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GREEN FUNCTIONS FOR FLOW VELOCITY OF

STATIONARY STOKES SYSTEMS

Jongkeun Choi

Abstract. We establish existence and uniqueness of Green functions for

flow velocity of stationary Stokes systems, under a continuity assumption

of weak solutions to the system, in a bounded domain such that the di-
vergence equation is solvable there. We also obtain pointwise bounds of

the Green functions.

1. Introduction

This paper is a continuation of [6], in which the authors studied Green func-
tions for the flow velocity of stationary Stokes systems with variable coefficients
in a bounded Lipschitz domain Ω ⊂ Rd, d ≥ 3. In [6], they established the exis-
tence of the Green function satisfying pointwise bound away from the boundary
of the domain under the regularity assumption that weak solutions of the system
are Hölder continuous in the interior of the domain. They also obtained global
pointwise bound for the Green function under the additional assumption that
weak solutions of Dirichlet problems are locally bounded up to the boundary.
Such type of regularity assumptions were introduced in [12, 13] to deal with
fundamental solutions and Green functions for elliptic systems with irregular
coefficients. We refer the reader to [4, 5, 7, 2] and the references therein for
some work in this direction. We also refer to [10, 3] for Green functions in two
dimensional domains without any regularity assumptions.

In this paper, we extend the results in [6] to domains such that the divergence
equation is solvable there. This solvability assumption is sufficiently general to
allow the domain Ω to be, for example, a John domain. Hence, the class of
domains we consider includes Lipschitz domains, Reifengerg flat domains, and
Semmes-Kenig-Toro (SKT) domains. Note that, in establishing the existence of
the Green function, we use a weaker condition that weak solutions of the system
are continuous in the interior of the domain. For further details, see Theorem
2.6.
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As an application of our results combined with W 1,q-estimates for the Stokes
system established in [8], we have that if the coefficients of the Stokes system
are merely measurable in one direction, which may differ depending on the local
coordinates, and have small mean oscillations in the other directions (variably
partially BMO) and the domain is a John domain, then the Green function
exists and satisfies the pointwise bound away from the boundary of the domain.
Moreover, the Green function satisfies the pointwise bound globally if the do-
main is Reifenberg flat. Note that Stokes systems with variably partially BMO
coefficients can be used to describe the motion of inhomogeneous fluids with
density dependent viscosity and two fluids with interfacial boundaries; see [8, 9]
and the references therein.

The remainder of the paper is organized as follows. In Section 2, we state our
main results along with some definitions and assumptions. Section 3 is devoted
to the construction of approximated Green functions. In Section 4, we provide
the proofs of the main theorems.

2. Main results

Throughout the paper, we denoted by Ω a bounded domain in the Euclidean
space Rd, where d ≥ 3. For any x ∈ Ω and R > 0, we write ΩR(x) = Ω∩BR(x),
where BR(x) is a usual Euclidean ball of radius R centered at x. For q ∈ [1,∞],
we define

L̃q(Ω) = {u ∈ Lq(Ω) : (u)Ω = 0},
where Lq(Ω) is the set of all measurable functions on Ω that are qth integrable
and (u)Ω is the average of u over Ω, i.e.,

(u)Ω = –

∫
Ω

u dx =
1

|Ω|

∫
Ω

u dx.

We also denote by W 1,q(Ω) the usual Sobolev space and W 1,q
0 (Ω) the completion

of C∞0 (Ω) in W 1,q(Ω), where C∞0 (Ω) is the set of all infinitely differentiable
functions with compact supports in Ω.

Let L be a second-order elliptic operator in divergence form

Lu = Dα(AαβDβu)

acting on column vector-valued functions u = (u1, . . . , ud)> defined on the
domain Ω, where the coefficientsAαβ = Aαβ(x) are d×dmatrix-valued functions
on Rd satisfying the strong ellipticity condition, that is, there is a constant
λ ∈ (0, 1] such that for any x ∈ Rd and ξα ∈ Rd, α ∈ {1, . . . , d}, we have

|Aαβ | ≤ λ−1,

d∑
α,β=1

Aαβξβ · ξα ≥ λ
d∑

α=1

|ξα|2.

