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ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO

STOCHASTIC 3D GLOBALLY MODIFIED NAVIER-STOKES

EQUATIONS WITH UNBOUNDED DELAYS

Cung The Anh, Vu Manh Toi, and Phan Thi Tuyet

Abstract. This paper studies the existence of weak solutions and the
stability of stationary solutions to stochastic 3D globally modified Navier-

Stokes equations with unbounded delays in the phase space BCL−∞(H).

We first prove the existence and uniqueness of weak solutions by using the
classical technique of Galerkin approximations. Then we study stability

properties of stationary solutions by using several approach methods. In
the case of proportional delays, some sufficient conditions ensuring the

polynomial stability in both mean square and almost sure senses will be

provided.

1. Introduction

Let O be a bounded domain in R3 with smooth boundary ∂O. Let us define
FN : [0,∞) → (0, 1] by

FN (r) = min
{
1,

N

r

}
, r ∈ [0,∞).

In this paper we consider the following stochastic 3D globally modified Navier-
Stokes equations with infinite delays

(1.1)



du+ [−ν∆u+ FN (∥u∥)(u · ∇)u+∇p]dt

= [f(t) + g1(t, ut)]dt+ g2(t, ut)dW (t) in R+ ×O,

∇ · u = 0 in R+ ×O,

u(t, x) = 0 in R+ × ∂O,

u(θ, x) = ϕ(θ, x), θ ∈ (−∞, 0], x ∈ O,

where ν > 0 is the kinematic viscosity, u = (u1, u2, u3) is the velocity field
of the fluid, p is the pressure, f is a nondelayed external force field, g1 and
g2 are another external force terms and contain hereditary characteristics, ϕ
is the initial datum and W (t) is a Wiener process on a suitable probability
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space to be described below. Here, for a function u : (−∞, 0) → H, for each
t > 0 we have denoted by ut the function defined on (−∞, 0) by the relation
ut(s) = u(t+ s), s ∈ (−∞, 0).

We set

BCL−∞(H) =
{
φ ∈ C((−∞, 0];H) : lim

θ→−∞
φ(θ) exists in H

}
,

which is a Banach space with the norm

∥φ∥BCL−∞(H) = sup
θ∈(−∞,0]

∥φ(θ)∥H .

We assume that

(H1) For any ξ ∈ BCL−∞(H), the mappings [0,∞) ∋ t 7→ gi(t, ξ) ∈ H,
i = 1, 2, are measurable;

(H2) f ∈ L2
loc(0,∞;V ′) with E

∫ T

0
∥f(t)∥2∗dt < ∞ for any T > 0;

(H3) For the terms g1, g2, we assume that g1 : R×BCL−∞(H) → L2
loc(0,∞;

H) and g2 : R × BCL−∞(H) → L2(Ω,F ,P;L2(K0, H)). There exist
Lg1 > 0 and Lg2 > 0 such that, for any t ∈ [0,∞) and all ξ, η ∈
BCL−∞(H),

|g1(t, ξ)− g1(t, η)| ≤ Lg1∥ξ − η∥BCL−∞(H);(1.2)

∥g2(t, ξ)− g2(t, η)∥L2(K0,H) ≤ Lg2∥ξ − η∥BCL−∞(H);(1.3)

and g1(·, 0) = 0; g2(·, 0) = 0.

Here, the spaces H, V , V ′ and other notations above are defined in Section 2
below.

The system (1.1) is indeed a globally modified version of the Navier-Stokes
system since the modifying factor FN (∥u∥) depends on the norm ∥u∥, which in
turn depends on ∇u over the whole domain O and not just at or near the point
x ∈ O under consideration. Essentially, it prevents large gradients dominating
the dynamics and leading to explosions. The deterministic globally modified
Navier-Stokes equations were first introduced by Caraballo et al. [5] and have
been investigated in several papers since then, both for their own sake and as
a means of obtaining results about the three-dimensional Navier-Stokes equa-
tions. The existence, uniqueness and numerical approximations of solutions
were studied in [5,6,18]. The stability of solutions is studied in both the cases
of finite and infinite delays, see e.g. [3, 4, 11, 14, 16, 17] and references therein.
The existence of attractors in both autonomous and non-autonomous cases,
and the existence of invariant measures have been investigated extensively in
[8, 10, 15, 21, 24, 25]. In the stochastic case, in the work [7], the authors proved
the existence, uniqueness and convergence of strong solutions as N → ∞. And
in a very recent paper [1], in the case without delays, the authors studied both
mean square exponential stability and pathwise exponential stability of weak
stationary solutions.

In [13], stability results for the 2D Navier-Stokes equations with unbounded
variable delays in the phase space BCL−∞(H) were studied. And then some
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extensions for other models in fluid mechanics were investigated in [19,20]. For
the stochastic case, in [12], the authors studied the stability for weak solutions
of 2D stochastic Navier-Stokes equations. A natural and important question
arising is to study the stochastic 3D globally modified Navier-Stokes equations
with unbounded variable delays. This is a main motivation of the present
paper.

In this paper we will study the stability of a stationary solution to the de-
terministic globally modified Navier-Stokes equations, which is regarded as a
solution of the stochastic equations (1.1). To do this, we follow the general
lines of the approach carried out in [12] to investigate the mean square (lo-
cal/asymptotic/polynomial) stability of stationary solutions. In the case of
proportional delay, using the polynomial decay rate, we give a sufficient condi-
tion to obtain the pathwise polynomial stability of stationary solutions.

The rest of the paper is organized as follows. In the next section, for conve-
nience of the reader, we recall some results on the function spaces and operators,
cylindrical Wiener processes, which will be frequently used later. In Section 3,
we prove the existence and uniqueness of a global weak solution to the prob-
lem. The stability results for the stationary solution are established in the last
section.

2. Preliminaries

2.1. Function spaces and operators

Let V = {u ∈ (C∞
0 (O))3 : ∇ · u = 0}. Denote by H the closure of V in

(L2(O))3, and by V the closure of V in (H1
0 (O))3. Then H and V are Hilbert

spaces with inner products given by

(u, v) :=

∫
O

3∑
j=1

ujvjdx, and ((u, v)) :=

∫
O

3∑
j=1

∇uj · ∇vjdx,

respectively, and the associated norms

|u|2 := (u, u), ∥u∥2 := ((u, u)).

It follows that V ⊂ H ≡ H ′ ⊂ V ′, where the injections are dense and contin-
uous. We will use ∥ · ∥∗ for the norm in V ′, and ⟨·, ·⟩ for the duality pairing
between V and V ′. Denote by P the Helmholtz-Leray orthogonal projection in
(L2(O))3 onto the space H.

Set A : V → V ′ by ⟨Au, v⟩ = ((u, v)). It is well-known that Au = −P∆u,
with the domain

D(A) = (H2(O))3 ∩ V,

is a positive self-adjoint linear operator with a compact inverse. Thus, there
exists a sequence {ϕj : j = 1, 2, 3, . . .} of elements of H which forms an or-
thonormal basis in H, orthogonal in V corresponding the eigenvalue λj with
0 < λ1 ≤ λ2 ≤ · · · ≤ λj → ∞ as j → ∞.
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We have the following Poincaré inequality

(2.1) ∥u∥2 ≥ λ1|u|2 for all u ∈ V.

We now define the trilinear form b by

b(u, v, w) =

3∑
i,j=1

∫
O
ui

∂vj
∂xi

vjdx,

and we denote

bN (u, v, w) = FN (∥v∥)b(u, v, w), ∀u, v, w ∈ V.

The form bN is linear in u and w, but it is nonlinear in v. We have the following
property

(2.2) b(u, v, v) = 0, ∀u, v ∈ V.

