Browse > Article
http://dx.doi.org/10.5351/CKSS.2012.19.6.885

A Comparative Study on the Performance of Bayesian Partially Linear Models  

Woo, Yoonsung (Department of Statistics, Korea University)
Choi, Taeryon (Department of Statistics, Korea University)
Kim, Wooseok (Department of Statistics, Korea University)
Publication Information
Communications for Statistical Applications and Methods / v.19, no.6, 2012 , pp. 885-898 More about this Journal
Abstract
In this paper, we consider Bayesian approaches to partially linear models, in which a regression function is represented by a semiparametric additive form of a parametric linear regression function and a nonparametric regression function. We make a comparative study on the performance of widely used Bayesian partially linear models in terms of empirical analysis. Specifically, we deal with three Bayesian methods to estimate the nonparametric regression function, one method using Fourier series representation, the other method based on Gaussian process regression approach, and the third method based on the smoothness of the function and differencing. We compare the numerical performance of three methods by the root mean squared error(RMSE). For empirical analysis, we consider synthetic data with simulation studies and real data application by fitting each of them with three Bayesian methods and comparing the RMSEs.
Keywords
Partially linear models; Fourier series; Gaussian process priors; smoothness; root mean squared error;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Na, J. and Kim, J. (2002). Bayesian model selection and diagnostics for nonlinear regression model, Korean Journal of Applied Statistics, 15, 139-151.   DOI   ScienceOn
2 Oakley, J. E. and O'Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: A Bayesian approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66, 751-769.   DOI   ScienceOn
3 O'Hagan, A. (1978). Curve fitting and optimal design for prediction, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 40, 1-42.
4 Rasmussen, C. E. and Williams, C. K. I. (2006). Gaussian Processes for Machine Learning, MIT Press, Cambridge, MA.
5 Ruppert, D., Wand, M. P. and Caroll, R. J. (2009). Semiparametric regression during 2003-2007, Electronic Journal of Statistics, 3, 1193-1256.   DOI
6 Shi, J. Q. and Choi, T. (2011). Gaussian Process Regression Analysis for Functional Data, Chapman & Hall/CRC Press, New York.
7 Shi, J. Q., Murray-Smith, R. and Titterington, D. M. (2007). Gaussian process function regression modeling for batch data, Biometrics, 63, 714-723.   DOI   ScienceOn
8 Shi, J. Q. and Wang, B. (2008). Curve prediction and clustering with mixtures of Gaussian process functional and regression models, Statistics and Computing, 18, 267-283.   DOI
9 Wooldridge, J. M. (2003). Introductory Econometrics, A Modern Approach, MIT Press, Cambridge, MA.
10 Yatchew, A. (1998). Nonparametric regression technique in Economics, Journal of Economic Literature, 36, 669-721.
11 Yi, G., Shi, J. Q. and Choi, T. (2011). Penalized Gaussian process regression and classification for highdimensional nonlinear data, Biometrics, 67, 1285-1294.   DOI   ScienceOn
12 Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially linear single-index models, Journal of the American Statistical Association, 97, 1042-1054.   DOI   ScienceOn
13 Aerts, M., Claeskens, G. and Hart, J. D. (2004). Bayesian-motivated tests of function fit and their asymptotic frequentist properties, The Annals of Statistics, 32, 2580-2615.   DOI
14 Brooks, S. P. and Gelman, A. (1998). General methods for monitoring convergence of iterative simulations, Journal of Computational and Graphical Statistics, 7, 434-455.
15 Choi, T., Lee, J. and Roy, A. (2009). A note on the Bayes factor in a semiparametric regression model, Journal of Multivariate Analysis, 100, 1316-1327.   DOI   ScienceOn
16 Choi, T., Shi, J. Q. andWang, B. (2011). A Gaussian process regression approach to a single-index model, Journal of Nonparametric Statistics, 23, 21-36.   DOI   ScienceOn
17 Choi, T. and Woo, Y. (2012). A partially linear model using a Gaussian process prior, submitted.
18 Damien, P.,Wakefield, J. andWalker, S. (1999). Gibbs sampling for Bayesian non-conjugate and hierarchical models by using auxiliary variables, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61, 331-344.   DOI   ScienceOn
19 H¨ardle, W., Liang, H. and Gao, J. (2000). Partially linear Models, Physica-Verlag, Heidelberg.
20 Engle, R. F., Granger, C. W. J., Rice, J. and Weiss, A. (1986). Semiparametric estimates of the relation between weather and electricity sales, Journal of the American Statistical Association, 81, 310-320.   DOI   ScienceOn
21 Hayfield, T. and Racine, J. S. (2008). Nonparametric econometrics: The np package, Journal of Statistical Software, 27, 1-32.
22 Kennedy, M. C. and O'Hagan, A. (2001). Bayesian calibration of computer models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 63, 425-464.   DOI   ScienceOn
23 Kneib, T., Konrath, S. and Fahrmeir, L. (2011). High dimensional structured additive regression models: Bayesian regularization, smoothing and predictive performance, Journal of the Royal Statistical Society: Series C (Applied Statistics), 60, 51-70.   DOI   ScienceOn
24 Koop, G. and Poirier, D. J. (2004). Bayesian variants of some classical semiparametric regression techniques, Journal of Econometrics, 123, 259-282.   DOI   ScienceOn
25 Lenk, P. J. (1999). Bayesian inference for semiparametric regression using a Fourier representation, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61, 863-879.   DOI   ScienceOn
26 Li, Q. and Racine, J. S. (2007). Nonparametric Econometrics, Theory and Practice, Princeton University Press, Princeton, New Jersey.
27 Lindley, D. V. and Smith, A. F. M. (1972). Bayes estimates for the linear model, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 34, 1-41.