The adjoint operator L∗ of L is defined by

L∗u = Dα((Aβα)>Dβu),

where (Aβα)> is the transpose of Aβα.
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In the definition below, G = G(x, y) is a d × d matrix-valued function and
Π = Π(x, y) is a 1× d vector-valued function in Ω× Ω.

Definition 2.1. Let d ≥ 3 and Ω be a bounded domain in Rd. We say that
(G,Π) is a Green function (for the flow velocity) of L in Ω if it satisfies the
following properties.
(a) For any y ∈ Ω and R > 0,

G(·, y) ∈W 1,1
0 (Ω)d×d ∩W 1,2(Ω \BR(y))d×d

and
Π(·, y) ∈ L̃1(Ω)d ∩ L2(Ω \BR(y))d.

(b) For any y ∈ Ω, (G(·, y),Π(·, y)) satisfies{
LG(·, y) +∇Π(·, y) = −δyI in Ω,

divG(·, y) = 0 in Ω.

(c) If (u, p) ∈W 1,2
0 (Ω)d × L2(Ω) is a weak solution of{L∗u+∇p = f in Ω,

div u = g in Ω,

where f ∈ L∞(Ω)d and g ∈ L̃∞(Ω), then for a.e. y ∈ Ω, we have

u(y) = −
∫

Ω

G(x, y)>f(x) dx+

∫
Ω

Π(x, y)>g(x) dx. (2.1)

Remark 2.2. The property (c) in the definition above together with the solv-
ability result in, for instance, [6, Lemma 3.2] gives the uniqueness of a Green

function in the sense that if (G̃, Π̃) is another Green function satisfying the
above properties, then for each φ ∈ C∞0 (Ω)d and ϕ ∈ C∞0 (Ω), we have∫

Ω

(
G(x, y)> − G̃(x, y)>

)
φ(x) dx =

∫
Ω

(
Π(x, y)> − Π̃(x, y)>

)
ϕ(x) dx = 0

for a.e. y ∈ Ω.

We make the following assumptions to construct the Green function of L in
Ω.

Assumption 2.3. There exists a constant K0 > 0 such that the following
holds. For any g ∈ L̃2(Ω), there exists u ∈W 1,2

0 (Ω)d satisfying

div u = g in Ω, ‖Du‖L2(Ω) ≤ K0‖g‖L2(Ω).

Remark 2.4. From [1, Theorem 4.1], it follows that Assumption 2.3 holds in a
bounded John domain. Moreover, by a scaling argument, we see that if Ω = BR,
then the assumption holds with q ∈ (1,∞) in place of 2 and the constant K0

depending only on d and q.

The following assumption holds, for instance, when the coefficients Aαβ of L
are variably partially BMO; see [2, Theorem 6.2].
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Assumption 2.5. There exist constants R0 ∈ (0, 1] and A0 > 0 such that the
following holds. Let x0 ∈ Ω and 0 < R < min{R0,dist(x0, ∂Ω)}. If (u, p) ∈
W 1,2(BR(x0))d × L2(BR(x0)) satisfies{

Lu+∇p = f in BR(x0),

div u = 0 in BR(x0),

where f ∈ L∞(BR(x0))d, then we have u ∈ C(BR/2(x0))d (in fact, a version of

u belongs to C(BR/2(x0))d) with the estimate

‖u‖L∞(BR/2(x0)) ≤ A0

(
R−d/2‖u‖L2(BR(x0)) +R2‖f‖L∞(BR(x0))

)
.

The same statement holds true when L is replaced by L∗.

In the theorem below and throughout the paper, we denote

dy = dist(y, ∂Ω), d∗y = min{R0, dy}.

