Journal of the Korean Statistical Society (1999), 28: 2, pp 235-251

The Cluster Damage in a kth-Order Stationary
Markov Chaint

Seokhoon Yun!

ABSTRACT

In this paper we examine extremal behavior of a kth-order stationary
Markov chain {X,} by considering excesses over a high level which typi-
cally appear in clusters. Excesses over a high level within a cluster define
a cluster damage, i.e., a normalized sum of all excesses within a cluster,
and all excesses define a damage point process. Under some distributional
assumptions for {X,}, we prove convergence in distribution of the cluster
damage and obtain a representation for the limiting cluster damage distri-
bution which is well suited for simulation. We also derive formulas for the
mean and the variance of the limiting cluster damage distribution. These
results guarantee a compound Poisson limit for the damage point process,
provided that it is strongly mixing.

Keywords: Extreme values; Excesses; Cluster damage distributions; Damage
point processes; kth-order stationary Markov chains.

1. INTRODUCTION

It is often the case that we are concerned about exceedance data above a
certain level when we handle environmental time series (cf. Smith (1989) and
Yun (1996)). For example, to assess the degree of air pollution in a certain area
using collected ground-level ozone one of our major concerns is to model how
often and how large the ozone concentrations above a high level occur. This kind
of problem is deeply related to extreme value analysis of stationary time series.

Extreme value theory for stationary sequences has been well established dur-
ing last few decades (see, e.g., Leadbetter (1974), Leadbetter, Lindgren and
Rootzén (1983), O’'Brien (1987) and Hsing, Hiisler and Leadbetter (1988)). Ex-
ceedances above a high level in a weakly dependent stationary sequence typically
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appear in approximately independent clusters due to its local dependence, and
the average cluster size, i.e., the average number of exceedances within a clus-
ter, can be approximated by the reciprocal of the so-called extremal index (cf.
O’Brien (1987), Leadbetter and Rootzén (1988) and Hsing (1993)).

Another important measure in applications is the aggregate excess over a
high level, i.e,. the cumulative total of all excesses over a high level (cf. Anderson
and Dancy (1992) and Leadbetter (1995)). In the hydrological context, this is
a measure of the volume of overflow. Excesses over a high level in a weakly
dependent stationary sequence also typically form approximately independent
clusters like exceedances.

To give a reasonable basis for modeling the exceedances as well as the excesses
of weakly dependent stationary data, it is therefore important to calculate both
the (limiting) cluster size distribution (or the extremal index) and the (limiting)
cluster aggregate excess distribution when the dependence structure of the sta-
tionary sequence is given. Generally, the calculating procedure is intractable to
go through with.

However, it turns out that the calculating task works well in stationary
Markov chains. Extreme value theory for stationary Markov chains has been
actively studied since O’Brien (1987) and Rootzén (1988). In particular, Smith
(1992) and Perfekt (1994) obtained representations for the extremal index of a
stationary Markov chain which are well suited for Monte Carlo simulation. This
was extended to higher-order stationary Markov chains by Perfekt (1997) and
Yun (1998). Let {X,}22, be a real-valued, kth-order (k > 1) stationary Markov
chain. Using limiting distributions of some rescaled stationary transition kernels
for {X,}, Yun (1998) introduced a new (k — 1)th-order Markov chain {Y,}52
and defined a kth-order Markov chain {Z,}52, by Z, = Y1 +---+Y,. The chain
{Z,} was then effectively used to derive a representation for the extremal index
of {X,}.

In this paper we prove convergence in distribution of a cluster damage, i.e., a
normalized cluster aggregate excess over a high level, in the kth-order stationary
Markov chain {X,} and obtain a representation for the limiting cluster damage
distribution using the chain {Z,}. This enables us to calculate the (limiting)
cluster aggregate excess distribution by simulation. From the representation, we
also derive formulas for the mean and the variance of the limiting cluster damage
distribution. This result together with the existing extreme value theory for
stationary sequences guarantees a compound Poisson limit for the damage point
process in {X,}, provided that it is strongly mixing (see Section 2 for details).
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In Section 2 we discuss the compound Poisson limits for the damage point
process and the exceedance point process under a general stationary sequence. In
Section 3 we present the basic distributional assumptions for the Markov chain
{Xr} and prove the weak convergence of the cluster damage distribution in the
chain {X,}. By % we denote weak convergence. Also we write z* := max{z, 0}
and £z~ := —min{z, 0}.

