.002673 0.000865
8 0.0009 0.001113 0.000942 0.000851
9 0.0004 0.002270 0.000429 0.002041
10 0.0010 0.000671 0.000958 0.000484
11 0.0016 0.000193 0.001653 0.000348
12 0.0081 0.000962 0.000375 0.000828
13 0.0007 0.000499 0.000723 0.000386
14 0.0010 0.000063 0.001055 0.000034
15 0.0004 0.000626 0.000418 0.000541
16 0.0006 0.000339 0.000632 0.000265
17 0.0081 0.000105 0.008919 0.000039
18 0.0005 0.000405 0.000452 0.000346
19 0.0006 0.000195 0.000611 0.000143
20 0.0005 0.000199 0.000564 0.000152

Table 3: Numerical results for the 5% significance level

n S Exact Bagai Saddlepoint GP(10)

5 22 0.0625 0.0522 0.057870 0.057443
6 31 0.0625 0.0499 0.051279 0.05114
7 41 0.0547 0.0463 0.047075 0.047001
8 50 0.0508 0.0499 0.050831 0.050825
9 62 0.0508 0.0461 0.046546 0.046541
10 73 0.0508 0.0472 0.047642 0.047648
11 83 0.0527 0.0513 0.051902 0.051920
12 98 0.0500 0.0467 0.046961 0.046970
13 108 0.0528 0.0516 0.052143 0.052158
14 123 0.0511 0.0494 0.049753 0.049765
15 137 0.0516 0.0495 0.049831 0.049841
16 150 0.0523 0.0512 0.051650 0.051661
17 166 0.0519 0.0500 0.050448 0.050456
18 181 0.0516 0.0506 0.050878 0.050886
19 197 0.0516 0.0505 0.050748 0.050755
20 214 0.0511 0.0499 0.050178 0.050185

the tail probabilities of the Bagai statistic between the saddlepoint and Gaussian-polynomial approx-
imations. The fourth degree Gaussian-polynomial approximant provides the minimum differences in
9 cases among those four approximants and outperforms saddlepoint approximation in 12 cases out
of 14 cases. It shall be reasonable to conclude that the fourth Gaussian-polynomial approximation is
in most of cases more accurate than the Bagai or the saddlepoint approximations for approximating
to the 1 % significance level of the Bagai statistic. The method of polynomially adjusted Gaussian
approximation provides at least comparable accuracy or outperforms the saddlepoint approximation
for percentiles of interest. It should also be mentioned that for the cases of n = 9 and 15, the Bagai
approximation is better than other approximations.

4.3. Approximating the 5% significance level

Table 3 shows the numerical results for the saddlepoint and the tenth degree Gaussian-polynomial
approximations in the case of a 5 % significance level in addition to the exact probability and Bagai
approximation calculated in Bagai et al. (1989). The differences between the exact probability of the
Bagai statistic and the approximations are given in Table 4. The numerical details of the Gaussian-
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Table 4: Difference between the exact values and approximations

n Bagai Saddlepoint GP(2) GP(4) GP(6) GP(8) GP(10)

5 0.0103 0.004630 0.007261 0.005646 0.006672 0.006119 0.005057
6 0.0126 0.011221 0.012547 0.011726 0.012515 0.012015 0.011360
7 0.0084 0.007625 0.008303 0.007901 0.008511 0.008091 0.007699
8 0.0009 0.000031 0.000803 0.000191 0.000622 0.000268 0.000025
9 0.0047 0.004254 0.004679 0.004388 0.004750 0.004455 0.004259
10 0.0036 0.003158 0.003591 0.003266 0.003552 0.003300 0.003152
11 0.0014 0.000798 0.001411 0.000903 0.001120 0.000903 0.000780
12 0.0033 0.003039 0.003348 0.003105 0.003304 0.003118 0.003030
13 0.0012 0.000657 0.001172 0.000729 0.000882 0.000719 0.000642
14 0.0017 0.001347 0.001720 0.001401 0.001538 0.001395 0.001335
15 0.0021 0.001769 0.002117 0.001815 0.001934 0.001807 0.001759
16 0.0011 0.000650 0.001039 0.000694 0.000794 0.000681 0.000639
17 0.0019 0.001452 0.001775 0.001488 0.001579 0.001478 0.001444
18 0.0010 0.000722 0.001039 0.000754 0.000835 0.000743 0.000714
19 0.0011 0.000852 0.001146 0.000888 0.000952 0.000870 0.000845
20 0.0012 0.000922 0.001184 0.000946 0.001012 0.000937 0.000915

polynomial approximants with the successive degrees used up to the optimal degree are also included
in Table 4. The bolded numbers represent the minimum difference between the exact values and the
approximations. We can see that the tenth degree Gaussian-polynomial approximant provides the
minimum differences in 12 cases out of 16 cases, whereas the saddlepoint approximation is more
accurate in only 4 cases. Tables 3 and 4 clearly indicate that the tenth degree Gaussian-polynomial
approximation is in most of the cases more accurate than the Bagai and saddlepoint approximations
in connection with approximating the 5 % significance level of the Bagai statistic.

4.4. Computational Issues

The Gaussian-polynomial approximation is computationally simple and easy to program since it has
very simple explicit expression unlike saddlepoint approximation. It should be pointed out that
the Gaussian-polynomial approximation uses less information than the saddlepoint method, since
Gaussian-polynomial approximation utilizes the same number of the first moments with the degree of
polynomial adjustment, whereas saddlppoint approximation require the cumulant generating function
from which all the moments can be generated. The selection for the optimal degree of the poly-
nomial adjustment for obtaining a suitable approximation can be determined by making use of a
de visu rule proposed in Ha and Provost (2007) among other critera. The tolerance was taken to be
the precision of the saddlepoint approximation. In connection with the numerical precision for the
Gaussian-polynomial distribution approximants given in Equation (3.10), the integration started from
—1, 300, which should give enough precision in terms of 10~® decimals for all cases of interest. Figure
1 shows Bagai (dashed) and the 10" degree Gaussian-polynomial (solid) approximations when n = 8.
Figure 2 shows that the difference between the Bagai approximation and the Gaussian-polynomial
approximation with the 4” (dashed) and 10" (solid) degrees. The fluctuating behavior suggests that
the proposed approximant evolves to adapt to the feature of the target density function. The symbolic
computational package Mathematica was utilized for obtaining the numerical results.
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Figure 1: Bagai (dashed) and 10" degree Gaussian-polynomial (solid) Approximations when n = 8

Figure 2: Differences Between Bagai and the 4" (dashed) and 10" (solid) degree Gaussian-Polynomial Approx-
imations whenn = 8
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