Theorem 2.6. Let Ω be a bounded domain in Rd, where d ≥ 3. Then, under
Assumptions 2.3 and 2.5, there exist Green functions (G,Π) of L and (G∗,Π∗)
of L∗ such that for any y ∈ Ω, we have

G(·, y), G∗(·, y) ∈ C(Ω \ {y})d×d,

and there exists a measure zero set Ny ⊂ Ω such that

G(x, y) = G∗(y, x)>, G(y, x) = G∗(x, y)> for all x ∈ Ω \Ny. (2.2)

Moreover, for any x, y ∈ Ω with 0 < |x− y| < d∗y/2,

|G(x, y)| ≤ N |x− y|2−d, (2.3)

where N = N(d, λ,K0, A0).

We have the following corollary, the estimates in which can be derived from
the proof of Theorem 2.6. Note that the estimates for Π(·, y) in (ii) are new
even in the case when Ω is a Lipschitz domain; cf. [6, Theorem 2.3].

Corollary 2.7. Let (G,Π) be the Green function of L derived from 2.6 under
Assumptions 2.3 and 2.5. Then the following hold.
(i) For any y ∈ Ω and R ∈ (0, d∗y), we have that

‖G(·, y)‖
L2d/(d−2)(Ω\BR(y))

+ ‖DG(·, y)‖
L2(Ω\BR(y))

≤ NR(2−d)/2, (2.4)

‖G(·, y)‖Lq(BR(y)) ≤ NqR2−d+d/q, q ∈ [1, d/(d− 2)),

‖DG(·, y)‖Lq(BR(y)) ≤ NqR1−d+d/q, q ∈ [1, d/(d− 1)).

Moreover, ∣∣{x ∈ Ω : |G(x, y)| > t}
∣∣ ≤ Nt−d/(d−2), ∀t > (d∗y)2−d,∣∣{x ∈ Ω : |DxG(x, y)| > t}
∣∣ ≤ Nt−d/(d−1), ∀t > (d∗y)1−d.
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(ii) For any y ∈ Ω and R ∈ (0, d∗y), we have that

‖Π(·, y)‖
L2(Ω\BR(y))

≤ NR(2−d)/2, (2.5)

‖Π(·, y)‖Lq(BR(y)) ≤ NqR1−d+d/q, q ∈ [1, d/(d− 1)).

Moreover, ∣∣{x ∈ Ω : |Π(x, y)| > t}
∣∣ ≤ Nt−d/(d−1), ∀t > (d∗y)1−d.

In the above, the constant N depends only on d, λ, K0, and A0, and Nq depends
also on q.

To obtain the global pointwise bound for G(x, y), we impose the following
assumption. By using the W 1,q-estimates in [8, Theorem 2.4] and a bootstrap
argument (see, for instance, the proof of [6, Theorem 2.9]), one can check that
the assumption holds when the coefficients Aαβ of L are variably partially BMO
and Ω is a Reifenberg flat domain.

Assumption 2.8. There exist constants R0 ∈ (0, 1] and A1 > 0 such that the
following holds. Let x0 ∈ ∂Ω and R ∈ (0, R0). If (u, p) ∈ W 1,2(ΩR(x0))d ×
L2(ΩR(x0)) satisfies 

Lu+∇p = f in ΩR(x0),

div u = 0 in ΩR(x0),

u = 0 on ∂Ω ∩BR(x0),

where f ∈ L∞(ΩR(x0))d, then we have

‖u‖L∞(ΩR/2(x0)) ≤ A1

(
R−d/2‖u‖L2(ΩR(x0)) +R2‖f‖L∞(ΩR(x0))

)
.

The same statement holds true when L is replaced by L∗.

Theorem 2.9. Let Ω be a bounded domain in Rd, where d ≥ 3. Let (G,Π) be
the Green function constructed in Theorem 2.6 under Assumptions 2.3 and 2.5.
If we assume Assumption 2.8 (in addition to Assumptions 2.3 and 2.5), then
for any x, y ∈ Ω with 0 < |x− y| < R0, we have

|G(x, y)| ≤ N |x− y|2−d,

where N = N(d, λ,K0, A0, A1).

We end this section with the following remark.