2. DAMAGE POINT PROCESS AND EXCEEDANCE
MODELING IN A GENERAL STATIONARY SEQUENCE

Let { X, }22, be a strictly stationary sequence of random variables with marg-
inal distribution function F. Let {un}2%; be a sequence of constants (“levels”
or “thresholds”) such that n(l — F(un)) —+ A as n — oo for some A > 0. In
particular, if F' is continuous, such a sequence {u,} always exists (c¢f. Theorem
1.7.13 of Leadbetter, Lindgren and Rootzén (1983)). If an event {X; > un}
(“exceedance”) occurs, X; — uy, is referred to as an “excess”. We consider a point
process N, on (0,1] defined by

Np(B) :="_ 6;/n(B)an(X; — un)™, B: Borel set in (0,1], (2.1)
=1

for suitably chosen constants a, > 0, where J;/,(-) denotes the Dirac measure
with mass 1 at 4/n. The N,, may be regarded as the exceedance marked point pro-
cess with “points” at the normalized exceedances {i/n : X; > u,} and “marks”
given by the “damages” a,(X; —uy), i.e., normalized excesses. Therefore N, (0, 1]
is the total accumulated damage from X, ..., X,.

In this section it is assumed that {N,}52 ; is strongly mixing in the following
sense (cf. Leadbetter (1995)). For 0 < s < ¢ < 1, define B{") to be the o-field
generated by the random variables Ny(a,b], s <a < b <t Also, for 0 <! < 1,
write

oy = sup{|P(AN B) — P(A)P(B)| : A€ By, B e B,,0 < s <1-1}.

Then {N,} is called strongly mixing if o, ;, —+ 0 as n — oo for some sequence I,
with I, — 0. In particular, if X1, X,, ... are independent, we get oy, = ln = 0.
The strong mixing for {N,} is much weaker than the usual strong mixing for the
original sequence {X,}. It is also noted that the strong mixing for {N,} implies
the A(uy) condition for {X,} in Hsing, Hiisler and Leadbetter (1988).
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Let {kn}22, be a sequence of positive integers (“standard sequence”) such
that

kn = o(n), kn —+ 0o and ky (o, + 1) = 0 as n — oo.

The less the long range dependence, the faster the possible rate for k,. Finally,
put r, = [n/k,), the integer part of n/ky,, and divide the integer set {1,2, ..., kp7y}
(knrn ~ m) into k, consecutive groups (“blocks”) {(i ~ V), + 1,(3 — 1)r, +
2,.u,irp}, i = 1,.., kn, of length r,,. Then the exceedances (if any) in such a
block are said to form a “cluster”. In other words, any two exceedances belonging
to the same block are considered to stem from the same cluster. Further if we
write J; := ((i — 1)rp/n,irn/n], i = 1, ..., kn, then {J1,..., Ji,, (knrp/n, 1]} forms
a partition of (0,1]. The “cluster damage distribution” my, is now defined by the
distribution function

mn(z) = P{Np(J1) € z|Nn(J1) > 0}

Tn
= P{)_an(Xi~up)" < 2|My,, > un}, v >0,
i=1
where M, ; := max{X;,..., X;}, 1 <i < 4.
The following result is a variant of Theorem 4.2 of Leadbetter (1995).

Theorem 2.1. Let {X,}52, be a strictly stationary sequence of random vari-

ables with marginal distribution function F and {u,}22, a sequence of levels such
that n(l — F(uy,)) = A as n — oo for some A > 0. Suppose that

(1) {N,} is strongly mizing,
(it) P{Mp, < un|X1 > un} = 6 as n = oo for some 6 € (0,1],

(iii) the cluster damage distribution w, converges weakly to some probability dis-
tribution m on (0,00) as n — .

