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Comparison Density Representation of Traditional Test Statistics
for the Equality of Two Population Proportions

Jangsun Baekl
Abstract

Let p; and p, be the proportions of two populations. To test the hypothesis
Hy: py=p,;, we usually use the x2 statistic, the large sample binomial statistic Z,

and the Generalized Likelihood Ratio statistic -2log A, which were developed based on
different mathematical rationale, respectively. Since testing the above hypothesis is
equivalent to testing whether two populations follow the common Bemoulli
distribution, one may also test the hypothesis by comparing 1 with the ratio of each
density estimate and the hypothesized common density estimate, called comparison
density, which was devised by Parzen(1988). We show that the above traditional test
statistics are actually estimating the measure of distance between the true densities

and the common density under H; by representing them with the comparison

density.

1. Introduction

We often present binomial data gathered from more than one population in a contingency

table. For the case of two populations, suppose X, is the number of successes in population
1, X;~ BIN (#n,p;) with the realization of #;; successes and #n; failures, and X, is the
number of successes in population 2, X,~ BIN (n,,p,) with the realizations of #y

successes and g failures. Then the contingency table might look like as in Table 1.

Table 1. 2%X2 Contingency table

Successes Failures Total
Population 1 (X)) ny 3] ny
Population 2 (X3) 7o Ny g
Total n. ny n
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A hypothesis that is usually of interest is

Hy: py= p, versus H,: py+ p, . 1

There are several test procedures we can use to test the above hypotheses. The x2 test, the

large sample binomial test, and the Generalized Likelihood Ratio (GLR) test, which are
described in Section 2, might be the most widely used traditional procedures (Bain and

Engelhardt, 1992).
Testing the hypotheses of (1) is equivalent to testing the equality of two Bernoulli
probability density functions (p.d.f.). More specifically, for a Bernoulli random variable Y, let

) = pid (3 + (1—p) (,,,(») be the pdf. of Y for the ith population, where
I;,(» is the indication function, 7=1,2. Then X; can be regarded as the sum of the
random sample { Y, Yo, , Y., ) from the ith population, i=1,2. When b= Dy = p
the pooled sample { Yy, Yyp, -, Y1, Yo, Yo, -, Yon, } of size n = n; + n, is regarded

as observations on a variable Y with the common p.d.f,
Ay = pI (,)(» + (1—=pI (,,,(3). Thus the hypotheses of (1) can be restated as

Hy: fi(y) = f,(» = Ay) versus Hy: fi(») *+ £,(3) 2

where Ay) is the common Bernoulli p.d.f. with the probability of success p = p; = p,.

Therefore the test for the equality of two population proportions is just a special case of the
test for the homogeneity of two distributions.

Based on the entropy, — f g(x)log g(x)dx defined by Shannon(1948) as a measure of

uncertainty of a random variable X with its p.df g(x), Kullback(1959) defined the relative

entropy (cross-entropy or Kullback Leibler distance) as f g(x)log { g(x)/h(x) } dx to

measure the distance between two p.d.f.’s g(x) and A(x). The relative entropy for discrete

distribution is D(gll k) = 2 g(x)log { g(x)/h(x) }. It is easy to show using Jensen's

inequality that D(gll #)=0 with equality if and only if g(x)= A(x) for all x. See Cover and
Thomas (1992) for more about the relationship between information theory and Statistics.
Direct comparison of the ratio of two densities, g(-)/A(*), in the relative entropy with 1 can

be used to construct a test statistic for testing the hypotheses of (2). One may measure the
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distance between the two true pdf.’s f;, f; and the common p.df, f under H; by a
functional of the two ratios, f;/f and f;/f. The index 7 of an observation in the pooled
sample { { Y, Ya,, Y} 2_,}is regarded as the value of a variable W The sample
probability that W = i is denoted A; = n/n, i=1,2 . One forms the sample p.df. of Y,
f;(z,) = ng/n; which estimates the true f/s under the alternative hypothesis
H,, i=1,2, j=1,2 . Under the null hypothesis H, , the pooled sample probability that
Y =z, denoted by Az;) = n,/n, estimates the common pdf, f j=1,2 . Parzen(1988)

defined the comparison density, d(# (7, 7)) as
di(%(/?, J?,)) = (?i(zl)/ﬂzl) ) I (0<u(ﬂz.)}(u)+ { J?i(zz)/ﬂzz) Y1 (ﬂzl)w(”(u), i=1,2, 3