Remark 2.10. It is not clear us if the estimates in Corollary 2.7 still hold for
R ∈ (0, R0) under Assumption 2.8 in addition to Assumptions 2.3 and 2.5. In
fact, the proofs of Lemmas 3.2–3.5 in Section 3 does not work for y ∈ Ω and
dy < R < R0, because the divergence equation is not necessarily solvable in
ΩR(x).
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3. Approximated Green functions

Hereafter in the paper, we use the following notation.

Notation 3.1. For nonnegative (variable) quantities A and B, we denote A . B
if there exists a generic positive constant N such that A ≤ NB. We add sub-
script letters like A .a,b B to indicate the dependence of the implicit constant
N on the parameters a and b.

In this section, we assume that the hypotheses of Theorem 2.6 hold. Under
the hypotheses, we shall construct approximated Green functions for the flow
velocity of the Stokes system. We mainly follow the arguments in [12] (see also
[2, 6]).

Let y ∈ Ω, ε ∈ (0, 1], k ∈ {1, . . . , d}, and

Φε,y(x) = − 1

|Ωε(y)|
IΩε(y)(x). (3.1)

By [6, Lemma 3.2], there exists a unique (v, π) = (vε,y,k, πε,y,k) ∈ W 1,2
0 (Ω)d ×

L̃2(Ω) satisfying {Lv +∇π = Φε,yek in Ω,

div v = 0 in Ω,
(3.2)

where ek is the kth unit vector in Rd. Moreover, we have

‖Dv‖L2(Ω) + ‖π‖L2(Ω) .d,λ,K0 |Ωε(y)|(2−d)/(2d). (3.3)

Due to Assumption 2.5, there is a version ṽ of v such that ṽ = v a.e. in Ω and ṽ is
continuous in Ω. We define the approximated Green function (Gε(·, y),Πε(·, y))
(for the flow velocity) of L by

Gjkε (·, y) = ṽj = ṽjε,y,k, Πk
ε(·, y) = π = πε,y,k.

In the lemma below, we obtain a pointwise bound for Gε(·, y).

Lemma 3.1. Let ε ∈ (0, 1] and x, y ∈ Ω with

0 < 2ε <
|x− y|

2
<
d∗y
3
.

Then we have

|Gε(x, y)| .d,λ,K0,A0 |x− y|2−d.

Proof. Denote

(v, π) = (G·kε (·, y),Πk
ε(·, y)), (3.4)

where G·kε (·, y) is the kth column of Gε(·, y). Let x ∈ Ω and 0 < 2ε < R < d∗y.

Find (u, p) ∈W 1,2
0 (Ω)d × L̃2(Ω) satisfying{Lu+∇p = −f in Ω,

div u = 0 in Ω,
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where f = IΩR(x)(sgn v1, . . . , sgn vd)>. Then by Assumption 2.5, the Sobolev

inequality, and the W 1,2-estimate, we have

‖u‖L∞(BR/2(y)) .A0 R
−d/2‖u‖L2(BR(y)) +R2

.d,A0 R
1−d/2‖Du‖L2(Ω) +R2

.d,λ,K0,A0
R2.(3.5)

Observe that∫
ΩR(x)

f · v dz =

∫
Ω

AαβDβv ·Dαu dz = –

∫
Bε(y)

uk dz. (3.6)

Since ε < R/2, combining (3.5) and (3.6), we get

‖v‖L1(ΩR(x)) .d,λ,K0,A0 R
2 (3.7)

for any x ∈ Ω and 0 < 2ε < R < d∗y.
We now ready to prove the lemma. Let

0 < 2ε < R :=
|x− y|

2
<
d∗y
3
.

Since BR(x) ⊂ Ω and BR(x) ∩Bε(y) = ∅, (3.2) yields that{
Lv +∇π = 0 in BR(x),

div v = 0 in BR(x).
(3.8)

For any z ∈ BR(x) and r ∈ (0, R] with Br(z) ⊂ BR(x), by Assumption 2.5
applied to (3.8) in Br(z), we have

‖v‖L∞(Br/2(z)) . r
−d/2‖v‖L2(Br(z)),

and thus, by a standard iteration argument (see, for instance, [11, pp. 80–82]),
we obtain

‖v‖L∞(BR/2(x)) . R
−d‖v‖L1(BR(x)). (3.9)

From this together with (3.7) and continuity of v, we get the desired estimate.
The lemma is proved. �

From Lemma 3.1, by following the steps in the proof of [6, Lemma 4.3], we
obtain the following uniform estimates for Gε(·, y) and DGε(·, y). The corre-
sponding estimates for Πε(·, y) can be found in Lemma 3.5 below.