We will also make use of the following inequality (see [14, p. 657])

(2.3) b(u, v, w) ≤ 2−1|u|1/4∥u∥3/4∥v∥|w|1/4∥w∥3/4.

Using the Hölder inequality (with power exponents 6, 2, 3), the Sobolev inequal-
ity and the Gagliardo-Nirenberg inequality we have the following inequality (see
also in [18]),

(2.4) |b(u, v, w)| ≤ c0∥u∥∥v∥|w|1/2∥w∥1/2, ∀u, v, w ∈ V.

Moreover from the properties of b and the definition of FN , we have

(2.5) |bN (u, v, w)| ≤ c0λ
−1/4
1 N∥u∥∥w∥, ∀u, v, w ∈ V.

If we denote

⟨BN (u, v), w⟩ = bN (u, v, w), ∀u, v, w ∈ V,

then from (2.5) we have

(2.6) ∥BN (u, v)∥∗ ≤ c0λ
−1/4
1 N∥u∥, ∀u, v ∈ V.

If u = v, we write BN (u) = BN (u, u).
We recall the following important lemma.

Lemma 2.1 ([18]). For every u, v ∈ V , and each N > 0,

(1) 0 ≤ ∥u∥FN (∥u∥) ≤ N ,
(2) |FN (∥u∥)− FN (∥v∥)| ≤ 1

N FN (∥u∥)FN (∥v∥)∥u− v∥.

The following inequality is obtained from Lemma 2.1 and (2.4) (see [18,
(2.4)])

(2.7) | ⟨BN (u)−BN (v), u− v⟩ | ≤ ν

2
∥u− v∥2+C(ν, c0)N

4|u− v|2, ∀u, v ∈ V,

for some positive constant C(ν, c0).
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2.2. The cylindrical Wiener process

We first introduce stochastic integrals in Hilbert space (see [9]). Let (Ω,F ,P)
be a complete filtered probability space on which an increasing and right con-
tinuous family {Ft}t∈R of complete sub-σ-algebra of F is defined. We assume
that F0 contains all null set of F , and further Ft = F0 for all t ≤ 0. Let βn(t),
n = 1, 2, 3, . . . be a sequence of real valued one-dimensional standard Brownian
motions mutually independent on (Ω,P,F). Assume that {en} (n = 1, 2, 3, . . .)
is a complete orthonormal basis in the real and separable Hilbert space K.
We denote by {W (t), t ≥ 0}, the cylindrical Wiener process with value in K
defined formally as

W (t) =

∞∑
n=1

√
λ′
nβn(t)en, t ≥ 0,

where λ′
n (n = 1, 2, 3, . . .) are nonnegative real numbers such that

∑∞
n=1 λ

′
n <

∞. Let Q ∈ L(K,K) be the operator defined by Qen = λ′
nen. Set K0 := Q

1
2K,

where Q
1
2 is the operator defined by Q

1
2 en =

√
λ′
nen. Then K0 is a Hilbert

space with inner product

(u, v)0 = (Q−1/2u,Q−1/2v), ∀u, v ∈ K0.

Let ∥ · ∥0 denote the norm in K0. For another separable Hilbert space K̃,
with scalar product (·, ·)K̃ and the associated norms ∥ · ∥K̃ , a linear operator

Φ in L(K0, K̃) is called Hilbert-Schmidt from K0 to K̃ if for every complete
orthonormal basis {e0n} of K0,

∞∑
n=1

∥Φe0n∥2K̃ < ∞.

The value of the series is independent of the choice of {e0n}. Clearly, the imbed-
ding of K0 in K is Hilbert-Schmidt since Q is a trace class operator. The
space of all Hilbert-Schmidt operators from K0 into K̃, denoted by L2(K0, K̃),
a separable Hilbert space with the scalar product

(Φ,Ψ)L2(K0,K̃) =

∞∑
n=1

(Φe0n,Ψe0n)K̃ , ∀Φ,Ψ ∈ L2(K0, K̃).

Furthermore, by the definition of K0, every complete orthonormal basis of K0

can be represented by {
√
λ′
nen} for some complete orthonormal basis {en} of

K. Then, the norm in L2(K0, K̃) is

∥Φ∥2
L2(K0,K̃)

= Tr
[(

ΦQ
1
2

)(
ΦQ

1
2

)∗]
=

∞∑
n=1

∥
√
λ′
nΦen∥2K̃ , Φ ∈ L2(K0, K̃).
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Now for an L2(K0, K̃)-valued process Φ(t, ω), 0 ≤ t ≤ T , the stochastic integral∫ T

0
Φ(s, ω)dW (s) is well-defined if

E
∫ T

0

∥Φ(s)∥2
L2(K0,K̃)

ds < ∞.

We will define some probabilistic evolution spaces necessary throughout the
paper. For any separable Banach space X and p ≥ 1, we consider the space
Lp(0, T ;X) of X-valued measurable functions u defined on [0, T ] such that

∥u∥Lp(0,T ;X) =

(∫ T

0

∥u(t)∥pXdt

) 1
p

< ∞.

For r, p ≥ 1, we will write Lp(Ω,F ,P;Lr(0, T ;X)) to denote the space of all
functions u = u(t, x, ω) with values inX defined on [0, T ]×O×Ω and such that u
is measurable with respect to (t, ω) and for almost all t, u is Ft measurable. The
space Lp(Ω,F ,P;Lr(0, T ;X)) so defined is a Banach space with the following
norm

∥u∥Lp(Ω,F,P;Lr(0,T ;X)) =

E(∫ T

0

∥u(t)∥rXdt

) p
r

 1
p

< ∞,

where E denotes the mathematical expectation with respect to the probability
measure P.

We will write L2(Ω,F ,P;C((−∞, T ];X)), to denote the space of all X-
valued adapted process u(t, ω) defined on (−∞, T ]×Ω which are continuous in
t ∈ (−∞, T ] for almost every ω ∈ Ω and which satisfy E sup

t∈(−∞,T ]

∥u(t)∥2X < ∞.

The norm in L2(Ω,F ,P;C((−∞, T ];X)) is given by

∥u∥L2(Ω,F,P;C((−∞,T ];X)) =
(
E sup

t∈[0,T ]

∥u(t)∥2X
) 1

2

< ∞.

3. Existence and uniqueness of weak solutions

We first give the definition of weak solutions.

Definition 3.1. Let T > 0 and ϕ ∈ L2(Ω,F ,P;BCL−∞(H)) be an initial
process. A stochastic process u(t), t ∈ (−∞, T ], is said to be a weak solution
of (1.1) on [0, T ], if

(1a) u(t) is Ft-adapted, for t ≤ T ,
(1b) u(·) ∈ L2(Ω,F ,P;C((−∞, T ];H)) ∩ L2(Ω,F ,P;L2(0, T ;V )),
(1c) The following equation holds as an identity in V ′, a.s.

u(t) = ϕ(0)− ν

∫ t

0

Au(s)ds−
∫ t

0

BN (u(s))ds+

∫ t

0

(f(s) + g1(s, us))ds

+

∫ t

0

g2(s, us)dW (s), t ∈ [0, T ],
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(1d) u(t) = ϕ(t), t ∈ (−∞, 0], a.s.

Theorem 3.1. Let T > 0 and ϕ ∈ L2(Ω,F ,P;BCL−∞(H)), be an initial
condition. If (H1)-(H3) are fulfilled, then there exists a unique weak solution
to the stochastic 3D system of globally modified equations (1.1) on [0, T ] that
satisfies the following energy inequality

E sup
0≤t≤T

|u(s)|2 + νE
∫ T

0

∥u(s)∥2ds ≤ C0.

Here, C0 is a positive constant only depending on ∥f∥∗, T and other parameters
of system.

Proof. We will split the proof into five steps as follows.
Step 1. Construction of an approximating sequence.

