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Abstract

The influence of nonlinear phenomena on the behavior of stationary forced flexural-gravity
waves on the surface of deep water is investigated, when the perturbation of external pressure
moves with near-resonant velocity. It is shown that there are three branches of bounded
stationary solutions turning into asymptotic solutions of the linear problem with zero initial
conditions. For the first time ice sheet destruction by turbulent fluctuations of atmosphere
pressure in ice adjacent layer in wind conditions is studied.
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1 Introduction

The impact of nonlinear effects is one of the physical factors restricting the vibration amplitude
of particles of a continuum under an external driving force (load). In the linear approximation
neglecting dissipation, the vibration amplitude is infinite in case resonant conditions are held. In
continuum with wave propagation of perturbations, the resonance conditions at a load localized
in a single spatial direction are reduced to fulfillment of the two relations: V = ' (k), wy =
w (k) — Vk, where V is the load velocity, wy is the load vibration frequency, w(k) and ' (k) are
the frequency and group velocity of a wave with the wave number k. In the linear approximation,
the continuum properties are defined by the dispersion equation w = w(k). The two resonance
conditions represent an algebraic relation between V, k, and wy. As the conditions are held,
the amplitude of a wave with the wave number £ infinitely grows under a load. The resonance
conditions mean that the load is to move with the group velocity of a wave, whose frequency
coincides with the load vibration frequency in the accompanying frame of reference.

A typical example of a continuum, allowing fulfillment of the resonance conditions, is a layer
of free-surface ideal fluid. The external load is pressure applied to the free surface. The resonance
conditions can be held neglecting the surface phenomena only at w; # 0 (Debnath and Rosenblat
1969). The resonance conditions can be held at w; = 0 if capillary-gravitational forces are taken
into account (Rayleigh 1883) or when an elastic plate floats on the fluid surface (Kheysin 1963). In
1883, Rayleigh studied stationary solutions to the problem of excitation of capillary—gravity waves
by a pressure source localized near a horizontal straight line moving over the surface of infinitely



Aleksey Marchenko: Nonlinear Phenomena in Resonant Excitation ...

deep fluid. In the linear approximation, he showed that the amplitude of the fluid surface perturba-
tion infinitely grows as the load velocity tends to its critical value. The latter was found from the
condition of coinciding wavenumbers of the waves carrying energy away from the pressure load-
ing point to infinity. The resonance of the pressure loading with flexural-gravity (Kheysin 1963) or
gravity (Debnath and Rosenblat 1969) waves is related to the same behavior of the waves carrying
energy to infinity. Schulkes and Sneyd (1988) constructed time-dependent solution describing the
response of floating elastic plate on the pressure loading. Bates and Shapiro (1981) and Hosking et
al (1988) investigated the influence of viscous-elastic damping on the bounding of flexural-gravity
wave amplitude in the vicinity of the resonance. The wave resistance in the Rayleigh problem
was calculated by Richard and Raphael (1999) taking into account viscous properties of the fluid.
It was shown to remain limited as the load velocity tends to the critical value. Wave resistance
emerging due to emission of capillary-gravity waves in the problem considered by Rayleigh is
zero if the load velocity is lower than the critical one and nonzero otherwise.

The problem of resonant excitation of surface gravity waves in the ideal fluid, its surface under
a running oscillating load, was studied in (Akylas 1984), with a nonlinear Schrodinger equation
(NSE) derived for the resonant wave envelope. The external load was simulated by the NSE force
term proportional to the Dirac §-function. A stationary solution to the problem was shown to be
limited and have a few branches. The dynamics of capillary-gravity and flexural-gravity waves
excited by an external load and moving at a near-resonance velocity was studied in (Marchenko
and Dias 1999). Similar (Akylas 1984) the problem was formally reduced to the NSE with a
force term proportional to the Dirac d-function. The nonlinearity-accounting method proposed in
(Akylas 1984) is based on asymptotic expansions presupposing slow changes of the wave and load
amplitudes. A formal substitution of the d-function into the right-hand side of the NSE does not
meet this condition.