Lemma 3.2. Let ε ∈ (0, 1], y ∈ Ω, and R ∈ (0, d∗y). Then we have

‖Gε(·, y)‖
L2d/(d−2)(Ω\BR(y))

+ ‖DGε(·, y)‖
L2(Ω\BR(y))

≤ NR(2−d)/2, (3.10)

‖Gε(·, y)‖Lq1 (BR(y)) ≤ N1R
2−d+d/q1 , q1 ∈ [1, d/(d− 2)),

‖DGε(·, y)‖Lq2 (BR(y)) ≤ N2R
1−d+d/q2 , q2 ∈ [1, d/(d− 1)). (3.11)

Moreover, we have∣∣{x ∈ Ω : |Gε(x, y)| > t}
∣∣ ≤ Nt−d/(d−2), ∀t > (d∗y)2−d,
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∣∣ ≤ Nt−d/(d−1), ∀t > (d∗y)1−d.

In the above, the constant N depends only on d, λ, K0, and A0, and Ni depend
also on qi.

Lemma 3.3. Let ε ∈ (0, 1], y ∈ Ω, and R ∈ (0, d∗y). Then we have∥∥Πε(·, y)− (Πε(·, y))BR(y)

∥∥
L1(BR(y))

.d,λ,K0,A0 R.

Proof. Recall the notation (3.4). Let us fix q ∈ (1, d/(d − 1)) and q′ ∈ (d,∞)
with 1

q + 1
q′ = 1. By the existence of solutions to the divergence equation in a

ball (see, for instance, [1]), there exists φ ∈W 1,q′

0 (BR(y))d such that

div φ = sgn(π − (π)BR(y))−
(

sgn(π − (π)BR(y))
)
BR(y)

in BR(y)

and

‖Dφ‖Lq′ (BR(y)) ≤ NR
d/q′ .

Here, by a scaling argument, one can check that the constant N in the above
inequality depends only on d and q′. We extend φ by zero in Ω \ BR(y) and
apply φ as a test function to (3.2) to get∫

Ω

π div φdx = −
∫

Ω

AαβDβv ·Dαφdx+ –

∫
Bε(y)

φdx.

Observe that∫
Ω

π div φdx =

∫
Ω

(π − (π)BR(y)) div φdx =

∫
BR(y)

|π − (π)BR(y)| dx

and

‖φ‖L∞(Ω) = ‖φ‖L∞(BR(y)) .d R
1−d/q′‖Du‖Lq′ (BR(y)) . R.

Combining these together and using Hölder’s inequality and (3.11), we have

‖π − (π)BR(y)‖L1(BR(y)) . ‖Dv‖Lq(BR(y))‖Dφ‖Lq′ (BR(y)) +R

.d,Λ,K0,A0
R.

The lemma is proved. �

Lemma 3.4. Let ε ∈ (0, R/16], y ∈ Ω, and R ∈ (0, d∗y/2). For k ∈ {1, . . . , d},
we set

Π̃k
ε(·, y) = Πk

ε(·, y)− (Πk
ε(·, y))

BR(y)\BR/2(y)
.

Then we have

‖Π̃k
ε(·, y)‖

L2(BR(y)\BR/2(y))
.d,λ,K0,A0 R

(2−d)/2,

where G·kε (·, y) is the kth column of Gε(·, y).
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Proof. Recall the notation 3.4, and set

π̃ = π − (π)
BR(y)\BR/2(y)

.

It suffices to show that

‖π̃‖
L2(BR(y)\BR/2(y))

. R−1‖v‖
L2(B5R/4(y)\BR/4(y))

(3.12)

because by Lemma 3.1, we have

‖v‖
L2(B5R/4(y)\BR/4(y))

.d,λ,K0,A0
R2−d/2.