For each integer m ≥ 1, we denote by Hm the vector space spanned by
{ϕ1, . . . , ϕm}. We define by Pm : H → Hm the orthogonal projection from
H on Hm. Now we use the Galerkin approximation method to prove the exis-
tence of weak solution to (1.1). Set

um(t, x, ω) :=

m∑
j=1

γj(t, ω)ϕj(x),

where γj(t, ω) are determined by the following ordinary differential stochastic
systems

(um(t), ϕj) = (um
0 , ϕj) +

∫ t

0

⟨−νAum(s)− PmBN (um(s)) + Pmf(s), ϕj⟩ ds

+

∫ t

0

(Pmg1(s, u
m
s ), ϕj)ds+

∫ t

0

(Pmg2(s, u
m
s ), ϕj)dW (s)(3.1)

for j = 1, . . . ,m with an initial value um(t) = Pmϕ(t), t ∈ (−∞, 0], where
um
0 = um(0) = Pmϕ(0). Here and from now on, for short, we only write um(t)

instead of um(t, x, ω) and γ(t) instead of γ(t, ω).
The existence and uniqueness of γ(t) = (γ1(t), . . . , γm(t)) are proved simi-

larly as in [22] (one can see in [23]). For convenience to the reader, we sketch
the proof as follows.

We rewrite (3.1) as the following system

(3.2)

{
dγ(t) = h0(γ(t))dt+ h1(t, γt)dt+ h2(t, γt)dW (t), t > 0,

γ(θ) = ξ(θ), θ ≤ 0,

where ξ(θ) := ((Pmϕ(θ), ϕ1), . . . , (Pmϕ(θ), ϕm)), and the j-component of h0, h1

and h2 are given in the following forms

hj
0(γ(t)) = −ν(Aum(t), ϕj)− (PmBN (um(t)), ϕj),

hj
1(t, γt) = (Pmg1(t, u

m
t ), ϕj), j = 1, . . . ,m,

hj
2(t, γt) = (Pmg2(t, u

m
t ), ϕj), j = 1, . . . ,m.
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We can check that h0, h1 and h2 satisfy the following estimates:

|h0(γ(t))− h0(γ̃(t))| ≤ L0∥γt − γ̃t∥BCL−∞(Rm),(3.3)

|h1(t, γt)− h1(t, γ̃t)| ≤ L1∥γt − γ̃t∥BCL−∞(Rm),(3.4)

|h2(t, γt)− h2(t, γ̃t)| ≤ L2∥γt − γ̃t∥BCL−∞(Rm),(3.5)

for a.e. t ∈ [0, T ], ∀T > 0, and three positive constants L0, L1, L2 depending
on m, ν, Lg1 , Lg2 and N .

Estimates (3.4) and (3.5) are obtained from the global Lipschitz conditions
on g1 and g2. To prove (3.3) we first have

|h0(γ(t))− h0(γ̃(t))| ≤ ν

m∑
j=1

|(A(um(t)− ũm(t)), ϕj)|

+

m∑
j=1

|(PmBN (um(t)), ϕj)− (PmBN (ũm(t)), ϕj)|.

Here, um(t) =
m∑
j=1

γj(t)ϕj and ũm(t) =
m∑
j=1

γ̃j(t)ϕj .

We have
m∑
j=1

|(A(um(t)− ũm(t)), ϕj)| ≤
m∑
j=1

λj |γj(t)− γ̃j(t)|

≤ λm

m∑
j=1

|γj(t)− γ̃j(t)|

≤ λm|γ(t)− γ̃(t)|
≤ λm∥γt − γ̃t∥BCL−∞(Rm).(3.6)

Using (2.3), the Poincaré inequality and Lemma 2.1, we have

m∑
j=1

|(PmBN (um(t)), ϕj)− (PmBN (ũm(t)), ϕj)|

=

m∑
j=1

∣∣∣∣∫
O
[FN (∥um(t)∥)(um(t) · ∇)um(t)− FN (∥ũm(t)∥)(ũm(t) · ∇)ũm(t)] · ϕjdx

∣∣∣∣
≤

m∑
j=1

FN (∥ũm(t)∥)|b(um(t)− ũm(t)), ũm(t), ϕj)|

+

m∑
j=1

|FN (∥um(t)∥)− FN (∥ũm(t)∥)| |b(um(t), ũm(t), ϕj)|

+

m∑
j=1

FN (∥um(t)∥)|b(um(t), um(t)− ũm(t), ϕj)|



STOCHASTIC 3D GLOBALLY MODIFIED NAVIER-STOKES EQUATIONS 235

≤ 2−1λ
−1/4
1

m∑
j=1

FN (∥ũm(t)∥)∥ũm(t)∥∥um(t)− ũm(t)∥∥ϕj∥

+ 2−1λ
−1/4
1

m∑
j=1

FN (∥um(t)∥)FN (∥ũm(t)∥)∥um(t)− ũm(t)∥∥um(t)∥∥ũm(t)∥∥ϕj∥

+ 2−1λ
−1/4
1

m∑
j=1

FN (∥um(t)∥)∥um(t)∥∥um(t)− ũm(t)∥∥ϕj∥

≤ 3

2
Nλ

−1/4
1

m∑
j=1

∥ϕj∥∥um(t)− ũm(t)∥.

Since

um(t)− ũm(t) =

m∑
j=1

(γj(t)− γ̃j(t))ϕj ,

then

∥um(t)− ũm(t)∥ ≤
m∑
j=1

∥ϕj∥ |γ(t)− γ̃(t)| ≤
m∑
j=1

∥ϕj∥∥γt − γ̃t∥BCL−∞(Rm).

Thus,
m∑
j=1

|(PmBN (um(t)), ϕj)− (PmBN (ũm(t)), ϕj)|

≤ 3

2
Nλ

−1/4
1

 m∑
j=1

∥ϕj∥

2

∥γt − γ̃t∥BCL−∞(Rm).(3.7)

Combining (3.6) and (3.7), we deduce that (this proves estimate (3.5)).

|h0(γ(t))− h0(γ̃(t))| ≤ L0∥γt − γ̃t∥BCL−∞(Rm),

with

L0 = λm +
3

2
Nλ

−1/4
1

 m∑
j=1

∥ϕj∥

2

.

Now, using (3.3), (3.4) and (3.5), we can prove as same as [22, Lemma 3.1] that

E( sup
−∞<t≤T

|γ(t)|2) ≤ C(T,E∥ξ∥2BCL−∞(Rm)).

Therefore, using the arguments as in [22, Theorem 3.1] we get the existence
and uniqueness of a solution to (3.2).

We consider the following approximation of stochastic 3D globally modified
Navier-Stokes equations

(3.8)


um(t)=um

0 +
∫ t

0
(−νAum(s)−PmBN (um(s))+Pmf(s)+Pmg1(s, u

m
s )) ds

+
∫ t

0
Pmg2(s, u

m
s )dW (s),

um(t)=Pmϕ(t), t ∈ (−∞, 0].
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Step 2. Estimates for the approximating sequence.
By the Itô formula for |um(t)|2 and notice that bN (um(s), um(s), um(s)) = 0,
we obtain

|um(t)|2 = |um
0 |2 − 2ν

∫ t

0

∥um(s)∥2ds+ 2

∫ t

0

⟨Pmf(s) + Pmg1(s, u
m
s ), um(s)⟩ ds

+

∫ t

0

∥g2(s, um
s )∥2L2(K0,H)ds+ 2

∫ t

0

(Pmg2(s, u
m
s ), um(s))dW (s).(3.9)

Taking supremum with respect to t in (3.9) and expectation, we obtain

E sup
0≤s≤t

|um(s)|2 + 2νE
∫ t

0

∥um(s)∥2ds

≤ 2E|ϕ(0)|2 + 4E sup
0≤r≤t

∫ r

0

∥f(s)∥∗∥um(s)∥ds

+ 4E sup
0≤r≤t

∫ r

0

|um(s)| |g1(s, um
s )|ds

+ 4E sup
0≤r≤t

∣∣∣∣∫ r

0

(um(s), Pmg2(s, u
m
s ))dW (s)

∣∣∣∣
+ 2E sup

0≤r≤t

∫ r

0

∥g2(s, um
s )∥2L2(K0,H)ds

= 2E|ϕ(0)|2 + I1 + I2 + I3 + I4.

