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Abstract
Characteristic functions play an important role in probability and statistics; however, a rigorous derivation of

these functions requires contour integration, which is unfamiliar to most statistics students. Without resorting to
contour integration, Datta and Ghosh (2007) derived the characteristic functions of normal, Cauchy, and double
exponential distributions. Here, we derive the characteristic functions of t, truncated normal, skew-normal, and
skew-t distributions. The characteristic functions of normal, cauchy distributions are obtained as a byproduct.
The derivations are straightforward and can be presented in statistics masters theory classes.
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1. Introduction

Characteristic functions play an important role in probability and statistics. However, a rigorous
derivation of these functions requires contour integration, which is unfamiliar to most statistics stu-
dents. Thus, students are typically advised to compute the moment generating function when it is
finite and then substitute it for t in the moment generating function to obtain the characteristic func-
tion(cf), where i =

√
−1. This technique obviously works in many important cases, but it does not

work when the moment generating function is not finite, for example, in the case of the t distribu-
tion with finite degrees of freedom. As a result, Datta and Ghosh (2007) derived the cfs of some
well-known distributions(the normal, Cauchy, and double exponential distributions), without resort to
contour integration. Our objective is to extend their results and develop the cfs of the t, truncated nor-
mal, skew-normal, and skew-t distributions, also without using contour integration. Kim and Genton
(2011) derived these cfs using rigorous complex integration techniques, however contour integration
is not familiar to most statistics students.

This paper is organized as follows. In Section 2, we derive the cfs of the t, truncated normal, skew-
normal, and skew-t distributions. Multivariate extensions of these results are discussed in Section 3.
Finally, Section 4 provides the conclusions.

2. Univariate Results

We first define the integral representation of the modified Bessel function of the third kind (p.182 of
Watson, 1966), as follows.
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Definition 1. The integral representation of the modified Bessel function of the third kind is defined
by

Kλ(w) =
1
2

∫ ∞

0
xλ−1 exp

{
−1

2
w

(
x +

1
x

)}
dx, w > 0 for λ ∈ R.

We transform the above definition to obtain Lemma 1, which is crucial to develop the cf of the t
distribution in a simpler way.

Lemma 1.

2Kλ

(√
νξ

)
(ξ/ν)

λ
2

=

∫ ∞

0
yλ−1 exp

{
−1

2

(
ξy +

ν

y

)}
dy

Proof: From the definition of the modified Bessel function of the third kind,

Kλ

( √
νξ

)
=

1
2

∫ ∞

0
xλ−1 exp

{
−1

2

√
νξ

(
x +

1
x

)}
dx.

Let y =
√
ν/ξx, then

Kλ

( √
νξ

)
=

1
2

(
ξ

ν

) λ
2
∫ ∞

0
yλ−1 exp

{
−1

2

(
ξy +

ν

y

)}
dy.

Rearranging the terms, we have the result. �

Remark 1. If we let f (x) = (ξ/ν)λ/2
[
2Kλ(

√
νξ)

]−1
xλ−1 exp {−(ξx + ν/x)/2} , x ∈ R+, then f (x) is

the probability density function(pdf) of the generalized inverse Gaussian distribution with parameters
(λ, ν, ξ) (Barndorff-Nielsen et al., 1982). Lemma 1 shows that f (x) is indeed a pdf.

2.1. ttt distribution

The standard t distribution can be expressed as scale mixtures of normal distribution as follows.

X = W−
1
2 Z, (2.1)

where Z ∼ N(0, 1) independent of W. Here W ∼ Γ(ν/2, ν/2) and its pdf is given by

fW (w) =
(ν/2)

ν
2

Γ(ν/2)
w

ν
2−1 exp

(
−νw

2

)
, w > 0.

To clarify this, the pdf of (2.1) can be obtained as follows. Let ϕ( · ) and fW ( · ) denote the pdfs of
N(0, 1) and Γ(ν/2, ν/2), respectively, then

fX(x) =
∫ ∞

0
fX|w(x) fW (w)dw =

∫ ∞

0

√
wϕ

(√
wx

)
fW (w)dw

=
(ν/2)

ν
2

Γ(ν/2)
√

2π

∫ ∞

0
w

ν+1
2 −1e−

(x2+ν)w
2 dw

=
Γ((ν + 1)/2)
Γ(ν/2)

√
νπ

(
1 +

x2

ν

)− ν+1
2

,
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where x ∈ R and ν > 0. Now we can obtain the cf of the standard t distribution.