The studies of resonant excitation of flexural-gravity waves by moving vehicles should take
into account the restriction of the vehicle sizes. The results of theoretical and experimental studies
are contained in the definitive book (Squire et al 1996). The other field of the application of the
problem is related to the study of wind influence on ice covered water layer. The interaction of
the wind with ice ridges excites air vorticity and air pressure perturbations propagating with wind
velocity. The extension of ice ridges in the same space direction causes air perturbations extended
in the same direction. The simplest model of such air perturbation is based on the using of the
Dirac é-function for the force term in dynamic boundary condition. Present study is devoted to
the studies of forced nonlinear flexural-gravity waves excited by a load modeled by the external
pressure d-function. We study forced waves of sufficiently small steepness, which don’t cause ice
sheet breakup. In the case of deep water the steepness parameter can be used for the construction
of asymptotical series describing the solution of the problem (Fenton 1979). For the studies of
flexural-gravity waves of large steepness more comprehensive technique should be used (Forbes
1986 1988).

2 Basic equations

We consider potential motions of a layer of infinitely deep fluid against the background of a flow
with a constant velocity V' (Figure 1a). The fluid is covered by a thin elastic plate. The motion
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Figure 1: The flow of infinitely deep fluid beneath an elastic ice plate (a). The dependence
of the amplitude of stationary forced wave in the loading point from the velocity of external
pressure in the resonant vicinity (b)

equations in the dimensionless form are written as

V2p =0, z < en (1)

Dy ¢ 9 *n
ha - = = 2
Dt+2(v¢) +77+8w4+p 0, z=¢€n (2)

D ondp _ g

Dt sax or 9z, ©)

I
)
3

p — 0, z — —00 4)

where V = (8/0x,0/0z), D/Dt = 0/8t — V3/dz, ¢(t, =, 2) is the velocity potential, z =
n(t, =) is the fluid surface equation, p = p(x) is the external pressure applied to the fluid surface,
¢ is the time, z and z are the horizontal and vertical coordinates. In the frame reference moving
with water particles with velocity V' the problem under the consideration is equal to the problem
about the influence of the moving pressure field on the rest fluid.

When writing the equations in the dimensionless form, the characteristic length scale [ is put
to (ER3/(12pg(1 — v2))) /4 Where E and v are Young’s modulus and Poisson ratio of the elastic
plate, p is the fluid density, and g is the gravity acceleration. The typical time scale is (I/ g)l/ 2
The dimensional velocity potential and flow velocity are a (1g)*/? ¢ and V (1g)"2, respectively,
a is the typical value of the function 7(#, z). The dimensionless parameter is € = a/l. Assuming
E=3-10°Nm™2, v = 0.34, p = 1020kgm =3 and h = 1m one finds [ ~ 13m, and typical time
is about 1 sec. The estimation of the typical time shows that the influence of creep deformations
can be disregarded, and the elasticity model for the ice is reasonable in the problem (Ashton 1986).

We suppose the external pressure in dimensionless variables is written as

1 [ .
p(z) = pod(x), 8(z) = %/ et dg; S

Averaging over the interval (—L;/2, L,/2), where Ly, defines typical size of the perturbation of
external pressure filed, dimensional pressure (p) is related to pg as

po = (p) Ly(pgal)~" (6)



Aleksey Marchenko: Nonlinear Phenomena in Resonant Excitation ...

3 Solution to the linearized problem

The solution to the set of (1)-(4), describing excitation of flexural-gravity waves by pressure
source (5) and meeting the initial conditions

n =0, on/ot = 0, t=0 (7N

is written in the linear approximation (¢ = 0) as (Schulkes and Sneyd 1988)

_ _'L.po\Ilw _ __pO\I/n
p= i + c.c., n= e + c.c.,
7 —kV + we—i(w—kV)t ) v Ikl(l _ e—i(w—kV)t) . (3
- zk:c—!—)k]zdk: U — / ikx
v / w(w —kV) ¢ ' K w(w —kV) ¢k

where the dispersion function w = w(k) is given by

w = V/I[K[(1+ k%) €))