Using the Cauchy inequality, we have

I1 = 4E sup
0≤r≤t

∫ r

0

∥f(s)∥∗∥um(s)∥ds

≤ 2νE
∫ t

0

sup
0≤r≤s

∥um(r)∥2ds+ 2

ν
E
∫ t

0

∥f(s)∥2∗ds.

By the condition (H3) on g1 and the Cauchy inequality, we have

I2 = 4E sup
0≤r≤t

∫ r

0

|um(s)∥g1(s, um
s )|ds

≤ 1

4
E sup

0≤s≤t
|um(s)|2 + 16L2

g1E
∫ t

0

∥um
s ∥2BCL−∞(H)ds

≤ 1

4
E sup

0≤s≤t
|um(s)|2 + 16L2

g1E
∫ t

0

sup
0≤r≤s

|um(r)|2ds+ 16TL2
g1E∥ϕ∥

2
BCL−∞(H).

Now we use the Burkholder-Davis-Gundy inequality, condition (H3) on g2 and
the Cauchy inequality to obtain

I3 = 4E sup
0≤r≤t

∣∣∣∣∫ r

0

(um(s), Pmg2(s, u
m
s ))dW (s)

∣∣∣∣
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≤ 16E
(∫ t

0

|um(s)|2∥g2(s, um
s )∥2L2(K0,H)ds

)1/2

≤ 1

4
E sup

0≤s≤t
|um(s)|2 + 256L2

g2E
∫ t

0

∥um
s ∥2BCL−∞(H)ds

≤ 1

4
E sup

0≤s≤t
|um(s)|2 + 256L2

g2E
∫ t

0

sup
0≤r≤s

|um(r)|2ds+ 256TL2
g2E∥ϕ∥

2
BCL−∞(H).

Finally, using condition (H3) on g2, we have

I4 = 2E sup
0≤r≤t

∫ r

0

∥g2(s, um
s )∥2L2(K0,H)ds

≤ 2L2
g2

∫ t

0

E sup
0≤r≤s

|um(r)|2ds+ 2TL2
g2E∥ϕ∥

2
BCL−∞(H).

Hence,

E sup
0≤s≤t

|um(s)|2 + νE
∫ t

0

∥um(s)∥2ds

≤ 4E|ϕ(0)|2 + 4

ν
E
∫ T

0

∥f(s)∥2∗ds+ 2T
(
16L2

g1 + 258L2
g2

)
E∥ϕ∥2BCL−∞(H)

+ 2(2 + 16L2
g1 + 256L2

g2)

∫ t

0

E sup
0≤r≤s

|um(r)|2ds.(3.10)

By the Gronwall inequality, there exists a constant C0 > 0 such that

(3.11) E sup
0≤s≤t

|um(s)|2 + νE
∫ t

0

∥um(s)∥2ds ≤ C0, uniformly in m ≥ 1.

Step 3. Taking limits in the finite-dimensional equations.
From (3.11), we have {um} is bound in L2(Ω,F ,P;L∞(0, T ;H) ∩ L2(0, T ;V )).

And therefore, {Aum} is bounded in L2(Ω,F ,P;L2(0, T ;V ′)). From (2.6) and
the properties of BN we conclude that {BN (um)} is bounded in L2(Ω,F ,P;
L2(0, T ;V ′)). On the other hand, from (H3) and (3.11), we see that {g1(t, um

t )}
is bounded in L2(Ω,F ,P;L2(0, T ;H)) and

{g2(t, um
t )} is bounded in L2(Ω,F ,P;L2(0, T ;L2(K0, H))).

From these uniform bounds, there exists a subsequence of {um} (relabeled the
same) such that

(3.12) um ⇀ u weakly in L2(Ω,F ,P;L∞(0, T ;H) ∩ L2(0, T ;V )).

Moreover,

Aum ⇀ Au weakly in L2(Ω,F ,P;L2(0, T ;V ′)),(3.13)

BN (um) ⇀ BN weakly in L2(Ω,F ,P;L2(0, T ;V ′)),(3.14)

g1(t, u
m
t ) ⇀ ξ weakly in L2(Ω,F ,P;L2(0, T ;H)),(3.15)
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g2(t, u
m
t ) ⇀ ζ weakly in L2(Ω,F ,P;L2(0, T ;L2(K0, H))).(3.16)

Taking limits in (3.8) when m → ∞, we obtain

(3.17) u(t) = u0 +

∫ t

0

(−νAu(s)− BN + f(s) + ξ) ds+

∫ t

0

ζdW (s).

Step 4. Proving that −νAu − BN + ξ = −νAu − BN (u) + g1(t, ut) and ζ =
g2(t, ut).

Using the Itô formula to e−λt|u(t)|2 and e−λt|um(t)|2, respectively,

Ee−λt|u(t)|2 = E|u(0)|2 − E
∫ t

0

λe−λs|u(s)|2ds

+ 2E
∫ t

0

e−λs ⟨−νAu(s)− BN + f(s), u(s)⟩ ds

+ 2E
∫ t

0

e−λs(ξ, u(s))ds+ E
∫ t

0

e−λs∥ζ∥2L2(K0,H)ds,(3.18)

and

Ee−λt|um(t)|2 − E|um
0 |2 − 2E

∫ t

0

e−λs ⟨Pmf(s), um(s)⟩ ds

= − E
∫ t

0

λe−λs|um(s)|2ds

+ 2E
∫ t

0

e−λs ⟨−νAum(s)−BN (um(s)), um(s)⟩ ds

+ 2E
∫ t

0

e−λs(g1(s, u
m
s ), um(s))ds

+ E
∫ t

0

e−λs∥g2(s, um
s )∥2L2(K0,H)ds := βm.(3.19)

Let z ∈ L2(Ω,F ,P;L2(0, T ;H)) and z(s) = ϕ(s), s ≤ 0. We notice that
|um − z|2 = |um|2 + |z|2 − 2(um, z), then from (3.19) we have

βm + γm = αm,

where

αm =− E
∫ t

0

λe−λs|um(s)− z(s)|2ds

+ 2E
∫ t

0

e−λs ⟨−νAum(s)−BN (um(s)), um(s)− z(s)⟩ ds

− 2E
∫ t

0

e−λs ⟨−νAz(s)−BN (z(s)), um(s)− z(s)⟩ ds

+ 2E
∫ t

0

e−λs(g1(s, u
m
s )− g1(s, zs), u

m(s)− z(s))ds
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+ E
∫ t

0

e−λs∥g2(s, um
s )− g2(s, zs)∥2L2(K0,H)ds,

and

γm = − E
∫ t

0

λe−λs
(
|z(s)|2 − 2(um(s), z(s))

)
ds

+ 2E
∫ t

0

e−λs ⟨−νAum(s)−BN (um(s)) + g1(s, u
m
s ),−z(s)⟩ ds

− 2E
∫ t

0

e−λs ⟨−νAz −BN (z(s)) + g1(s, zs), u
m(s)− z(s)⟩ ds

+ E
∫ t

0

e−λs (g2(s, zs)− 2g2(s, u
m
s ), g2(s, zs)) ds.