Then the damage point process Ny, converges in distribution as n — o0 to a com-
pound Poisson process CP(O), 7) with intensity O\ and multiplicity distribution
.

Proof: We sketch the proof. Since {k,} is a standard sequence for N,, the
sequence {r,} must satisfy

Tn —= 00, T = o(n) and n(on 1, +1n) = o(ry) as n — co.



The Cluster Damage in a Stationary Markov Chain 239
Also, since n(1 — F(un)) — X if and only if F*(u,) — ¢, applying Theorem
2.1 of O'Brien (1987) yields that
P{Mypn <up}— (F(un))"P{lern5“”]){1}“”} —0asn — oo.
Thus it follows from condition (ii) that
P{Min <up}— e as n — oo,

Now the assertion of the theorem can be proved by the methods similar to The-
orem 4.2 of Hsing, Hiisler and Leadbetter (1988). O

Remark 2.1. 1. The parameter §, which has important uses in extreme value
theory, is called the “extremal index” of the sequence {X,}, i.e.,

P{Mip <unp} = F™(uy,) as n — oo.

The reciprocal of @ typically agrees with the asymptotic mean cluster size, i.e.,

o1 = Jim S P(S TG > ) =51, > wn)
J: =

2. The theorem indicates that the damages over a high level can be well modeled
by (limiting) clusters with independent damage distributions =, located at the
points of a Poisson process with mean @)\ per (normalized) unit time.

In the theorem if we replace N,, by the “exceedance point process”

n
Nu(B) =3 8;/a(B)I{X; > up}, B: Borel set in (0,1},
i=1

and 7, by the “cluster size distribution”
m™(j) = P{Na(J1) = j|Nn(J1) > 0}
Tn
= P{Z I{XZ > ’U,n} =j|M1aTn > Un}, -7 = 1727 R
i=1

then we obtain the result that the exceedance point process N, converges in dis-
tribution as n — oo to a compound Poisson process CP(fA, ) with intensity 8A
and multiplicity distribution 7, provided that , converges weakly to a probabil-
ity distribution 7 on {1,2,...}. This is a variant of Theorem 4.2 of Hsing, Hiisler
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and Leadbetter (1988). Thus the exceedances above a high level can be modeled
by (limiting) clusters with independent size distributions =, located at the points
of a Poisson process with mean ) per (normalized) unit time. This result to-
gether with Theorem 2.1 provides statisticians with a full basis for modeling both
the exceedances and the excesses over a high level of weakly dependent stationary
data.

3. CLUSTER DAMAGE DISTRIBUTION IN A MARKOV
CHAIN

To apply the compound Poisson limit for the damage point process N, in
practice, we have to prove the underlying conditions of Theorem 2.1 and need to
compute the limiting cluster damage distribution 7 as well as the extremal index
f. Though this procedure is potentially very complicated in general, we may have
nice and simple representations for m and 6 which are well suited for simulation if
the original stationary sequence {X,} is allowed to have a Markovian structure.

Let {X,}52; be a real-valued, kth-order (k > 1) stationary Markov chain.
Then the distribution of the whole chain is determined by the joint distribution of
any k + 1 consecutive variables, which is assumed absolutely continuous through-
out. Let F and f denote the distribution function and the probability density
function of Xy, respectively, and for each j = 1,..., k, let f;41(-|z1,...,z;) denote
the conditional probability density function of Xy, ;11 given that (Xp41,...; Xntj)
= (z1,..., T;).

Assume that the well-known von Mises condition holds for F' (cf. Resnick
(1987)), i.e., there exists a constant £ € R such that

i 87 5

where zp := sup{z : F(z) < 1}, the right endpoint of F, and the function g
satisfy

zp = oo and g(u) = fu, if £€>0,
g is some strictly positive function, if £ =0,
zr < oo and g(u) = —&(zp —u), i £<0.