From the existence of solutions to the divergence equation, there exists a func-
tion φ ∈W 1,2

0 (BR(y) \BR(y))d such that

div φ = π̃ in BR(y) \BR/2(y)

and
‖Dφ‖L2(BR(y)\BR/2(y)) .d ‖π̃‖L2(BR(y)\BR/2(y)). (3.13)

We extend φ by zero in Ω \ (BR(y) \BR/2(y)) and apply φ as a test function to
(3.2) to get ∫

Ω

π div φdx = −
∫

Ω

AαβDβv ·Dαφdx.

Thus by using Hölder’s inequality, (3.13), and the fact that∫
Ω

π div φdx =

∫
Ω

π̃ div φdx =

∫
BR(y)\BR/2(y)

|π̃|2 dx,

we have ∫
BR(y)\BR/2(y)

|π̃|2 dx .d,λ
∫
BR(y)\BR/2(y)

|Dv|2 dx. (3.14)

Now we let z ∈ BR(y) \BR/2(y). Since BR/4(z) ∩Bε(y) = ∅, it holds that{
Lv +∇π = 0 in BR/4(z),

div v = 0 in BR/4(z).

By the Caccioppoli inequality (see, for instance, [6, Lemma 3.3]) applied to the

above system and the fact that BR/4(z) ⊂
(
B5R/4(y) \BR/4(y)

)
, we have∫

BR/8(z)

|Dv|2 dx . 1

R2

∫
B5R/4(y)\BR/4(y)

|v|2 dx

Since the above inequality holds for all z ∈ BR(y) \ BR/2(y), by a covering
argument, we obtain that∫

BR(y)\BR/2(y)

|Dv|2 dx . 1

R2

∫
B5R/4(y)\BR/4(y)

|v|2 dx,

which together with (3.14) gives (3.12). The lemma is proved. �

From the above two lemmas, we get the following uniform estimates for
Πε(·, y).
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Lemma 3.5. Let ε ∈ (0, 1], y ∈ Ω, and R ∈ (0, d∗y). Then we have

‖Πε(·, y)‖
L2(Ω\BR(y))

≤ NR(2−d)/2, (3.15)

‖Πε(·, y)‖Lq(BR(y)) ≤ NqR1−d+d/q2 , q ∈ [1, d/(d− 1)).

Moreover, we have∣∣{x ∈ Ω : |Πε(x, y)| > t}
∣∣ ≤ Nt−d/(d−1), ∀t > (d∗y)1−d.

In the above, the constant N depends only on d, λ, K0, and A0, and Nq depends
also on q.

Proof. We only prove (3.15) because the others are its easy consequences; see,
for instance, [2, Lemmas 4.4 and 4.5]. Recall the notation (3.4). We may assume
that 0 < R < d∗y/2. If R/16 ≤ ε ≤ 1, then by (3.3) we have

‖π‖L2(Ω) . |BR/2(y)|(2−d)/(2d) . R(2−d)/2.

Assume 0 < ε ≤ R/16, and let η be an infinitely differentiable function in Rd
satisfying

0 ≤ η ≤ 1, η ≡ 1 in BR/2(y), supp η ⊂ BR(y), |∇η| .d R−1.

By Assumption 2.3, there exists φ ∈W 1,2
0 (Ω)d such that

div φ = πI
Ω\BR(y)

−
(
πI

Ω\BR(y)

)
Ω

in Ω (3.16)

and

‖φ‖L2d/(d−2)(Ω) + ‖Dφ‖L2(Ω) .d,K0 ‖π‖L2(Ω\BR(y))
. (3.17)

We apply (1− η)φ as a test function to (3.2) to obtain∫
Ω

π div((1− η)φ) dx = −
∫

Ω

AαβDβv ·Dα((1− η)φ) dx.

