1 |
Na, J. and Kim, J. (2002). Bayesian model selection and diagnostics for nonlinear regression model, Korean Journal of Applied Statistics, 15, 139-151.
DOI
ScienceOn
|
2 |
Oakley, J. E. and O'Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: A Bayesian approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66, 751-769.
DOI
ScienceOn
|
3 |
O'Hagan, A. (1978). Curve fitting and optimal design for prediction, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 40, 1-42.
|
4 |
Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning, MIT Press, Cambridge, MA.
|
5 |
Ruppert, D., Wand, M. P. and Caroll, R. J. (2009). Semiparametric regression during 2003-2007, Electronic Journal of Statistics, 3, 1193-1256.
DOI
|
6 |
Shi, J. Q. and Choi, T. (2011). Gaussian Process Regression Analysis for Functional Data, Chapman & Hall/CRC Press, New York.
|
7 |
Shi, J. Q., Murray-Smith, R. and Titterington, D. M. (2007). Gaussian process function regression modeling for batch data, Biometrics, 63, 714-723.
DOI
ScienceOn
|
8 |
Shi, J. Q. and Wang, B. (2008). Curve prediction and clustering with mixtures of Gaussian process functional and regression models, Statistics and Computing, 18, 267-283.
DOI
|
9 |
Wooldridge, J. M. (2003). Introductory Econometrics, A Modern Approach, MIT Press, Cambridge, MA.
|
10 |
Yatchew, A. (1998). Nonparametric regression technique in Economics, Journal of Economic Literature, 36, 669-721.
|
11 |
Yi, G., Shi, J. Q. and Choi, T. (2011). Penalized Gaussian process regression and classification for highdimensional nonlinear data, Biometrics, 67, 1285-1294.
DOI
ScienceOn
|
12 |
Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially linear single-index models, Journal of the American Statistical Association, 97, 1042-1054.
DOI
ScienceOn
|
13 |
Aerts, M., Claeskens, G. and Hart, J. D. (2004). Bayesian-motivated tests of function fit and their asymptotic frequentist properties, The Annals of Statistics, 32, 2580-2615.
DOI
|
14 |
Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations, Journal of Computational and Graphical Statistics, 7, 434-455.
|
15 |
Choi, T., Lee, J. and Roy, A. (2009). A note on the Bayes factor in a semiparametric regression model, Journal of Multivariate Analysis, 100, 1316-1327.
DOI
ScienceOn
|
16 |
Choi, T., Shi, J. Q. andWang, B. (2011). A Gaussian process regression approach to a single-index model, Journal of Nonparametric Statistics, 23, 21-36.
DOI
ScienceOn
|
17 |
Choi, T. and Woo, Y. (2012). A partially linear model using a Gaussian process prior, submitted.
|
18 |
Damien, P.,Wakefield, J. andWalker, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61, 331-344.
DOI
ScienceOn
|
19 |
H¨ardle, W., Liang, H. and Gao, J. (2000). Partially linear Models, Physica-Verlag, Heidelberg.
|
20 |
Engle, R. F., Granger, C. W. J., Rice, J. and Weiss, A. (1986). Semiparametric estimates of the relation between weather and electricity sales, Journal of the American Statistical Association, 81, 310-320.
DOI
ScienceOn
|
21 |
Hayfield, T. and Racine, J. S. (2008). Nonparametric econometrics: The np package, Journal of Statistical Software, 27, 1-32.
|
22 |
Kennedy, M. C. and O'Hagan, A. (2001). Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63, 425-464.
DOI
ScienceOn
|
23 |
Kneib, T., Konrath, S. and Fahrmeir, L. (2011). High dimensional structured additive regression models: Bayesian regularization, smoothing and predictive performance, Journal of the Royal Statistical Society: Series C (Applied Statistics), 60, 51-70.
DOI
ScienceOn
|
24 |
Koop, G. and Poirier, D. J. (2004). Bayesian variants of some classical semiparametric regression techniques, Journal of Econometrics, 123, 259-282.
DOI
ScienceOn
|
25 |
Lenk, P. J. (1999). Bayesian inference for semiparametric regression using a Fourier representation, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61, 863-879.
DOI
ScienceOn
|
26 |
Li, Q. and Racine, J. S. (2007). Nonparametric Econometrics, Theory and Practice, Princeton University Press, Princeton, New Jersey.
|
27 |
Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimates for the linear model, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 34, 1-41.
|