This is a sufficient condition for F' to belong to the domain of attraction of the
extreme value distribution Q¢(z) = exp(—(1 + éz)~V¢), 1+ éx > 0, and is
satisfied by a very large class of absolutely continuous distribution functions F.
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Throughout the case { = 0 is interpreted as the limit £ — 0 so that Qy(z) =
exp(—e™*), z € R. When ¢ = 0, one appropriate choice of the function g is
g(u) = [7F(1—F(t))dt/(1— F(u)). Under condition (3.1), it holds that (cf. Yun
(1997))

Jigg 900 (u + g(u)z)
utzp 1- F(’LL)

locally uniformly in z with 1 + £z > 0.
For the conditional probability density functions, we assume that, for each
j=1,..k,

= (14 gz)~H61

g(u)fi+1(u + g(u)zjpi|u + gu)z1, ..y v + g(u)z;)

1 ) l 1+€$]‘+1)'l (1+§332) }_ ( 1+§$J‘ ))
~ 1+5a=j+1'”(51°g( 1+éz; ) B Inen ) 815 e ))

1+&x1>0,..,1+&xj41 >0, asutzop, (3.2)

for some function h; : R — [0,00) with o bty enyj1) dt < 1, g,
y;j—1 € R, which is typically the case if the joint distribution function of (Xn+1,
-+ +Xntk+1) belongs to the domain of attraction of a (k + 1)-dimensional extreme
value distribution with equal univariate marginals (¢ (cf. Yun (1998)). For each
J=1,...,k and for y1,...,y;—1 € R, define

[ 4]
H;(y;915 0y yj—1) =1 —/ hi(t;y1, s yj-1) dt, y € {—c0} UR,
ki

which may then be considered as a distribution function (of y) on {—c0} UR
with possibly positive mass 1 — ffom h;(t; 41, .-, yj-1) dt at y = —oo. The limiting
distributions Hj, j = 1, ..., k, are used to define a {—oo}UR-valued, (k—1)th-order
Markov chain {Y,,}32; as follows:

1. Yy ~ Hy(-).

2. For ] = 2,...,k, 1/_1'[(Y13---3Yj—1) ~ Hj(';Yl,...,.Yj_l) if Yl,...,Yj_]_ > =00
put Y; = —oo, otherwise.

3. For j > k+ 1, Yj|(Yj—k+1, - Yj—1) ~ He(;Yjmga1s oo Yio1) i Yigg1; ey
Yj_1 > —o0; put Y; = —o0, otherwise.

Finally, define

Zn=) Y, n=12,.., (Z=0) (3.3)

i=1
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so that {Z,}22, is a {—oo} U R-valued, kth-order Markov chain. The state
—o0o0 is an absorbing state of the chain {Z,} if at least one of H;(y;41,...,Yyj-1),
Jj = 1,..,k, has a positive mass at y = —oo. When &k = 1, the chain {Z,} is
nothing but a random walk in which Y3, Y5, ... are independent with distribution
function H,;. Further if at least one of H;(y;y1,...,4j~1), § = 1,..,k, has a
positive mass at y = —o0, we assume in addition that

(Al) for each j = 1,...,k and for every fixed z1,...,z; with 1 + §z; > 0, there
exists a constant u;f(a:l, ... %) < zp such that the class

{9(u) fita1(u + g(w)zjtilu + g(u)z1, ..., u + g(u)zj) tuj (1, -y 25) Su < T}

of functions of ;4 is locally uniformly integrable over {z 41 : 1+ £xj41 >

0},
(A2) when k=1,

lim Im sup{P{Xs > ulX1 =z} : 2 <u—g(u)(l - L%)/¢} = 0;

L—oo utzp

when k > 2, for each j =2,..., k,
lim m sup {P{XJ‘_H = ’U.l(Xl, ...,Xj) = (:L‘l, ...,:Ej)} .

Loooutep
3 ;o — —_ E = (.
1122_12]. i <u—gu)(1l-L )/f} 0

Examples of Markov chains satisfying these conditions can be found in Smith
(1992) and Yun (1998).