We represent the functions W, and W, as the sum of the stationary and nonstationary terms

v, = -VISO + \IJZ;S, v, =1I,+ \I/ZS (10)
Letkztk|z |k|ezkx
I, = | —————dk I,= | ————=dk
¢ / wlw—VEk) K / w(w —VEk)
C C
ns e—i(w—Vk)t zkl+|k|2dk pns |k|6_i(w_Vk)t 1kxdk: (11)
‘P_/ w—Vk © ’ " T Tww- V) ©
C C

The integrals I,,, I, U3 and U7¢ depend on the contour C position with respect to the roots of
the equation
w—-Vk=0 (12)

located at the complex plane k. Using (9), one finds that (12) has six roots. There are two real
positive roots k4 and k_, when V > V., V, = (256/27)1/8 ~ 1.32. At V = V,, the roots merge
at the point ky = k_ = k,, where k, = 37/4 =~ 0.76. AtV € (0,V,), the roots ky and k_
are became complex conjugate. The roots ky and k_ are supposed to lie in the upper and lower
semiplanes of the complex variable &, respectively. We suppose that the contour C traces the roots
k =k, and k = k_ from below and above, respectively. At V € (0, V}.), the contour C coincides
with axis Imk = 0. Such a choice of the contour maintains fulfillment of the radiation conditions
in the asymptotic stationary solution described by functions I, and I;,.

Using the stationary phase method, one can readily show that the functions W7 and ¥7® are
exponentially damped at V' € (0,V;) when ¢t — oo; at V' > V/, the damping is proportional to
t~1/2 (Schulkes and Sneyd 1988). At V = V., solution (8) infinitely grows in time proportionally
to t1/2. Therefore, the load velocity V. is referred to as resonant. The functions I, and I, are
continuous at any z, since the integrands in (8) are damped proportionally to k= at |k| — oco.
Using the Jordan lemma, we arrive at

Iy=Are™ 4+ IF, x>0, IL=A*"+1I,, z<0 (13)
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Functions I,‘;F (z) and I (z) are reduced to the integrals along the cuts located in the upper and
lower half-planes of the Riemann surface. The amplitudes A4 are givenby Ay = +271iky (wy (W) —
V))~!. It follows from (9) that

i oo

{ e
o )k

-0

ikz

eFrdk + 2m6(x), 6(z) =

3 —
831, __Z,/ wVk — |kl w

ox3 wk(w — VE)
C

The integral in formula (14) is interpreted in the sense of a principal value in the vicinity of points
k = k. The integrand is damped proportionally to |k|~%/2 at |k| — oo. Therefore, the integral
converges and is continuous at any z. The Heaviside function 6(z) is leapwise changed from zero
to unity at z = 0. Hence, [8°],/02%] = 2w, where [f] means the difference of values of an
arbitrary function f(z) at z — =£0.

Thus, using (8) and (10), one finds that [8377/ 83:3] = pg in the linearized problem, and
derivations of more lower orders are continuous in the point of the loading. We assume that
this property remains in the general formulation of the problem as well, taking into account the
nonlinear effects. Let us show that the boundary condition (2) including the external pressure
defined by (5) is equivalent to the boundary condition (2), in which the external pressure p = 0,
and to a certain contact-boundary condition at = (. Let us integrate (2) over coordinate z from
—A to A and then tend A to zero. The velocity potential at the fluid free surface and the fluid
free surface itself are continuous together with their first derivations with respect to ¢, x and z.
Therefore, the integrals of dp/8t, 7 and (Vip)? tend to zero at A — 0. Finally, we arrive at the
contact-boundary condition '

[6°0/02°] = —po (15)

Further we suppose that the load velocity is little different from resonant V.,
V=V, +e%A (16)

where ¢ << 1 and |A] < O(1). The parameter A is real and can have any sign. It follows
from (12) and (16) that k+ = k, + eAVA + O(e2A), A = /2k,/w,. The amplitudes Ay
near the resonance approximately are equal to each other A+ = A, (ev/A)~' + O(sv/A), where
Ay = 271 /(Vow, A) and w,, = 9%w/8k?|—k,. Hence, near the resonance we have

A, e(kr;tg)\\/Z)(i$+Z)+0(1)’ I, = iei(krif)\ A)’:+O(1) a7

I,= -
Y eV evVA

where signs “+” and “~” correspond to regions x > 0 and x < 0, respectively. One can see
from (10) and (17) that the solution in the resonance vicinity is close to the plane wave with the
wavenumber k = k,, propagating at the load velocity. The wave amplitude poA,/(2me|A|/?)
tends to infinity when A — 0. However, it follows from (15) that it is important to take into
account the derivatives of perturbation (described by functions Iff) exponentially weakening as
receding from its coordinate origin in order to meet this contact-boundary condition.