Theorem 1. Let X ∼ t(ν), then the cf of X is

ψX(t) =
K ν

2

(√
ν|t|

) (√
ν|t|

) ν
2

Γ(ν/2)2
ν
2−1

, t ∈ R and ν > 0.

Proof:

ψX(t) = E
[
eitX

]
= E

[
E

(
eitX |W

)]
= E

[
exp

(
− t2

2W

)]
=

∫ ∞

0

exp(−t2/(2w))
Γ(ν/2)(2/ν)

ν
2

w
ν
2−1 exp

(
−νw

2

)
dw

=
ν
ν
2

Γ(ν/2)2
ν
2

∫ ∞

0
w

ν
2−1 exp

[
−1

2

(
νw +

t2

w

)]
dw

=
ν
ν
2

Γ(ν/2)2
ν
2

2K ν
2

(√
ν|t|

)
(ν/t2)

ν
4

by Lemma 1.

Thus we have the result. �

2.2. Skew-normal and truncated normal distributions

A random variable Z has a skew-normal distribution developed by Azzalini (1985) if its pdf is

fZ(z) = 2ϕ(z)Φ(αz), z ∈ R, (2.2)

where ϕ( · ) and Φ( · ) denote the pdf and cumulative distribution function(cdf) of the standard normal
N(0, 1) distribution, respectively. The parameter α ∈ R controls the skewness (shape) of the distribu-
tion. When Z has the pdf (2.2), we write Z ∼ S N(α). If α = 0, then (2.2) reduces to the N(0, 1) pdf.
Using a differential equations approach, Pewsey (2000) obtained the cf of S N(α) as follows.

ψZ(t) = e−
t2
2 [1 + iτ(δt)] , t ∈ R, (2.3)

where τ(x) =
∫ x

0 bev2/2dv, x > 0, b =
√

2/π, and δ = α/
√

1 + α2. Here τ(−x) = −τ(x) for x > 0. Kim
and Genton (2011) showed that (2.3) is equal to

ψZ(t) = 2e−
t2
2 Φ(iδt), t ∈ R

using rigorous complex contour integration. Instead of the two previous approaches, we introduce a
physics proof (p.93 of Durrett, 1996) to derive the cf of the skew-normal distribution. First, note that
the probabilistic representation of the skew-normal distribution (Henze, 1986) is

Z =
α

√
1 + α2

|U | + 1
√

1 + α2
V,

where U and V are independent N(0, 1). Using this representation, we derive the cf of Z. Before the
derivation, we need to prove a simple Lemma.
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Lemma 2. ∫ ∞

0
e

t2
2 eituϕ(u)du = Φ(it).

Proof: ∫ ∞

0
e

t2
2 eituϕ(u)du =

1
√

2π

∫ ∞

0
exp

{
−(u − it)2

2

}
du.

Let u − it = w, then the last integral becomes 1√
2π

∫ ∞
−it e−w2/2dw = 1√

2π

∫ it
−∞ e−w2/2dw = Φ(it). �

We can now derive the cf of a skew-normal distribution.

Theorem 2. Let Z ∼ S N(α), then

ψZ(t) = 2e−
t2
2 Φ(iδt), t ∈ R. (2.4)

Proof: From Z = α√
1+α2
|U | + 1√

1+α2
V , we know that Z||U | = u ∼ N(δu, 1 − δ2). Thus,

ψZ(t) = E
[
eitZ

]
= E

[
E

(
eitZ ||U | = u

)]
=

∫ ∞

0
E

(
eitZ ||U | = u

)
f|U |(u)du,

where f|U |(u) = 2ϕ(u), 0 < u < ∞. Hence

ψZ(t) =
∫ ∞

0
exp

{
iδut − 1 − δ2

2
t2
}

2ϕ(u)du = 2e−
t2
2

∫ ∞

0
e
δ2 t2

2 eiδutϕ(u)du.