The kth-order Markov chain {Z,} defined by (3.3) will be termed the “tail
chain” associated with the original chain {X,}. The terminology was used in
Perfekt (1994, 1997), but the construction scheme is slightly different from ours
(see Remark 3.2 of Yun (1998)). The tail chain in (3.3) has a simple structure
so that it is usually easy to generate the chain by simulation. This tail chain
was used in Yun (1998) to develop a method of computing the extremal index
of {X,}. Using the tail chain, we here provide a representation for the limiting
cluster damage distribution 7 by proving the weak convergence of the cluster
damage distribution 7, in Section 2.

We need the following general result to prove Theorem 3.1.

Lemma 3.1. Let {X,}5, be a strictly stationary sequence of random variables,
which is not necessarily Markovien, with marginal distribution function F. Let
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{un} be a sequence of levels such that u, T TF as n ~ 0o and {rn} a sequence of
positive integers such that

Tn — 00 and P{M,, 19, > tn|M1,, > up} = 0 as n = oco. (3.4)

Then, for any constants a, > 0 and for z > 0,
Tn
P{Z an(Xi — un)T < 2|Mis, > un}

_P{Z avn, i— 'un + < "EIXTn > 'U’TZ!MTn—J—l,ZTn S ’U,n} — O as n — oo.

Remark 3.1. If the damage point process N, in (2.1) is strongly mixing, then
the sequence {ry} with r, = [n/ky] ({ks}: standard sequence) satisfies (3.4) (e.g.,
see Lemma 2.3 of Hsing, Hiisler and Leadbetter (1988)).

Proof of Lemma 3.1: First, observe that

'P{Ml rn > Un} - "'nP{Xrn > Up, My, 41 O S Un}l

= IZ(P{X > tny Mit1y < un} — P{X; > ttn, Mgy, 14 < un}
i=1

< ZP{XZ > Un, Mit1,r, < unaMrn+1,2rn > Un}
i=1
= P{Miy, > tn, My, 190, > Un}. (3.5)

Also, writing Qn(i,5) = Y_. an(Xs — un)*, 1 < i < 4, we get

IP{QTL(]-'l'r‘n) S z, Ml,‘rn > un}
_TTLP{QH(I 'rn) <z Xrn > 'U'n:Mrn—I—l I = ’Uln},

= | Z P{Qn("'n +1 2""11) <z, Xr 4> Uny My, 4i41 2r, < un}
=1
_P{Qn i+ Lry, + 7') < :L',X,-n_H > UnsMrn+i+1,2rn+i < Un})'

Tn

< ' Z(P{Qn(rn + 17Tn + Z) < "EvMi-i-l,Tn > Up,
=1
Krpti > Uny My i1 20, < ug}
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_P{Qn(i + 1,7+ 7’) < maMi+1,rn > Un,
Xrn,-l-i > Unp, Mrn+i+1,2rn < Un})l

Tn
+| Z(P{Qn(z + 1’ rn + 7') S T, Xrn+i > Un, Mrn—l—i+1,2rn S Un}
i=1
_P{Qn(i + 1L, + 7') <z, Xr,4i > Un, Mrn+i+1,2rn—|—i < Un})|

Tn
< ZP{MI,Tn > Uny Xy ti > Uny M, yit1,20, < Un}
=1
™n

+ZP{Xrn+i > UnaMrn+i+1,2rn < Un7M2rn+1,3rn > Un}

i=1

= 2P{M1,rn > Up, Mrn+1,2rn > Un} (3.6)
Using (3.5) and (3.6), we therefore have

|P{Qn(1,70) < 2| M1y, > tun} — P{Qn(l,mn) < 2[Xr, > tp, Mr 41,2, < Un}
< (P{My;y, > un}) T 1P{Qn(l, ) < 2, My, > us}
—rnP{Qn(1,mn) < 2, Xy, > tn, My 41,20, < Un}|
+(P{My 7, > un}) " HraP{Xr, > tn, My 412r, < un} — P{M1;, > up}|
< 3P{M;,+12r, > Un|Miy, > un} — 0 asn— oo,

which completes the proof. O

In the following theorem we show that conditions (ii) and (iii) of Theorem 2.1
hold for a large class of kth-order stationary Markov chains {X,} having tail
chains. Particularly the representation for 7 enables us to compute the limiting

cluster damage distribution easily by simulating the corresponding tail chain.
Define ¢(z) := £1(ef* — 1).