4 Nonlinear theory of a forced perturbation

From (17) it follows that the nonlinear terms in (2) and (3) are the same order as the linear terms
near the resonance. Therefore, the nonlinearity should necessarily be taken into account. A prime
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objective of this section is to derive an asymptotic nonlinear equation describing the stationary
shape of the fluid surface in the resonance vicinity. As the initial equations, we use set (1)—(4) at
p = 0 and contact-boundary condition (15).

Assuming the velocity potential and fluid surface amplitudes to be bounded, we search for
the solution to the considered set in the form of series with respect to the powers of the series
expansion parameter ¢,

p=pot+epr+eprt...,  n=mtem+emt ... (18)
with the first expansion terms are given by

wo(x,2,X) = —ipVS(X)Is(x,z) +cc.,

mo(z, X) = BO(X);(x) +cc,  B=ieVA(AV,)™ (19)

where X = ez is the slow spatial coordinate along the motion. It follows from (17) that the func-
tion ®(X) describes slow amplitude variations of the fluid velocity potential, caused by nonlinear
and dispersion effects. Substituting expansions (18) and (19) and using Fourier transform with
respect to the z-coordinate one find “short” asymptotic equation as (Marchenko 2001)

W %W

—2_W+Akr\1’+"@|\1"2\1’:07 K=

7. 35/8
66

(20)

where ¥ = ®exp(iAVAX) when X > 0, and ¥ = ® exp(—iAvVAX) when X < 0. From
(18)- (20) it follows that contact-boundary condition (15) is written as

i [0P/0X] + c.c. = poV; /(3ek?) 1

5 Nonlinear stationary driven waves

It follows from (10}, (19) and (21) that the function ¥ corresponding to a solution to the linearized
problem is written as

eM\/ZX X>0 Po
=0 P . U= -——P0 22
: l’O{ emWBX | x <0 W T 2w WA @2

We study the properties of solutions to nonlinear problem (20), (21), transforming into solutions
to linear problem (22), when the parameter « formally tending to zero.
Three branches of the solution to (20) is given by

" sinh™! (\/]A](X + X0)), X >0
I:\Iln:z'r)q/l—A—Iw—r ( A 0)> . A<0 (23)
k | —sinh! (A,/;A](x . X0)> . X <0

iRX 2
I1:0, = 7, { Sk . R=yfread o, AS0 Q4
) T
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7| tanh (A@(x + X0)> . X>0
[IT: 0, = irAy -2

26 | _tanh (A\/é(x _ X0)> . X <0

where 7 = |po|/po. It follows from condition (21) that Uy, o (¥, o = |¥,,| at X = 0) relating to
the nonlinear solutions (23)-(25) respectively satisfy to the equations

A>0 (25)

K |2
1:4wn,0\ﬂ2\A|_J%0: 3!12(;', A <0 26)
2 Vr
I1: 4%00 [ND + =002, = 35—:’1;;%" A>0 @7)
A2 AW v, o
LT : 4(——+ Vo) = 3!@02' —L, A>0 (28)

It follows from (26) and (27), that i¥,, o — ¥} o, and branch III turns into infinity at  — 0. From
(26) and (28) one finds that

Uno— Vg, A —0; o = |po|Vi/—w!/k(12ek2) ! (29)