By Lemma 2, we have the result. �
Remark 2. |U | is a truncated normal random variable with a pdf 2ϕ(u), 0 < u < ∞. From Lemma
2, we can easily obtain the cf of a truncated normal distribution by multiplying both sides by 2e−t2/2,
as follows:

ψ|U |(t) = 2e−
t2
2 Φ(it), t ∈ R.

Now, we show that the cf in (2.4) is equal to that of Pewsey (2000), shown in (2.3).

Lemma 3.

ψZ(t) = 2e−
t2
2 Φ(iδt) = e−

t2
2 [1 + iτ (δt)] , t ∈ R.

Proof: Let w = iv, then

ψZ(t) = 2e−
t2
2 Φ(iδt)

= 2e−
t2
2

[∫ 0

−∞

1
√

2π
e−

w2
2 dw +

∫ iδt

0

1
√

2π
e−

w2
2 dw

]
= 2e−

t2
2

[
1
2
+

∫ iδt

0

1
√

2π
e−

w2
2 dw

]
= e−

t2
2

1 + i
∫ δt

0

√
2
√
π

e−
(iv)2

2 dv


= e−
t2
2

[
1 + i

∫ δt

0
be

v2
2 dv

]
.
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Thus, from the definition of τ(x), we have the result. �

Extending these results to location-scale parameters is straightforward using the property of the
cf. For a rigorous proof of the previous results, let f (z) = exp(−z2/2), defined on the complex
domain. Then, f (z) is an entire function (i.e., it has no singularity on the whole complex domain), and∮

R f (z)dz = 0 by the Cauchy integral theorem. After some complex integration techniques, we have
the result (Kim and Genton, 2011).

2.3. Skew-ttt distribution

The cf of the skew-t distribution is obtained using scale mixtures of skew-normal distributions. Similar
to the t distribution, the skew-t distribution of a random variable, X ∼ S t(α, ν), is related to the skew-
normal distribution. That is,

X = W−
1
2 Z,

where Z ∼ S N(α) is independent of W ∼ Γ(ν/2, ν/2). A particular case of the skew-t distribution
is the skew-Cauchy distribution when ν = 1. In addition, when ν → ∞, we obtain the skew-normal
distribution as the limiting case.

Theorem 3. Let X ∼ S t(α, ν), then the cf of X is:

ψX(t) = ψT (t) + iτ∗
(
δt
√

w

)
,

where ψT (t) is given in Theorem 1,

τ∗
(
δt
√

w

)
=

∫ ∞

0
exp

(
− t2

2w

)
τ

(
δt
√

w

)
dH(w), for δt > 0, (2.5)

and τ∗(−x) = −τ∗(x) for x > 0. Here H(w) is the cdf of W ∼ Γ(ν/2, ν/2).

Proof: The conditional distribution of X, given W = w, follows a skew-normal distribution; that is,
X|W = w ∼ S N(0,w−1, α). Then, the cf of X is

ψX(t) =
∫ ∞

0

∫
R

exp(itx) f (x|w)dxdH(w) =
∫ ∞

0
ψX|w(t)dH(w)

=

∫ ∞

0
exp

(
− t2

2w

) {
1 + iτ

(
δt
√

w

)}
dH(w)

= ψT (t) + i
∫ ∞

0
exp

(
− t2

2w

)
τ

(
δt
√

w

)
dH(w),

where ψT (t) is the cf of the t(ν) distribution given in Theorem 1. The integrand of (2.5), without the
constant 2/

√
π, becomes Dawson’s integral when δ = 1. �

When ν = 1, the cf of the skew-Cauchy distribution is given by

ψX(t) = exp(−|t|) + iτ∗
(
δt
√

w

)
, t ∈ R

using K1/2(r) =
√
π/2re−r (Kotz and Nadarajah, 2004) and W ∼ χ2

1.
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3. Multivariate Results

In this section, we extend univariate results to multivariate cases.