By (2.7), there is a positive constant λ such that αm ≤ 0. Using (3.12)-(3.16),
then

0 ≥ lim inf
m→∞

αm ≥− E
∫ t

0

λe−λs|u(s)− z(s)|2ds

+ 2E
∫ t

0

e−λs ⟨−νAu(s)− BN , u(s)− z(s)⟩ ds

− 2E
∫ t

0

e−λs ⟨−νAz(s)−BN (z(s)), u(s)− z(s)⟩ ds

+ 2E
∫ t

0

e−λs(ξ − g1(s, zs), u(s)− z(s))ds

+ E
∫ t

0

e−λs∥ζ − g2(s, zs)∥2L2(K0,H)ds.(3.20)

Taking z(t) = u(t) in (3.20), it follows that ζ = g2(t, ut), t ∈ [0, T ], where we
use the fact that e−λt is bounded for t ∈ [0, T ].

From (3.19), we have

βm = Ee−λt|um(t)|2 − E|um(0)|2 − 2E
∫ t

0

e−λs ⟨f(s), um(s)⟩ ds.

Since (3.12), |um(0)|2 ≤ |u(0)|2 and using (3.18) with notice that ζ = g2(t, ut)
then

lim inf
m→∞

βm ≥ Ee−λt|u(t)|2 − E|u(0)|2 − 2E
∫ t

0

e−λs ⟨f(s), u(s)⟩ ds

= 2E
∫ t

0

e−λs ⟨−νAu(s)− BN + ξ, u(s)⟩ ds

− E
∫ t

0

λe−λs|u(s)|2ds+ E
∫ t

0

∥g2(s, us)∥2L2(K0,H)ds.(3.21)
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Using (3.12)-(3.16) once again and notice that ζ = g2(t, ut), we deduce that

lim inf
m→∞

γm ≥ − E
∫ t

0

e−λs(|z(s)|2 − 2(u(s), z(s)))ds

+ 2E
∫ t

0

e−λs ⟨−νAu(s)− BN + ξ,−z(s)⟩ ds

− 2E
∫ t

0

e−λs ⟨−νAz −BN (z(s)) + g1(s, zs), u(s)− z(s)⟩ ds

+ E
∫ t

0

e−λs(g2(s, zs)− 2g2(s, us), g2(s, zs))ds.(3.22)

Combining (3.21) and (3.22) with notice that αm ≤ 0, one has

0 ≥ lim inf
m→∞

αm ≥ lim inf
m→∞

βm + lim inf
m→∞

γm

≥ − λE
∫ t

0

e−λs|u(s)− z(s)|2ds

+ 2E
∫ t

0

e−λs ⟨−νAu(s)− BN + ξ, u(s)− z(s)⟩ ds

− 2E
∫ t

0

e−λs ⟨−νAz −BN (z) + g1(s, zs), u(s)− z(s)⟩ ds

+ E
∫ t

0

e−λs∥g2(s, us)− g2(s, zs)∥2L2(K0,H)ds.

Hence,

0 ≤ E
∫ t

0

e−λs∥g2(s, us)− g2(s, zs)∥2L2(K0,H)ds

≤ λE
∫ t

0

e−λs|u(s)− z(s)|2ds

− 2E
∫ t

0

e−λs ⟨−νAu(s)− BN + ξ, u(s)− z(s)⟩ ds

+ 2E
∫ t

0

e−λs ⟨−νAz −BN (z(s)) + g1(s, zs), u(s)− z(s)⟩ ds.

For any fixed w ∈ L2(Ω,F ,P;L2(0, T ;V )), set z(t) = u(t)− ηw(t), then

0 ≤ ηλE
∫ t

0

e−λs|w|2ds− 2E
∫ t

0

e−λs ⟨−BN + ξ, w(s)⟩ ds

+ 2E
∫ t

0

e−λs ⟨ηAw(s)−BN (u(s)− ηw(s)) + g1(s, us − ηw(s)), w(s)⟩ ds.

Let η → 0, and since L2(Ω,F ,P;L2(0, T ;V )) is dense in L2(Ω,F ,P;L2(0, T ;H)),

e−λt (BN − ξ −BN (u(t)) + g1(t, ut)) = 0, a.e. t ∈ [0, T ], ω ∈ Ω.
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Thus, we get from (3.17) that

u(t)=ϕ(0)+

∫ t

0

(−νAu(s)−BN (u(s))+f(s)+g1(s, us)) ds+

∫ t

0

g2(s, us)dW (s),

a.e. ω ∈ Ω.
Step 5. Uniqueness of solutions.
Let u(t) and v(t) be two solutions to (1.1) with the same initial value. Applying
the Itô formula to |u(t)− v(t)|2, we have that

|u(t)− v(t)|2 = 2

∫ t

0

⟨−νA(u(s)− v(s))−BN (u(s)) +BN (v(s), u(s)− v(s)⟩ ds

+ 2

∫ t

0

(g1(s, us)− g1(s, vs), u(s)− v(s))ds

+ 2

∫ t

0

(g2(s, us)− g2(s, vs), u(s)− v(s)) dW (s)

+

∫ t

0

∥g2(s, us)− g2(s, vs)∥2L2(K0,H)ds.(3.23)

Thank to (2.7), we have∫ t

0

⟨−νA(u(s)− v(s))−BN (u(s)) +BN (v(s), u(s)− v(s)⟩ ds

≤− ν

2

∫ t

0

∥u(s)− v(s)∥2ds+ C(ν, c0)N
4

∫ t

0

|u(s)− v(s)|2ds.(3.24)

We can now deduce from (1.2) and (1.3) that

(3.25)

∫ t

0

∥g2(s, us)− g2(s, vs)∥2L2(K0,H)ds ≤ L2
g2

∫ t

0

∥us − vs∥2BCL−∞(H)ds,

and ∫ t

0

(g1(s, us)− g1(s, vs), u(s)− v(s))ds

≤
∫ t

0

|g1(s, us)− g1(s, vs)||u(s)− v(s)|ds

≤ Lg1

∫ t

0

∥us − vs∥BCL−∞(H)|u(s)− v(s)|ds.(3.26)

Combining (3.23), (3.24), (3.25), (3.26) and using the fact that |u(s)− v(s)| ≤
∥us − vs∥BCL−∞(H), we obtain

|u(t)− v(t)|2 + νE
∫ t

0

∥u(s)− v(s)∥2ds

≤ (2Lg1 + L2
g2 + 2C(ν, c0)N

4)

∫ t

0

∥us − vs∥2BCL−∞(H)ds
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+ 2

∫ t

0

(g2(s, us)− g2(s, vs), u(s)− v(s)) dW (s).

Then for any t > 0, we have

E sup
0≤s≤t

|u(s)− v(s)|2

≤
(
2Lg1 + L2

g2 + 2C(ν, c0)N
4
)
E
∫ t

0

∥us − vs∥2BCL−∞(H)ds

+ 2E sup
0≤r≤t

∣∣∣∣∫ r

0

(g2(s, us)− g2(s, vs), u(s)− v(s)) dW (s)

∣∣∣∣ .(3.27)

Using the Bulkhoder-Davis-Gundy inequality and using (1.3), we have

2E sup
0≤r≤t

∣∣∣∣∫ r

0

(g2(s, us)− g2(s, vs), u(s)− v(s))dW (s)

∣∣∣∣
≤ 8E

[
sup

0≤s≤t
|u(s)− v(s)|

(∫ t

0

∥g2(s, us)− g2(s, vs)∥2L2(K0,H)ds

)1/2
]

≤ 1

2
E sup

0≤s≤t
|u(s)− v(s)|2 + 32L2

g2

∫ t

0

∥us − vs∥2BCL−∞(H)ds.