Theorem 3.1. Let {X,}52, be a kth-order stationary Markov chain satisfying
(8.1) and (3.2). Let {Z,} be the tail chain associated with {X,} and T an
Ezp(1)-distributed random variable which is independent of {Z,}. Assume that
(A1) and (A2) hold if necessary. Define 7 = max{n > 0: Z, > —T}. Let {un}
be a sequence of levels such that u, T zF as n — oo and {r,} a sequence of
positive integers satisfying (3.4). Suppose that

Tn
Tll*ngo nli)n;o;P{Xi > up|X1 > up} = 0. (3.7)
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Then,
P{Ms,, <un|X1>up} = 8:=P{r =0} as n — co.
Further if 0 > 0, then it holds that for z > 0

() = P{Z an(X; —un)t < z|Mis, > un}

—7(z) i=1-0"1P{z - §(T) < Z ¢7(Z; +T) <z} as n — oo,
j=1
where an, = 1/g(un) and ¢+ (z) = max{d(z),0}.

Remark 3.2. 1. In fact, under condition (3.7) it can similarly be shown that

lim P{Mi1,, > up|X1 > up} = P{supZ; > -T} =P{r >r}
n=roQ .727'

forr=1,2,..., and so
P{r =00} = Jim P{rzr}= rli)rglonli*ngo P{Mry1,, > ug|X1 > up} =0

(by (3.7) again) which implies P{0 < 7 < o} =1 and hence

-

P ¢7(Z;+T) < o0} =1.

j=1

Therefore m defines a distribution function on (0, co).
2. The random variable ;;1 ¢+ (Z;+T) has a probability § at 0 and is absolutely
continuous on (0, 00). Note that ¢*(z) = ¢(z)I{z > 0}.
3. If we let W be a random variable having distribution function =, the “cluster
aggregate excess” can therefore be approximated as

Tn
Z(Xi —un) T\ My, > un 2 g(u,)W for large n.
=1
Proof of Theorem 3.1: The first assertion on the convergence to 0 was given

in Theorem 3.1 and Corollary 3.3 of Yun (1998). For the second assertion, it is
enough by Lemma 3.1 to show that for z > 0

P{Z an(X; — un) + < 2| Xr, > ug, M 112, < Un }

— 7r(a:) as n — 00, (3.8)
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where

Tn
A, = P{Z an(Xi - un)+ < xern > unaMrn+1,2rn < un}
i=1

Write Qn(4,5) = Y0 _.an(Xs —up)t, 1 < i < j, as before. Then, since {X,_ >

§=1
up} = {Miy, > Un,Xr, > Un}, we can rewrite A, as

Tn—T 'n Tn
A, = Y BMG+ > BPE - > BE3)
=1 i=rp—r+1 1=rp—7+1

= BY+ B - B, say
for any 1 < r < r,, where

B1(1,1) (7‘) = P{Qn(l,rn) < -'BaMl,i—l < Un, X; > Un, Xr, > Un, My 11,20, < un};
B‘l{LZ) (Z) = P{Q’n(zarn) S :L'aX’i > UnaXrn > unaMTn+1,2’rn S Un}s
BT(1.3) (z) = P{Qn(’l, ‘T'n) S x, M]_,i_l > Un, Xi > Un,.Xrn > Un,, Mrn+1,21"n S un}_

Here, by (3.7) we have
_ TnT
lim fm B/P{X1>wu} < lim Tm > P{Xp_iy1 > un|X1 > up}

0 n—oo r=n—o0 51

Tn
= lim Im Y P{X;>unX1 > us} =0.(3.9)

T30 n—yoo |

j=r+1
For the second term B,(fl of A,, consider
B /P{X1 > un}
= i P{Q.(1,r, —i+1) <z,
i=rn—r+1