Set π̃ = π − (π)
BR(y)\BR/2(y)

, and note that by (3.16) and
∫

Ω
π dx = 0, we have∫

Ω

π div((1− η)φ) dx

=

∫
Ω

π div φdx−
∫

Ω

π̃ div(ηφ) dx

=

∫
Ω\BR(y)

|π|2 dx−
∫
BR(y)\BR/2(y)

π̃∇η · φdx−
(
πI

Ω\BR(y)

)
Ω

∫
BR(y)

π̃η dx.

We also note that∣∣∣∣(πIΩ\BR(y)

)
Ω

∫
BR(y)

π̃η dx

∣∣∣∣ . R−d/2‖π‖L2(Ω\BR(y))

∥∥π − (π)BR(y)

∥∥
L1(BR(y))

.

Therefore, from Hölder’s inequality, (3.17), and the fact that∫
BR(y)

|π̃| dx .
∫
BR(y)

∣∣π − (π)BR(y)

∣∣ dx,
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we get

‖π‖
L2(Ω\BR(y))

. ‖Dv‖
L2(Ω\BR(y))

+ ‖π̃‖
L2(BR(y)\BR/2(y))

+R−d/2
∥∥π − (π)BR(y)

∥∥
L1(BR(y))

.

Finally, by using (3.10) and Lemmas 3.3 and 3.4, we conclude (3.15). �

4. Proofs of main theorems

Throughout this section, we denote by (Gε(·, y),Πε(·, y)) the approximated
Green function constructed in Section 3.

Proof of Theorem 2.6. Let ε ∈ (0, 1] and y ∈ Ω. By Lemmas 3.2 and 3.5, the
weak compactness theorem, and a diagonalization process, we see that there
exist a sequence {ερ}∞ρ=1 tending to zero and a pair (G(·, y),Π(·, y)) such that
for any R ∈ (0, d∗y),

(1− ηR)Gερ(·, y) ⇀ (1− ηR)G(·, y) weakly in W 1,2
0 (Ω)d×d,

Περ(·, y) ⇀ Π(·, y) weakly in L2(Ω \BR(y))d,
(4.1)

where ηR is any smooth function in Rd satisfying ηR = 1 in BR(y), and that
for fixed q ∈ (1, d/(d− 1)),

Gερ(·, y) ⇀ G(·, y) weakly in W 1,q(Bd∗y (y))d×d,

Περ(·, y) ⇀ Π(·, y) weakly in Lq(Bd∗y (y))d.
(4.2)

Then one can check that (G(·, y),Π(·, y)) satisfies the properties (a)–(c) in Defi-
nition 2.1, which means that (G,Π) is the Green function of L in Ω. Due to the
property (b) and Assumption 2.5, the function G(·, y) is continuous in Ω \ {y}.
More precisely, we choose a version of G which is continuous in Ω \ {y} and
denote it again by G.

Note that the identity (2.1) holds for all y ∈ Ω if g ≡ 0. Indeed, if (u, p) ∈
W 1,2

0 (Ω)d × L2(Ω) is a weak solution of (2.1) with g ≡ 0, then by Assumption
2.5 there is a continuous version of u in Ω, denoted again by u, satisfying

–

∫
Ωερ (y)

u dx = −
∫

Ω

Gερ(x, y)>f(x) dx for all y ∈ Ω.

By taking ρ→∞ and using the continuity of u, we have

u(y) = −
∫

Ω

G(x, y)>f(x) dx for all y ∈ Ω. (4.3)

Now we shall prove the estimates in Corollary 2.7 and the pointwise bound
(2.3). The estimates (2.4) and (2.5) are simple consequences of (3.10), (3.15),
and the weak semi-continuity. Then by following the same steps used in, for
instance, [2, Lemmas 4.4 and 4.5], one can prove that the others in the corollary
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also hold. To show (2.3), let x, y ∈ Ω with 0 < |x − y| < d∗y/2, and denote
r = |x− y|/2. Since (G(·, y),Π(·, y)) satisfies{

LG(·, y) +∇Π(·, y) = 0 in Br(x),

divG(·, y) = 0 in Br(x),

by Assumption 2.5, Hölder’s inequality, and the estimates in Corollary 2.7, we
have

|G(x, y)| . r(2−d)/2‖G(·, y)‖L2d/(d−2)(Br(x))