Substituting this inequality into (3.27) to obtain

E sup
0≤s≤t

|u(s)− v(s)|2

≤ 2(2Lg1 + 2C(ν, c0)N
4 + 33L2

g2)E
∫ t

0

∥us − vs∥2BCL−∞(H)ds.(3.28)

Since u(s) = v(s) = ϕ(s), s ≤ 0, we see that

E
∫ t

0

∥us − vs∥2BCL−∞(H)ds ≤ E
∫ t

0

sup
−t<θ≤0

|u(s+ θ)− v(s+ θ)|2ds

≤ E
∫ t

0

sup
0≤r≤s

|u(r)− v(r)|2ds.

Hence (3.28) becomes

E sup
0≤s≤t

|u(s)− v(s)|2

≤ 2(2Lg1 + L2
g2 + 2C(ν, c0)N

4 + 32L2
g2)E

∫ t

0

sup
0≤r≤s

|u(r)− v(r)|2ds.

By the Gronwall inequality we have

E sup
0≤s≤t

|u(s)− v(s)|2 = 0.

Consequently, u(t) = v(t), a.e. ω ∈ Ω for all t ≤ T . The proof is complete. □
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4. Stability of stationary solutions

This section is devoted to investigating the stability of stationary solutions
to problem (1.1) with some extra conditions. More precisely, from now on, we
assume f is independent of time, i.e., f(t) ≡ f ∈ V ′, and gi, i = 1, 2 are given
by gi(t, ut) = Gi(u(t − ρ(t)) with ρ ∈ C1([0,∞)), ρ(t) ≥ 0 for all t ≥ 0 and
ρ∗ = sup

t≥0
ρ′(t) < 1. Here, Gi : R3 → R3 satisfying Gi(0) = 0 and

∥Gi(u)−Gi(v)∥R3 ≤ LGi
∥u− v∥R3

for some LGi
> 0, i = 1, 2. One can check that all assumptions (H1)-(H3) are

satisfied with Lgi are replaced by LGi .
Using the above notations, we can rewrite the 3D globally modified Navier-

Stokes equations with unbounded delays (1.1) in the following functional form

(4.1)


du+ [νAu+BN (u, u)]dt

= [PG1(u(t−ρ(t)))+Pf ]dt+PG2(u(t−ρ(t)))dW (t) in (0,∞)×O,

u(θ) = ϕ(θ), θ ∈ (−∞, 0].

By Theorem 3.1, for any ϕ ∈ L2(Ω,F ,P;BCL−∞(H)) given, problem (4.1) has
a unique globally solution u(t), which is defined on the whole interval [0,∞).

The deterministic problem corresponding to (4.1) is the following problem

(4.2)

{
du+ [νAu+BN (u, u)]dt=[PG1(u(t−ρ(t)))+Pf ]dt in (0,∞)×O,

u(θ)=ϕ(θ), θ ∈ (−∞, 0].

Let us give the definition of stationary solutions to problem (4.2).

Definition 4.1. A weak stationary solution to problem (4.2) is an element
u∞ ∈ V such that

ν((u∞, v)) + bN (u∞, u∞, v) = ⟨f, v⟩+ (G1(u∞), v), ∀v ∈ V.

The following theorem can be proved similarly as in [14].

Theorem 4.1. If ν > LG1
λ−1
1 , then problem (4.2) admits at least one station-

ary solution u∞ satisfying the following estimate

(4.3) ∥u∞∥ ≤ ∥f∥∗
ν − LG1

λ−1
1

.

Moreover, if the following condition holds

ν > LG1
λ−1
1 + µ,

where

(4.4) µ := λ
−1/4
1 min

{
N,

∥f∥∗
ν − LG1

λ−1
1

}
,

then the stationary solution u∞ of (4.2) is unique.
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Remark 4.1. Let u∞ be a stationary solution of the deterministic problem (4.2).
If G2(u∞) = 0, then u∞ is also a weak solution to the stochastic problem (4.1).
From now on, we always impose this condition when studying the stability of
the stationary solution u∞.

4.1. Local stability via a direct approach

In this subsection, we prove the local stability of the stationary solution by
a direct approach.

Theorem 4.2. If ν > LG1λ
−1
1 , then there exists at least one stationary solution

u∞ to (4.2). Moreover, if G2(u∞) = 0 and

(4.5) ν > µ+
LG1(2− ρ∗) + L2

G2

2λ1(1− ρ∗)
,

where µ is defined in (4.4), then the stationary solution u∞ is unique and there
exists C = C(ρ∗, LG1 , LG2) > 0 such that any solution u(t) to (4.1) satisfies

E|u(t)− u∞|2 ≤ C

(
E|ϕ(0)− u∞|2 + E

∫ 0

−ρ(0)

|ϕ(s)− u∞|2ds

)
.

Proof. Applying the Itô formula to |u(t)− u∞|2, we have

|u(t)−u∞|2 = |ϕ(0)−u∞|2+2

∫ t

0

⟨−νA(u−u∞)−BN (u)+BN (u∞), u−u∞⟩ ds

+ 2

∫ t

0

(G1(u(s− ρ(s)))−G1(u∞), u− u∞)ds

+ 2

∫ t

0

(G2(u(s− ρ(s)))−G2(u∞), u− u∞) dW (s)

+

∫ t

0

∥(G2(u(s− ρ(s)))−G2(u∞)∥2L2(K0,H)ds,

and taking the expectation

E|u(t)− u∞|2 = E|ϕ(0)− u∞|2 − 2νE
∫ t

0

∥u(s)− u∞∥2ds

− 2E
∫ t

0

⟨BN (u)−BN (u∞), u(s)− u∞⟩ ds

+ 2E
∫ t

0

(G1(u(s− ρ(s)))−G1(u∞), u(s)− u∞)ds

+ E
∫ t

0

∥(G2(u(s− ρ(s)))−G2(u∞)∥2L2(K0,H)ds.(4.6)

Using (2.2), (2.3) and Lemma 2.1, we have

⟨BN (u(s))−BN (u∞), u(s)− u∞⟩
= FN (∥u∞∥)b(u(s)− u∞, u∞, u(s)− u∞)
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+ (FN (∥u(s)∥)− FN (∥u∞∥)) b(u(s), u∞, u(s)− u∞)

+ FN (∥u(s)∥)b(u(s), u(s)− u∞, u(s)− u∞)

≤ min

{
1,

N

∥u∞∥

}
2−1λ

−1/4
1 ∥u∞∥∥u(s)− u∞∥2

+
1

N
FN (∥u(s)∥)FN (∥u∞∥)2−1λ

−1/4
1 ∥u(s)∥∥u∞∥∥u(s)− u∞∥2

≤ min

{
1,

N

∥u∞∥

}
2−1λ

−1/4
1 ∥u∞∥∥u(s)− u∞∥2

+
1

N
min

{
1,

N

∥u(s)∥

}
∥u(s)∥min

{
1,

N

∥u∞∥

}
∥u∞∥2−1λ

−1/4
1 ∥u(s)− u∞∥2

≤ min
{
∥u∞∥λ−1/4

1 , Nλ
−1/4
1

}
∥u(s)− u∞∥2.

Hence, using estimate (4.3), we find that

(4.7) ⟨BN (u(s))−BN (u∞), u(s)− u∞⟩ ≤ µ∥u(s)− u∞∥2,

where µ is defined in (4.4). On the other hand, using condition on G1, the
Cauchy inequality and Poincaré inequality (2.1), then

2E
∫ t

0

(G1(u(s− ρ(s)))−G1(u∞), u(s)− u∞)ds

≤ 2E
∫ t

0

LG1
|u(s− ρ(s))− u∞||u(s)− u∞|ds

≤ LG1

λ1
E
∫ t

0

∥u(s)− u∞∥2ds+ LG1
E
∫ t

0

|u(s− ρ(s))− u∞|2ds.