and proposed a test statistic which is a functional of d{% ( 2D,
2 1 )
C= ZAf dlw(ft)-1) du @

to test the hypotheses of (2). As the comparison density measures the distance between the

two densities, f and f;, we can define the comparison density differently, such as

di(u;(fi, ﬁ) = | ﬂzl)/]?i(zl) Y I (0<u<7}(z1))(u)+ { ﬂzz)/fi(zz) VI { Flz)<ucl ) (u). See the
examples of d{#% (7 7)) and d{# (%, D) in Figure 1. Note that d{w (% 7)) is a density

function. That is d(z (f, 7))=0 for 0< #<1 and fdl-(za 7, 7Ndu=1. As f; is similar to £,

di( f }?i)) gets close to 1 and C becomes small, but C becomes large, otherwise. Though

he suggested various versions of test statistics based on appropriately defined comparison
densities in other testing situations, we focus on the comparison density of (3) for two
sample discrete data, and want to show that some traditional test procedures can be explained
in terms of the comparison density.

In section 2 we summarize the traditional test procedures. In the final section we show the
relationship between the traditional test statistics and the comparison density of (3). It is

shown that the xz test statistic and the large sample binomial test statistic are basically the

same as C in (4), and the GLR test statistic is a functional of the comparison density
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di( [ZA (fi, ]2))
d{w(f £)) dlw(f,, £))
| Replfla)
Flz)Ifz)
1 1
Az Flz)
Flz)] flzy)
u u
0 Azp) 1 0 z) 1

Figure 1. Examples of d{%(f, 7)) and d{w(f, 7))

2. Traditional test statistics

The most popular test statistic to test the hypotheses of (1) for 2X2 contingency table
data would be the x° statistic. That is,

BT B, ©

where Oj is the observed outcomes of Z; in the ith sample, and E ; 1s the estimated
expected outcomes under H; We know O;=#; and E s=mnm;/n in this test,

i=1,2, 7=1,2 . The above xz statistic is approximately distributed as xz(l) under H, .

It is also possible to construct test of the hypotheses using large sample theory. The

maximum likelihood estimators (m.le.) of p,, p, are p,=ny/n, and Hy= ny/ny,
respectively. Under Hy' p;=p,, it would seem appropriate to have a pooled estimator of

their common value, p= (ny +#ngy/n=n,/n. Applying large sample theory to these
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estimators we can construct the following large sample binomial test statistic Z, which is
approximately distributed as N(0,1) under H, ;
b1—b,

= — (6)
\/5‘1“@(%%%)

zZ

Let the parameter space be &= {8={(p;,p)I0<{$<1 and 0<p{1}, and let the
subset corresponding to Hy be 2= {6=(p; p)I0<{p,=p,<{1}. Based on the binomial data,
the mle's are py=ny/n,, bDa2=mnu/n, over 2 and p=ny/n over £, Then the GLR

statistic is

‘;I:EO L(xy, x5; 6)

?:‘Q L(xy, x5; 6)

A =

( m )5"11(1_1’))"12( ::2 )5"21(1_1/)>"n
21

ni

(7
Ry N omugq  pymf P2 \pnaeq o ynm
(o )pra=som{ 2 )ora- 4o

Since -2log A is approximately distributed as xz(l) under H, for large sample, the commonly

used GLR statistic is -2log A.

3. Main results

Now we study the relationship between the conventional test statistics and the comparison
density. It is shown in the following proposition that the traditional test statistics for binomial

data, xz, Z, and -2log A can be expressed in terms of the comparison density, and thus
actually compare the ratio of the estimates of two densities under the null and alternative

hypotheses to 1.
Proposition Let p; and p, be the proportions of two different populations. For the

binomial data given in Table 1, suppose xz, Z are the xz test statistic, the large sample
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binomial test statistic defined in (5), (6), respectively, and -2log A is the GLR test statistic
based on A defined in (7) to test the hypotheses: Hy: p;=p, versus H; : p*p,. Let

d{w; (F, 7)) = {Flz)] F(z)} 0cucren (8 + {7zl Rz M 7y (), and let
d( u;(f?i, /2)) = {ﬂzl)/]?i(zl)}l (0<u(7,-(zl))(u) + {12(22)//2;'(22)}1 (7.»(zl)<u<1)(u) . Then