. r(2−d)/2‖G(·, y)‖
L2d/(d−2)(Ω\Br(y))

. r2−d,

which gives (2.3).
For σ ∈ (0, 1] and x ∈ Ω, let (G∗σ(·, x),Π∗σ(·, x)) be the approximated Green

function for L∗, i.e., if we set w = wσ,x,` as the `-th column of G∗σ(·, x) and

κ = κσ,x,` as the `-th component of Π∗σ(·, x), then (w, κ) ∈ W 1,2
0 (Ω)d × L̃2(Ω)

satisfies {L∗w +∇κ = Φσ,xe` in Ω,

divw = 0 in Ω,

where Φσ,x is given in (3.1). By proceeding similarly as above, we can find a se-
quence {στ}∞τ=1 tending to zero and a unique Green function (G∗(·, x),Π∗(·, x))
of L∗ in Ω such that

(
G∗στ (·, x),Π∗στ (·, x)

)
and (G∗(·, x),Π∗(·, x)) satisfy the

natural counterparts of (4.1), (4.2), and the properties of the Green function of
L. Notice from (4.3) that

G∗σ(y, x) = –

∫
Ωσ(x)

G(z, y)> dz for all x, y ∈ Ω.

Then by the continuity of G(·, y) on Ω \ {y}, we have

lim
σ→0

G∗σ(y, x) = G(x, y)> for all x, y ∈ Ω with x 6= y. (4.4)

Now we prove (2.2). Let y ∈ Ω be given. Then there exists a measure zero
set Ny ⊂ Ω containing y such that, by passing to a subsequence,

lim
ρ→∞

Gερ(x, y) = G(x, y) for all x ∈ Ω \Ny. (4.5)

Indeed, since it holds that

‖Gερ(·, y)‖W 1,1(Ω) ≤d,λ,K0,A0,R0,dist(y,∂Ω) 1,

by the Rellich-Kondrachov compactness theorem, for a sufficiently small δ > 0,
there exists a subsequence of {Gερ(·, y)} which converges a.e. to G(·, y) on Ωδ,
where Ωδ is a smooth subdomain satisfying

{x ∈ Ω : Bδ(x) ⊂ Ω} ⊂ Ωδ ⊂ Ω.
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Thus by a diagonalization process, one can easily see that (4.5) holds. Combin-
ing (4.5) and the counterpart of (4.4), we have

G(x, y) = G∗(y, x)>

for all x ∈ Ω \ Ny. Similarly, we see that the above identity holds for all
y ∈ Ω \Nx. This gives (2.2). The theorem is proved. �

We now prove Theorem 2.9.

Proof of Theorem 2.9. The proof is similar to that of Lemma 3.1. Note that
by utilizing Assumptions 2.5 and 2.8, and following the steps used in deriving
(3.7), we have

‖Gε(·, y)‖L1(ΩR(x)) .d,λ,K0,A0,A1
R2 (4.6)

for all x, y ∈ Ω and 0 < 2ε < R < R0.
Let x, y ∈ Ω with 0 < |x − y| < R0, and set R = |x − y|/2. Then for

σ ∈ (0, R), since (G∗σ(·, x),Π∗σ(·, x)) satisfies{
L∗G∗σ(·, x) +∇Π∗σ(·, x) = 0 in ΩR(y),

divG∗σ(·, x) = 0 in ΩR(y),

by Assumptions 2.5 and 2.8, we have

‖G∗σ(·, x)‖L∞(Ωr/2(z)) .d,A0,A1 r
−d/2‖G∗σ(·, x)‖L2(Ωr(z))

for any z ∈ ΩR(y) and 0 < r < dist(z, ∂BR(y)). From this together with a
standard iteration argument, we get

‖G∗σ(·, x)‖L∞(ΩR/2(y)) . R
−d‖G∗σ(·, x)‖L1(ΩR(y)) . R

2−d

where we used the counterpart of (4.6) in the second inequality. Finally, by
using (4.4) we obtain the desired global bound for G(x, y). The theorem is
proved. �
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