Equation (27) has two real roots in the region A > A, where A.. ~ 0.4. Let the typical value
of the dimensional amplitude o of a wave be defined by equality Wy = 1. The dependences
U, 0(A) defined by formulas (26)-(28) are shown in Figure 1b (curves I, II, III). Curve IV is
defined by equations ¥,,; = \y/—Aw, /(2k) and describes the dependence of the amplitude of
free periodic wave on the parameter A. The work dA = — ffooo p(z)Dn/Dtdzdt is equal to the
work of the wave resistance force Fr with an opposite sign, dA = — FrV dt Simple calculations
based on the law of energy conservation for (1)-(4) show that averaged wave resistance (Fgr) =
ke (2m)~1 fOQW/ r FRrdz is equal to zero at the branches I and III of the solution. At the branch II
one finds, to the accuracy of O(e), that wave resistance is bounded
531

<FR> =c (V2 — 5) \Ijn,O =~ 1.26\1177,70, A> Aer (30)

Field experiments show that peak deflections of the ice sheet in the vicinity of moving vehicle are
observed when its speed is closed to resonant velocity V,.4/Ig (Squire et al 1996). Therefore we
assume that there are physical reasons due to which branches II and IIT of constructed solution
become unstable when ¥, > 1 and A € (0,A. ). Therefore further we analyze stresses in
forced wave in explicit resonance A = 0.

6 Estimations of ice destruction modes

Peak tensile stress yy,44, forming on the wave crests, is estimated using formulas

ER3 0%

= =2 = -
Omax = 6h méxxM, M 12(1 = 77) 922 3D
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Figure 2: Resonant wind velocity Vjg(a) and peak stress omax (b) on the wave crests versus
ice thickness h. Young modulus is equal to E = n - G Pa; values of coefficient n are shown
on the figures

It is assumed that typical value of the fluctuations of the atmosphere pressure in ice adjacent
atmosphere layer has the order of the drag force (Landau and Lifshitz 1988). The drag force is
estimated over the value of wind velocity on 10m distance from the ice surface as o = p,Co V73,
where C, = 2 - 1073 is drag coefficient and p, is air density (Andreas 1998). Dimensionless
amplitude pg is assumed to be equal to

oLg
po =
pgal

(32)

where L; is the horizontal size of the roughness of ice cover surface. Further we assume for the
estimations that L, = 1m.

The velocity profile in the adjacent layer is defined as V, = wu./k In(2/2), where zy =
1073m (Andreas 1998). It is assumed that the velocity of the motion of the pressure fluctuation
in the adjacent layer is closed to wind velocity V; on the distance z = 1m from the surface of
the ice cover. Since V; =~ 0.75Vyg, then for the resonance between the pressure fluctuation and
flexural-gravity waves we have to set

Vi/lg = 0.75Vig (33)

where V,.1/lg is dimensional value of resonant velocity V,.. The dependencies of wind velocity
Vio =~ 1.33+/IgV, from ice thickness h following from (33) are shown on Figure 2a for two values
of Young modulus F = 3G Pa and 9G Pa.
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Peak value of the dimensional quantity 8?1 /dz? around the loading point in the case of explicit
resonance A = () is estimated using (26) and (32) as

9n  2k?
ma.:;Lx W@ 2 (34)
where
ool V W
A? = 2 = — /-1 ~0.67
pg « 12k2 K
Substituting (34) into (31) one finds the peak tensile stress as
Eh L
ao (35)

Omax =
TUVBRAL -2\ pg

The dependencies of oy from ice thickness A are shown on Figure 2b for the same values of
Young modulus as on Figure 2a.
The destruction of the ice sheet on wave crest is occurred when

Omax = Ot (36)

where oy is ice strength under the extension. Numerous field and laboratory experiments set
strong dependence of o from brine concentration v, inside the ice. When tensile stresses applied
in normal direction to optical axis (c-axis) the following formula is used.

or = 6.86 - 10° (1 - \/yb/o.275) (Nm~2) 37)

Typical value of brine concentration v}, in sea ice is smaller 0.05 (Squire et al 1996). In this
case from (37) it follows o, ~ 0.39M Pa. From Figure 2b it follows that ice destruction is
impossible in this case. On the other hand in summer period brine concentration can reach 0.2.
Assuming v, = 0.1 and 0.2 one finds oy = 0.27M Pa and =~ 0.1M Pa respectively. Therefore
from Figure 2b it follows that ice destruction by turbulent fluctuations of the atmosphere pressure
in wind conditions is possible in the warm time of a year.