The last term on the right-hand side of (4.6) is bounded by

E
∫ t

0

∥(G2(u(s−ρ(s)))−G2(u∞)∥2L2(K0,H)ds ≤ L2
G2

E
∫ t

0

|u(s−ρ(s))−u∞|2ds.

Therefore,

E|u(t)− u∞|2 ≤ E|ϕ(0)− u∞|2 +
(
−2ν + 2µ+

LG1

λ1

)
E
∫ t

0

∥u(s)− u∞∥2ds

+
(
LG1 + L2

G2

)
E
∫ t

0

|u(s− ρ(s))− u∞|2ds.(4.8)

Taking η = s− ρ(s) then

E
∫ t

0

|u(s− ρ(s))− u∞|2ds ≤ 1

1− ρ∗
E
∫ t

−ρ(0)

|u(η)− u∞|2dη.
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Thus

E|u(t)− u∞|2 ≤ E|ϕ(0)− u∞|2 +
LG1

+ L2
G2

(1− ρ∗)
E
∫ 0

−ρ(0)

|ϕ(s)− u∞|2ds

+

(
−2ν + 2µ+

LG1
(2− ρ∗) + L2

G2

λ1(1− ρ∗)

)
E
∫ t

0

∥u(s)− u∞∥2ds.

Therefore, by (4.5) we have

E|u(t)− u∞|2 ≤ E|ϕ(0)− u∞|2 +
LG1 + L2

G2

(1− ρ∗)
E
∫ 0

−ρ(0)

|ϕ(s)− u∞|2ds.

Therefore, we complete the proof. □

4.2. Asymptotic stability via the construction of Lyapunov function-
als

Theorem 4.3. If ν > LG1
λ−1
1 , then there exists at least one stationary solution

u∞ to (4.2). Moreover, if G2(u∞) = 0 and suppose that

(4.9) ν ≥ µ+
2LG1

√
1− ρ∗ + L2

G2

2λ1(1− ρ∗)
,

where µ is defined in (4.4), then the stationary solution u∞ is unique and locally
stable, that is,
(4.10)

E|u(t)− u∞|2 ≤ E|ϕ(0)− u∞|2 +
LG1

√
1− ρ∗ + L2

G2

1− ρ∗
E∥ϕ− u∞∥2L2(−ρ(0),0;H)

for any solution u(t) to (4.1) with ϕ ∈ L2(Ω,F ,P;BCL−∞(H)). Furthermore,
if

ν > µ+
2LG1

√
1− ρ∗ + L2

G2

2λ1(1− ρ∗)
,

then u∞ is asymptotically stable in mean square, i.e.,

lim
t→∞

E|u(t)− u∞|2 = 0.

Proof. Let w(t) = u(t)− u∞ and

U(t, ϕ) = |ϕ(0)|2 + c

1− ρ∗

∫ 0

−ρ(t)

|ϕ(s)|2ds

for a suitable constant c to be specified later on. Then we replace ϕ by ut−u∞,
and obtain

U(t, wt) = |u(t)− u∞|2 + c

1− ρ∗

∫ t

t−ρ(t)

|u(s)− u∞|2ds.(4.11)
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Applying the Itô formula to U(t, wt) and taking the expectation, we have

EU(t, wt) ≤ EU(0, w0) + 2E
∫ t

0

⟨−νAw(s)−BN (u(s)) +BN (u∞), w(s)⟩ ds

+ 2E
∫ t

0

(G1(u(s− ρ(s)))−G1(u∞), w(s))ds

+ E
∫ t

0

∥G2(u(s− ρ(s)))∥2L2(K0,H)ds

+
c

1− ρ∗
E
∫ t

0

|w(s)|2ds− E
∫ t

0

c(1− ρ′(s))

1− ρ∗
|w(s− ρ(s))|2ds.

By the Cauchy inequality and using (4.7), we obtain

EU(t, wt)

≤ EU(0, w0)− 2(ν − µ)E
∫ t

0

∥w(s)∥2ds+ 2LG1E
∫ t

0

|w(s− ρ(s))||w(s)|ds

+
c

1− ρ∗
E
∫ t

0

|w(s)|2ds+ L2
G2

E
∫ t

0

|w(s− ρ(s))|2ds− cE
∫ t

0

|w(s− ρ(s))|2ds

≤ EU(0, w0)− 2(ν − µ)E
∫ t

0

∥w(s)∥2ds+
L2
G1

c− L2
G2

E
∫ t

0

|w(s)|2ds

+ (c− L2
G2

)E
∫ t

0

|w(s− ρ(s))|2ds+ c

1− ρ∗
E
∫ t

0

|w(s)|2ds

− cE
∫ t

0

|w(s− ρ(s))|2ds+ L2
G2

E
∫ t

0

|w(s− ρ(s))|2ds

≤ EU(0, w0)− 2(ν − µ)E
∫ t

0

∥w(s)∥2ds+
(

L2
G1

c− L2
G2

+
c

1− ρ∗

)
E
∫ t

0

|w(s)|2ds.

Choose c = LG1

√
1− ρ∗+L2

G2
, the coefficient in the last term of the right-hand

side reaches minimum. Using Poincaré inequality (2.1), we conclude that
(4.12)

EU(t, wt) + 2

(
ν − µ−

2LG1

√
1− ρ∗ + L2

G2

2λ1(1− ρ∗)

)∫ t

0

E∥w(s)∥2ds ≤ EU(0, w0).

From (4.11), we have

EU(t, wt) ≥ E|u(t)− u∞|2,
and

EU(0, w0) = E|ϕ(0)− u∞|2 +
LG1 + L2

G2

1− ρ∗
E∥ϕ− u∞∥2L2(−ρ(0),0;H).

Using Poincaré inequality (2.1), then (4.12) becomes

2λ1

(
ν − µ−

2LG1

√
1− ρ∗ + L2

G2

2λ1(1− ρ∗)

)∫ t

0

E|u(s)− u∞|2ds
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≤ E|ϕ(0)− u∞|2 +
LG1

√
1− ρ∗ + L2

G2

1− ρ∗
E∥ϕ− u∞∥2L2(−ρ(0),0;H).(4.13)

Therefore, if ν ≥ µ+
2LG1

√
1−ρ∗+L2

G2

2λ1(1−ρ∗)
, then the stationary solution u∞ is stable

and satisfies (4.10).

If ν > µ+
2LG1

√
1−ρ∗+L2

G2

2λ1(1−ρ∗)
, from (4.13) we obtain

E
∫ ∞

0

|u(s)− u∞|2ds ≤ E|ϕ(0)− u∞|2 +
LG1

√
1− ρ∗ + L2

G2

1− ρ∗
E∥ϕ− u∞∥2L2(−ρ(0),0;H).

By the continuity in time of u in H, we deduce that lim
t→∞

E|u(t) − u∞|2 = 0,

i.e. the stationary solution u∞ is asymptotically stable in mean square. □

Remark 4.2. Since
LG1

(2−ρ∗)+L2
G2

2λ1(1−ρ∗)
>

2LG1

√
1−ρ∗+L2

G2

2λ1(1−ρ∗)
for ρ∗ ∈ (0, 1), we can see

that Theorem 4.3 is an improvement of Theorem 4.2.

4.3. Polynomial stability: the proportional delay case

We now consider problem (4.1) with proportional delay, a particular case
of unbounded variable delay. More precisely, we assume ρ(t) = (1 − q)t with
q ∈ (0, 1). We will show the polynomial stability of the stationary solution.

The following lemma is key tool in the proof of polynomial stability results.

Lemma 4.1 ([2, Lemma 3.6(i)]). Let a < 0, b > 0 and q ∈ (0, 1). Suppose
h ∈ C(R+,R+) satisfies

D+h(t) ≤ ah(t) + bh(qt), t > 0, h(0) = h0, q ∈ (0, 1),

with h0 ≥ 0 and where D+h denotes the Dini derivative of h at t in the following
sense

D+h = lim sup
δ↓0

h(t+ δ)− h(t)

δ
.