3.1. Multivariate ttt distribution

Similar to the t distribution, the multivariate t distribution can be expressed as scale mixtures of
multivariate normal distribution as follows. Let X = W−1/2Z, where W ∼ Γ(ν/2, ν/2) independently
of Z ∼ Np(0, Ip). Then the p-dimensional random vector X follows the multivariate t distribution. To
see this, let ϕp(x) and fW (w) denote the pdfs of Np(0, Ip) and Γ(ν/2, ν/2), respectively, then

fX(x) =
∫ ∞

0
fX|w(x) fW (w)dw =

∫ ∞

0
w

p
2 ϕp(
√

wx) fW (w)dw

=
(ν/2)

ν
2

Γ(ν/2)(2π)
p
2

∫ ∞

0
w

ν+p
2 −1 exp

(
− (x⊤x + ν)w

2

)
dw

=
(ν/2)

ν
2

Γ(ν/2)(2π)p/2

Γ((ν + p)/2)

((x⊤x + ν)/2)
ν+p

2

=
Γ ((ν + p)/2)

Γ(ν/2)(νπ)
p
2

(
1 +

x⊤x
ν

)− ν+p
2

, x ∈ Rp, ν > 0.

We can now derive the cf of the multivariate t distribution as follows.

Theorem 4. Let X ∼ tp(ν), then the cf of the multivariate t distribution is

ψX(t) =
Kν/2(∥

√
νt ∥)(∥

√
νt ∥) ν

2

Γ(ν/2)2
ν
2−1

, t ∈ Rp and ν > 0,

where ∥ t ∥=
√

t⊤t.

Proof:

ψX(t) = E
[
eit⊤X

]
= E

[
E

(
eit⊤X|W

)]
= E

[
exp

(
− t⊤t

2W

)]
=

∫ ∞

0
exp

(
− t⊤t

2w

)
fW (w)dw

=
ν
ν
2

Γ(ν/2)2
ν
2

∫ ∞

0
w

ν
2−1 exp

[
−1

2

(
νw +

t⊤t
w

)]
dw

=
ν
ν
2

Γ(ν/2)2
ν
2

2K ν
2

[√
ν
(
t⊤t

) 1
2

]
(ν/t⊤t)

ν
4

by Lemma 1.

Thus, we have the result. �
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3.2. Multivariate skew-normal distribution

A p-dimensional random vector, Z, is said to have a multivariate skew-normal distribution if it is
continuous with pdf

fZ(z) = 2ϕp (z;Ωz)Φ
(
α⊤z

)
, z ∈ Rp,

where ϕp(z;Ωz) is the p-dimensional normal pdf with zero mean and correlation matrix Ωz, and
α is a p-dimensional vector controlling the skewness(shape). We write this as Z ∼ S Np(Ωz,α).
Similarly to the standardization of multivariate normal distribution, there is a sort of canonical form of
a multivariate skew-normal distribution (proposition 4 of Azzalini and Capitanio, 1999). We rephrase
this as a Lemma without proof.

Lemma 4. For a variable Z ∼ S Np(Ωz,α), there exists a linear transform Z∗ = A∗Z such that
Z∗ ∼ S Np(Ip,α

∗) where at most one component of α∗ is not zero.

Here, A∗ = (C⊤P)−1, α∗ = P⊤Cα, Ωz = C⊤C and an orthogonal matrix P with one column on the
same direction of Cα. Hence the density of Z∗ is of the form

2
p∏

i=1

ϕ
(
z∗i

)
Φ

(
α∗mz∗m

)
,

where α∗m =
√
α⊤Ωzα is the only non-zero component of α∗. Using Lemma 4, we have the cf of

multivariate skew-normal distribution.

Theorem 5. Let Z ∼ S Np(Ωz,α), then the cf of Z is

ψZ(t) = 2 exp
(
−1

2
t⊤Ωzt

)
Φ

(
iδ⊤t

)
= exp

(
−1

2
t⊤Ωzt

) (
1 + iτ

(
δ⊤t

))
.

Proof: We first obtain the cf of Z∗ and then calculate that of Z.

ψZ∗(t) = E
[
eit⊤z∗

]
= E

[
ei

∑
tiz∗i

]
=

p∏
i=1

E
[
eitiz∗i

]
by independence

=

 p∏
i=1,i,m

e−
ti

2

2

 2e−
t2m
2 Φ

(
iδ∗mtm

)
, where δ∗m =

α∗m√
1 + α∗m2

= 2 exp
(
−1

2
t⊤t

)
Φ

(
iδ∗mtm

)
.