Criterion (37) is formulated for continuous ice without defects. In natural conditions ice cover
has many cracks (Ashton 1986), which can evaluate under the influence of wave induced bending
deformations. For the analysis of possible modes of ice destruction let us consider the following
problem. It is assumed that there is initial crack of depth h. in the ice sheet of thickness h =
1m (Figure 3a), and the direction of crack extension is perpendicular to the direction of wave
propagation. A single crack has small influence on wave propagation, but the influence of the
wave on the crack can be significant, since wave induced bending stresses can be enough for the
starting of crack growth. Taking into account that crack length is much larger 17 we consider
two-dimensional problem about the evaluation of rectilinear crack in elastic band performing the
cross-section of the ice sheet by vertical plane. It is assumed that the stresses applied to the
band are reduced to the sum of bending moment M (due to wave influence) and given external
compression oy

The condition of crack equilibrium is formulated as

N = Ni(M) + Ni(02s) = K10 (38)
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Figure 3: Initial crack of depth h. in the ice sheet of thickness A = lm(a). Fracture
toughness versus crack depth (b). Continuous lines correspond to uncompressed ice sheet
(0zz = 0) and dashed lines correspond to compressed ice (0,; = —30kPa). Young modu-
lus is equal to E = n - G Pa; values of coefficient n are shown at Figure 3b -

where K; = 0.1 = 0.5M Pa - m!/? is sea ice fracture toughness and N;(M) and N;(o,,) are
defined by formulas (Goldstein and Marchenko 1989)

Ni(M)  ~42MAE™3/% (1= he/h)™® — (1 = he/h)?)"?

1.11 + 5(h/h)*
1— he/h

, he/h >0.005  (39)

Ni(0zz) = 0zz\/2mhe

Values K7 ~ 0.1+0.2M Pa-m!/? are found for in-situ experiments with first-year sea ice, while
values Kj¢ ~ 0.3+ 0.5M Pa-m!/? are found in laboratory conditions for the fresh ice (Dempsey

etal 1999). Most typical value of fracture toughness for first-year seaice Kjc ~ 0.22M Pa- m/?
was defined at temperature about -14°C.
The condition for crack growth is formulated as
N> K¢ (40)

The dependencies of N from crack depth A, in the ice of thickness h = 1m are shown on Figure
3b for uncompressed and compressed ice. One can see that condition (40) is valid when K¢ =
0.2M Pa-mY? and h, > 0.3m for E = 9G Pa. The destruction of compressed ice is not occurred
when o, = —30kPa.

7 Conclusions

The dynamic boundary condition at the fluid surface, taking into account an external §-shaped
pressure, has been shown to be equivalent to the boundary condition neglecting a load and an
additional contact-boundary condition. Substitution of the asymptotic expansions into the contact-
boundary condition leads to the condition of a leap of the first harmonic amplitude at the loading
point. An analysis of the solutions to the NSE with the found contact-boundary condition shows
that there are three branches of stationary solutions bounded in the resonance vicinity.

It is shown that pressure perturbations running with super-resonant velocity can force flexural-
gravity waves with higher amplitudes than at explicit resonance A = 0. It has contradiction with
experimental data. Therefore we assume that solutions of branch III and highest part of branch

10
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IT are unstable. Including of dissipation in the model can cause the turning of the three branches
into one branch of the solution, which maximum is displaced from the origin (A = 0) to the right
(Barnard et al 1977).

Constructed solutions were used to estimate the possibility of ice destruction by turbulent
fluctuations of atmosphere pressure in ice adjacent layer in wind conditions. We selected only
perturbations moving with resonant velocity assuming that they can cause most strong influence
on the ice sheet, and set that their amplitude is about drag force at the ice surface. Estimations
show that the destruction of ice sheet of thickness 1m is possible due to the growth of initial cracks
which depth is larger 0.3m. the destruction of continuous ice without cracks is possible only in
the warm time of a year, when ice tensile strength is minimal due to high concentration (0.1-0.2)
of the brine inside the ice.
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