Xpp—itl > Uny My, —it2.2rn—it1 < un|X1 > un}
-
= ZP{QTL(IJ]) < iB,Xj > UmMj+1,rn+j < 'U'n|X1 > un}
j=1
Now, using (3.7) again and applying similar methods as in Lemma 2.2 and The-
orem 3.1 of Yun (1998), it can be shown that for any j =1,...,7,
P{(an(Xl — Un), ---:an(Xj —up)) € - ,Xj > Unij+1,rn+j < up|Xy > un}
= P{#(T), p(Z1 +T), ., $(Zj—1 +T)) € -,7=j — 1} as n — oo.
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Since the function (z1,...,2;) — Zz 1 z is continuous, it thus follows that

Jim BE/PX1 > un} = ZIP{R(o,j ~h<mr=j-1}
J=
— P{R(0,7) <z} as r — oo, (3.10)

where R(i,7) = 3.7, ¢7(Zs; +T), 0 < i < j (recall Zg = 0). For the third term
BT(E; of A, observe that
BO/PX: > )

Tn i—1

— Z ZP{Q,,(Z, Tn —j + 1) <z, Mg,i_j < un,Xi_j+1 > Un,
i=rp-~7+1 j=1

Xr—j+1 > tn, Mr,—j2,0r,—j+1 < Un| X1 > Un}

r  lts
=Y Y ¢ lm)+z Z Cr(l,m)
=1 m=l+1 I=1 m=l+s+1

= O+ CP), say,
forany 1 < s <rp—r,whereweputl=r, —i+1l,m=r,—7+1and
Cn(l,m) = P{Qn(2,m) £ 2, Mom—i < tn, X141 > Un,
Xm > Uny Mgt 4m € Un] X1 > un}

Here, using (3.7) it can be again seen that forany [ = 1,...,rand m = {+1, ..., l+s,
P{(an(-X2 - Un)a '"aan(Xm - un)) € ':M2,m-~l < Up,
Xm—l41 > Un, Xmn > Un, Mm+1,rn+m < Unlxl > Un}
= P{(#(Z1+T)s o0y 9 Zmr +T)) €
Ml,m_l_l < -T,Zm > —T,T =m-—1} as n — o0,

where M; j := max{Z;, ..., Zj}, 1 <i < j. Thus it follows that
lim C{})

n—roo W%
T I+s
=Y 3 P{RO,m—1) <z, Mymi1 < =T, Zpy > -T,7=m— 1}
I=1 m=I+1
r+s m—1
=Y N P{ROU,m—-1)<a,Mypm 1< T, Zm > -T,7=m—1}
m=2 =1
T+5
= Z P{R(l,m—-1)<z,7T=m~—1}
m=2

= P{R(l,7) <z,7> 1} as s - oo and r —= c0.
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Also, by (3.7) we have

T Tn
(2) < . _— - 0.
rl-l—)»rgo .51—1+nt;10 nli)rgo Cn T8 = li)ngo — (311}11010 nli)rfblo m:sz-i-l+l P{Xm ” Un|X1 ” Un}) 0
These two results imply that
lim lim B,(I?’,)./P{Xl > up} = P{R(1,7) < z,7 > 1}. (3.11)

T—00 N—00

From (3.9), (3.10) and (3.11), we therefore have

nllngo Ap/P{X; > up} = P{R(0,7) <z}-P{R(l,7)<z,12>21}
= P{r=0}-P{R(1,7) £z,R(0,7) > z}

il

0 Plz-o(T) <3 ¢*(2+T) <o},

7=1
which proves (3.8). O

The representation for the limiting cluster damage distribution 7 in Theo-
rem 3.1 makes it easy to derive its mean and variance. These quantities can
then be used effectively in modeling the clusters above a high level of weakly
dependent, kth-order stationary Markovian data.

Corollary 8.1. Under the same conditions as in Theorem 8.1, let V. = 377,
¢T(Z; +T) and W a random variable having distribution function =. If E(V) <
oo, then

%, otherwise.