Using Z = C⊤PZ∗ and δ∗mtm = δ∗⊤t, where δ∗ = α∗/
√

1 + α⊤Ωzα by the construction of α∗, we have

ψZ(t) = E
[
eit⊤(C⊤PZ∗)] = E

[
ei(P⊤Ct)⊤Z∗

]
= 2 exp

(
−1

2
t⊤C⊤PP⊤Ct

)
Φ

(
iδ∗⊤P⊤Ct

)
.
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Since P is an orthogonal matrix, Ωz = C⊤C, α∗ = P⊤Cα, and

δ∗⊤P⊤Ct =
α∗⊤

√
1 + α⊤Ωzα

P⊤Ct =
(
P⊤Cα

)⊤
√

1 + α⊤Ωzα
P⊤Ct

=
α⊤C⊤PP⊤Ct
√

1 + α⊤Ωzα
=

α⊤Ωzt
√

1 + α⊤Ωzα
= δ⊤t,

the cf of Z is ψZ(t) = 2 exp
(
− 1

2 t⊤ΩZt
)
Φ(iδ⊤t), t ∈ Rp. If we substitute e−t2

m/2
(
1 + iτ(δ∗mtm)

)
for

2e−t2
m/2Φ(iδ∗mtm), we have the second equation. �

3.3. Multivariate skew-ttt distribution

The cf of the multivariate skew-t distribution can be obtained using scale mixtures of multivariate
skew-normal distributions. The multivariate skew-t random vector, X ∼ S tp(Ωz,α, ν), is related to the
multivariate skew-normal random vector, Z, by the following stochastic equation:

X = W−
1
2 Z, (3.1)

where Z ∼ S Np(Ωz,α) independent of W ∼ Γ(ν/2, ν/2).

Theorem 6. Let X follow the multivariate skew-t distribution defined by (3.1). Then the cf of X is:

ψX(t) = ψTp

(
Ω

1
2
z t

)
+ iτ+

(
δ⊤t
√

w

)
,

where ψTp (t) is given in Theorem 4,

τ+
(
δ⊤t
√

w

)
=

∫ ∞

0
exp

(
− t⊤Ωzt

2w

)
τ

(
δ⊤t
√

w

)
dH(w)

for δ⊤t > 0 and τ+(−x) = −τ+(x) f or x > 0.

Proof: The conditional distribution of X, given W = w, follows a multivariate skew-normal distribu-
tion; that is, X|W = w ∼ S Np(w−1Ωz,α). Then the cf of X is

ψX(t) =
∫ ∞

0

∫
Rp

exp
(
it⊤x

)
f (x|w) dx dH(w) =

∫ ∞

0
ψX|w(t)dH(w)

=

∫ ∞

0
exp

(
− t⊤Ωzt

2w

) {
1 + iτ

(
δ⊤t
√

w

)}
dH(w)

= ψTp

(
Ω

1
2
z t

)
+ i

∫ ∞

0
exp

(
− t⊤Ωzt

2w

)
τ

(
δ⊤t
√

w

)
dH(w),

where ψTp (t) is given in Theorem 4, which is the cf of the multivariate tp(ν) distribution. The remain-
ing calculations are straightforward and the result follows. �

A particular case of the multivariate skew-t distribution is the multivariate skew-Cauchy distribu-
tion, when ν = 1. In addition, when ν → ∞, we obtain the multivariate skew-normal distribution
as the limiting case. Hence, we have computed the cfs of the multivariate skew-Cauchy and skew-
normal distributions. For the other versions of the cfs of the multivariate t distribution, see Kotz and
Nadarajah (2004). Extending these results to location-scale parameters is straightforward.
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4. Discussion

Characteristic functions play an important role in probability and statistics. However, the derivation
of these functions needs the theory of complex analysis which is unfamiliar to most statistics students.
Therefore, we derived the cfs of the t, truncated normal, skew-normal, and skew-t distributions in uni-
variate and multivariate cases without using contour integration. We wish to extend the current results
in a future study to some other skewed distributions appearing in Azzalini and Capitanio (2014).
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