(i) 2= n}zja,-fl{d.-(u;ﬁf,-))—l}zdu
=1 0
(i) 2% = nl_zjzlaifol{di(u;(ffi))—l}zdu
2 1
(iii) —2logd = 271;:1/1;'}; —logd{w;(f:, D)du ,

where A;=mni/n , =12

Proof (i) Note 0,‘,‘= ny and E,‘,‘= n,-n.,-/n , then

(n % )2 | 2

2 2 i 2 2 nn.; nn nn

2 n §7%-5 175 U

- = n;—

X El,gl nn.; El;gl{ n /( n ) J ( v n )
n

since A; = n;/n, F7{z;) = ny/n, and Kz;) = n,;/n . Thus the last equation is equal to
2 1
n B A [ e (F F)—1) Ydu .

(ii) We square the statistic Z Then also by noting 1/ + 1/¢ = 1/ (59,

(b= b)* _ ( niny ) (151_52)2 + ( nin; ) (P, 52)2
(1/n1+1/n2)§5 ny+n PA ny+mny

72 = ~
q
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Note #n; + np = n, and (mn))/ (ny+ny) = n(ny/n)ny/n) = nAA,. Thus

A A2 o~ ARt
Zt = ndd, “"51’2) + mlazﬁla—pi . Divide both sides by 7.
2 b — A (. — 2 DN ( A — 2
Zz Ady { (5, ﬁ)A(Dz h} v Ay { (9, @A(l)z b}
n b aq
C aa LB =D+ (Be= 1)’ =25, = BB, = D) )
112 5
(D1 =D+ (B3~ D2 =2(5,- DB, H) )
+ /ilﬂz =
q
A Y/ AIAY _ 2 _ 2
: Mz[ ($1=D)°+ (b2 D) }wmz[ (1-4¢,~1+@*+(1-3,-1+9) J
b q
P Il 10 )
bq
AV AV SN2 = N2
i Mz{ (B1=D)°+ (= 5) } +Mz[ (4,-0"+(a,= 9 }
b q
24, (‘Dl__@,\(;bz_[))
ba
bi .\ pi—p\ b\’
sice (Zt-1) = (P52) = LG9 Gma? = (L) im0

15\ 2 1/)\ 2 5 2 (; 2
AlA —)—1) +(—E’—1) +T—A—1—1) +T—TZ—1) }
12[‘5( ) A5 4737 172

(51—1;)(52_@
ba

- 24,4,
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A1 - ,11)[ 17—1) T——1)2J + A1 Az){ T——l) T———l) ]

(5= DBy~ D

- 2/11/12

ba
SIS RER NPT R RER ]
LA e

a4

Consider the expression in the bracket, and let it be A, then

2 AY oo A
A = /1%[ (b1~ D) n Aé) ] v 2, (2, 132(/\.02 b
b q bq
2 SN2
+,1§[ (5= | (4~ }
) q

_ /12{ (Pl 5’ " (51?1/7)2] + 920 (51_1/72(/\52"19
! ) q 1 ba

/12[ (Pzp p* n :‘5)2}

q

{24D,—D* + 20 (b1— DX D= D) + AU B,—D)?)

{ /11(51_.{7) + /12(52“13) } 2

- nmirny 2 + Bafma Ry
n\ m n n\ n n
- Pu _ WP P Mo?y
n n* n n’
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e iy o 4 <))

Remember 51 = ny/n = f1(21), 51 = np/n = .?1(22), 52 = nylng = 1?2(21)»

gy = npln, = fizy) , = nyn = Kz, and ¢ = ny/n = HAz;). Hence

from the last equation above,

¢ = nﬁa.f (d{w (2 F)~1) "au
i=1 0

(iii) From the expression (7), we obtain

Jogd . Pugo 2 4 log -4 + ——-log—L + 22 1p 4
n n P ) n F n )
= (—n—l)(ﬂ)log—ﬁL + (ﬂ)( )log-—q~ + (J)(A)log—%
n \ m 3 n )\ n a2, n N\ n b,

N AP S _@{ ST M _qi}
= log—% + log —=% + log 4% + log %
" {Pl 4 3 q,log a } " b2 log 5 g, log 2,

i Az) F(z9)
= ,11[/21(21) log f1(21) + fl(ZZ)ng f](zz) }

Kzy) Azy)
+ Az{ Fao(2y) log 7,(2)) + Fo(2,)log 74(22) }

= 4 [ togdiu (7, Mdu
i=1 0

Multiplying -2 on both sides, the result is obtained.
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