1
qu={0u@’”§<L

ﬁEwﬁ<men

€Zf - (1-8Zz7))

0
*2 2
i=1

[

—1—53(33113((5 -1)z;))
___I—_E(exp(EZ+ Z ) +E(9Xp(zj))}

1~-¢
5 € <1/2,

2
L o0, otherwise.

Var(W) =

1
01— 6)(1-26) 62(1-¢)
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Proof: Since W and V are nonnegative random variables, if E(V) < oo, then

W) = /OOO P{W > z}dz = 9_1/000(P{V+ ¢(T) >z} — P{V > z})dx
= 0"YE(V + ¢(T)) — E(V)) = (6¢) " (E(exp(€T)) — 1)

1 .
_{ 0—(1'-:?), lf§<1,

00, otherwise.

Also, if E(V?) < o0, then
o0
.mw%:z/ rP{W > z}dz
0

=201 /oo z(P{V + ¢(T) > 2z} — P{V > z})dzx
=07 BV + ¢(T))* — B(V?)) = 071 QE(V$(T)) + E($(T))?)
= 20717y " E((exp(£(Z; + 2T)) — exp(£T)

j=1
—exp(é(Z; +T)) + 1)I{Z; > -T})

+071"(B(exp(2€T)) ~ 2B(exp(€T)) +1)
9522{1 Blexp(¢Z] - (1~ 7))

——L Eexp((€ - 1)Z})

1-¢
—T B - 7)) + E(exp(2) }
2
+ L if € <1/2,
o-aa 2 <Y
[ 00, otherwise,
since {Z,} and T ~ Exp(1) are independent. This completes the proof. O

For examples of Markov chains which satisfy the conditions of Theorem 3.1,
the reader is referred to Smith (1992) and Yun (1998).

REFERENCES

Anderson, C. W. and Dancy, G. P. (1992). “The severity of extreme events,”
Research Report 409/92, Dept. Probab. Statist., Univ. Sheffield.



250 Seokhoon Yun

Hsing, T. (1993). “Extremal index estimation for a weakly dependent stationary
sequence,” vvvvvy Ann. Statist., 21, 2043-2071.

Hsing, T., Husler, J. and Leadbetter, M. R. (1988). “On the exceedance point
process for a stationary sequence,” Probab. Theory Related Fields, 78, 97-
112.

Leadbetter, M. R. (1974). “On extreme values in stationary sequences,” Z.
Wahrsch. verw. Gebiete, 28, 289-303.

Leadbetter, M. R. (1995). “On high level exceedance modeling and tail infer-
ence,” J. Statist. Plann. Inference, 45, 247-260.

Leadbetter, M. R. and Rootzén, H. (1988). “Extremal theory for stochastic
processes,” Ann. Probab., 16, 431-478.

Leadbetter, M. R., Lindgren, G. and Rootzén, H. (1983). Eztremes and Related
Properties of Random Sequences and Processes, Springer, New York.

O’'Brien, G. L. (1987). “Extreme values for stationary and Markov sequences,”
Ann. Probaeb., 15, 281-291.

Perfekt, R. (1994). “Extremal behaviour of stationary Markov chains with ap-~
plications,” Ann. Appl. Probab., 4, 529-548.

Perfekt, R. (1997). “Extreme value theory for a class of Markov chains with
values in R¢,” Adv. in Appl. Probab., 29, 138-164.

Resnick, S. 1. (1987). Eztreme Values, Point Processes and Regular Variation,
Springer, New York.

Rootzén, H. (1988). “Maxima and exceedances of stationary Markov chains,”
Adv. in Appl. Probab., 20, 371-390.

Smith, R. L. (1989). “Extreme value analysis of environmental time series: an
application to trend detection in ground-level ozone,” Statist. Science, 4,
367-393.

Smith, R. L. (1992). “The extremal index for a Markov chain,” J. Appl. Probab.,
29, 37-45.

Yun, S. (1996). “Modeling extreme values of ground-level ozone based on thresh-
old methods for Markov chains,” Korean Comm. Statist., 3, 249-273.



The Cluster Damage in a Stationary Markov Chain 251

Yun, S. (1997). “On domains of attraction of multivariate extreme value distri-
butions under absolute continuity,” J. Multivariate Anal., 63, 277-295.

Yun, 5. (1998). “The extremal index of a higher-order stationary Markov chain,”
Ann. Appl. Probab., 8, 408-437.



