• Title/Summary/Keyword: stationary solutions

Search Result 95, Processing Time 0.021 seconds

UNIFYING STATIONARY EQUATIONS FOR GENERALIZED CANONICAL CORRELATION ANALYSIS

  • Kang Hyun-Cheol;Kim Kee-Young
    • Journal of the Korean Statistical Society
    • /
    • v.35 no.2
    • /
    • pp.143-156
    • /
    • 2006
  • In the present paper, various solutions for generalized canonical correlation analysis (GCCA) are considered depending on the criteria and constraints. For the comparisons of some characteristics of the solutions, we provide with certain unifying stationary equations which might to also useful to obtain various generalized canonical correlation analysis solutions. In addition, we suggest an approach for the generalized canonical correlation analysis by exploiting the concept of maximum eccentricity originally de-signed to test the internal independence structure. The solutions, including new one, are compared through unifying stationary equations and by using some numerical illustrations. A type of iterative procedure for the GCCA solutions is suggested and some numerical examples are provided to illustrate several GCCA methods.

STATIONARY SOLUTIONS FOR ITERATED FUNCTION SYSTEMS CONTROLLED BY STATIONARY PROCESSES

  • Lee, O.;Shin, D.W.
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.737-746
    • /
    • 1999
  • We consider a class of discrete parameter processes on a locally compact Banach space S arising from successive compositions of strictly stationary random maps with state space C(S,S), where C(S,S) is the collection of continuous functions on S into itself. Sufficient conditions for stationary solutions are found. Existence of pth moments and convergence of empirical distributions for trajectories are proved.

  • PDF

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO STOCHASTIC 3D GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS WITH UNBOUNDED DELAYS

  • Cung The Anh;Vu Manh Toi;Phan Thi Tuyet
    • Journal of the Korean Mathematical Society
    • /
    • v.61 no.2
    • /
    • pp.227-253
    • /
    • 2024
  • This paper studies the existence of weak solutions and the stability of stationary solutions to stochastic 3D globally modified Navier-Stokes equations with unbounded delays in the phase space BCL-∞(H). We first prove the existence and uniqueness of weak solutions by using the classical technique of Galerkin approximations. Then we study stability properties of stationary solutions by using several approach methods. In the case of proportional delays, some sufficient conditions ensuring the polynomial stability in both mean square and almost sure senses will be provided.

STABILITY OF BIFURCATING STATIONARY PERIODIC SOLUTIONS OF THE GENERALIZED SWIFT-HOHENBERG EQUATION

  • Soyeun, Jung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.1
    • /
    • pp.257-279
    • /
    • 2023
  • Applying the Lyapunov-Schmidt reduction, we consider spectral stability of small amplitude stationary periodic solutions bifurcating from an equilibrium of the generalized Swift-Hohenberg equation. We follow the mathematical framework developed in [15, 16, 19, 23] to construct such periodic solutions and to determine regions in the parameter space for which they are stable by investigating the movement of the spectrum near zero as parameters vary.

ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO 3D CONVECTIVE BRINKMAN-FORCHHEIMER EQUATIONS WITH FINITE DELAYS

  • Le, Thi Thuy
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.3
    • /
    • pp.527-548
    • /
    • 2021
  • In this paper we prove the existence of global weak solutions, the exponential stability of a stationary solution and the existence of a global attractor for the three-dimensional convective Brinkman-Forchheimer equations with finite delay and fast growing nonlinearity in bounded domains with homogeneous Dirichlet boundary conditions.

ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO 2D g-NAVIER-STOKES EQUATIONS

  • Quyet, Dao Trong
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.505-518
    • /
    • 2014
  • Considered here is the first initial boundary value problem for the two-dimensional g-Navier-Stokes equations in bounded domains. We first study the long-time behavior of strong solutions to the problem in term of the existence of a global attractor and global stability of a unique stationary solution. Then we study the long-time finite dimensional approximation of the strong solutions.

A method for analyzing heat conduction (열전도 해석을 위한 한 방법)

  • 서승일;장창두
    • Journal of Welding and Joining
    • /
    • v.8 no.2
    • /
    • pp.53-57
    • /
    • 1990
  • Analytic solutions of heat conduction during welding which were first found by Resenthal have some restrictions. One of these is that models to which analytic solutions can be applied must have simple geometric shape, and another is that quasi-stationary state must be created. On the other hand, computational methods developed recently with the aid of the computer can overcome these shortcomings, but the methods raise problems from economic point of view when they are applied to 3 dimensional problems. Taking account of these problems, a new method combinig the analytic method with the computational one is proposed. This method can be ued in weldments with complicated geometric shape in non-stationary state, but with the aid of the analytic method can reduce the computing time.

  • PDF

GLOBAL ATTRACTOR FOR A SEMILINEAR PSEUDOPARABOLIC EQUATION WITH INFINITE DELAY

  • Thanh, Dang Thi Phuong
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.579-600
    • /
    • 2017
  • In this paper we consider a semilinear pseudoparabolic equation with polynomial nonlinearity and infinite delay. We first prove the existence and uniqueness of weak solutions by using the Galerkin method. Then, we prove the existence of a compact global attractor for the continuous semigroup associated to the equation. The existence and exponential stability of weak stationary solutions are also investigated.

Nonlinear Phenomena In Resonant Excitation of Flexural-Gravity Waves

  • Marchenko, Aleksey
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.3
    • /
    • pp.1-12
    • /
    • 2003
  • The influence of nonlinear phenomena on the behavior of stationary forced flexural-gravity waves on the surface of deep water is investigated, when the perturbation of external pressure moves with near-resonant velocity. It is shown that there are three branches of bounded stationary solutions turning into asymptotic solutions of the linear problem with zero initial conditions. For the first time ice sheet destruction by turbulent fluctuations of atmosphere pressure in ice adjacent layer in wind conditions is studied.