Then there exist C = C(a, b, q) > 0 such that

h(t) ≤ Ch(0)(1 + t)α, ∀t ≥ 0,

where α obeys a+ bqα = 0.

We first prove the following theorem concerning with the polynomial stability
in mean square.

Theorem 4.4. Assume that f ∈ V ′ and we consider (4.1) with ρ(t) = (1− q)t
for q ∈ (0, 1). If ν > LG1λ

−1
1 , then there exist at least one weak stationary

solution u∞ to (4.2) satisfying (4.3). Furthermore, if G2(u∞) = 0 and

(4.14) ν > µ+ LG1
λ−1
1 +

1

2
L2
G2

λ−1
1 ,
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where µ is defined in (4.4), then u∞ is asymptotically stable in mean square
with polynomial rate, that is, there exists C = C(ν, λ1, ∥f∥∗, LG1

, LG2
, q) > 0

such that for any solution u(t) to (4.1),

(4.15) E|u(t)− u∞|2 ≤ CE|ϕ(0)− u∞|2(1 + t)α,

where

(4.16) α = logq

(
2ν − 2µ− LG1

λ−1
1

(LG1
+ L2

G2
)λ−1

1

)
< 0.

Proof. The existence and uniqueness of a stationary solution u∞ to (4.2) follows
immediately from Theorem 4.1. Let w(t) = u(t) − u∞, then applying the Itô
formula to |w(t)|2, and as same as the estimate (4.8) by taking ρ(t) = (1− q)t,
we have

E|w(t+ δ)|2 = E|w(t)|2 + (−2ν + 2µ+ LG1
λ−1
1 )

∫ t+δ

t

E∥w(s)∥2ds

+
(
LG1

+ L2
G2

) ∫ t+δ

t

|w(qs)|2ds(4.17)

for any δ > 0. Denoting h(t) = E|w(t)|2 and noting that −2ν+2µ+LG1
λ−1
1 < 0

since condition (4.14), by using Poincaré inequality (2.1), we obtain from (4.17)
by taking δ ↓ 0 that

D+h(t) ≤ λ1

(
−2ν + 2µ+ LG1λ

−1
1

)
h(t) +

(
LG1 + L2

G2

)
h(qt).

Applying Lemma 4.1, there exists C = C(ν, λ1, ∥f∥∗, LG1 , LG2 , q) > 0 such
that

h(t) ≤ Ch(0)(1 + t)α, ∀t ≥ 0,

where α satisfies

λ1

(
−2ν + 2µ+ LG1

λ−1
1

)
+
(
LG1

+ L2
G2

)
qα = 0,

that is, α is given by (4.16). Since ν > µ + LG1
λ−1
1 + 1

2L
2
G2

λ−1
1 , it holds that

α < 0 and due to condition (4.9), we get (4.15). This ends the proof. □

The following theorem is the pathwise polynomial stability of stationary
solution u∞.

Theorem 4.5. Assume that f ∈ V ′ and we consider (4.1) with ρ(t) = (1−q)t,
for q ∈ (0, 1). Furthermore, if G2(u∞) = 0 and assume that

(4.18) ν > µ+
1

2

(
1 +

1

q

)
LG1

λ−1
1 +

1

2q
L2
G2

λ−1
1 ,

where µ is defined in (4.4), then any solution u(t) to (4.1) converges to the
stationary solution u∞ in H, almost surely at a polynomial rate.
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Proof. Let K be a positive integer and any t ≥ K. Using the Itô formula to the
function |w(t)|2 = |u(t)− u∞|2, we have

|w(t)|2 = |w(K)|2 − 2ν

∫ t

K
∥w(s)∥2ds+ 2

∫ t

K
⟨−BN (u(s)) +BN (u∞), w(s)⟩ ds

+ 2

∫ t

K
(G1(u(qs))−G1(u∞), w(s)) ds

+ 2

∫ t

K
(G2(u(qs))−G2(u∞), w(s)) dW (s)

+

∫ t

K
∥G2(u(qs))−G2(u∞))∥2L2(K0,H) ds.

By using the Burkholder-Davis-Gundy inequality, the Cauchy inequality and
condition on G2 we obtain

2E
[

sup
K≤t≤K+1

∫ t

K
(G2(u(qs))−G2(u∞), w(s)) dW (s)

]

≤ 8E

[
sup

K≤t≤K+1
|w(t)|2

∫ K+1

K
∥G2(u(qs))−G2(u∞)∥2L2(K0,H) ds

] 1
2

≤ 32E
∫ K+1

K
∥G2(u(qs))−G2(u∞)∥2L2(K0,H) ds+

1

2
E sup

K≤t≤K+1
|w(t)|2

≤ 32L2
G2

E
∫ K+1

K
|w(qs)|2ds+ 1

2
E sup

K≤t≤K+1
|w(t)|2.

Using condition on G1, the Cauchy inequality and Poincaré inequality (2.1)
then

2E sup
K≤t≤K+1

∣∣∣∣∫ t

K
⟨G1(u(qs))−G1(u∞), w(s)⟩ ds

∣∣∣∣
≤ 2E

∫ K+1

K
|⟨G1(u(qs))−G1(u∞), w(s)⟩| ds

≤ 2E
∫ K+1

K
LG1 |w(qs)||w(s)|ds

≤ LG1
E
∫ K+1

K
|w(qs)|2ds+ LG1

λ−1
1 E

∫ K+1

K
∥w(s)∥2ds.

As same as (4.7) we have

sup
K≤t≤K+1

∣∣∣∣−2

∫ t

K
E (⟨BN (u(s))−BN (u∞), w(s)⟩) ds

∣∣∣∣ ≤ 2µ

∫ K+1

K
E∥w(s)∥2ds.
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Combining all above inequalities, we obtain that

1

2
E sup

K≤t≤K+1
|w(t)|2 ≤ E|w(K)|2 +

(
−2ν + 2µ+ LG1

λ−1
1

)
E
∫ K+1

K
∥w(s)∥2ds

+
(
LG1

+ 32L2
G2

)
E
∫ K+1

K
|w(qs)|2ds.(4.19)

Condition (4.18) implies that −2ν + 2µ+ LG1
λ−1
1 < 0 and condition (4.14) is

satisfied. Hence, we deduce from (4.19) that

(4.20) E sup
K≤t≤K+1

|w(t)|2 ≤ M(qK + 1)α,

where

M = CE|ϕ(0)− u∞|2
(
1 + LG1

+ 32L2
G2

)
.

Since condition (4.18) then α < −1, and therefore we can choose ε < 0 such
that α− ε < −1. Using the Markov inequality, we deduce from (4.20) that

P
{
ω : sup

K≤t≤K+1
|w(t)|2 > (1 + qK)ε

}
≤ M(1 + qK)α−ε.

Hence, we can apply the Borel-Cantelli lemma to obtain an integer K0 =
K0(ω) > 0 such that

sup
K≤t≤K+1

|w(t)|2 < (1 + qK)ε, a.s., for all K ≥ K0.

The proof is complete. □
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[7] G. Deugoué and T. Tachim Medjo, The stochastic 3D globally modified Navier-Stokes

equations: existence, uniqueness and asymptotic behavior, Commun. Pure Appl. Anal.
17 (2018), no. 6, 2593–2621. https://doi.org/10.3934/cpaa.2018123

[8] B. Q. Dong and J. Song, Global regularity and asymptotic behavior of modified Navier-

Stokes equations with fractional dissipation, Discrete Contin. Dyn. Syst. 32 (2012), no. 1,
57–79. https://doi.org/10.3934/dcds.2012.32.57

[9] J. Duan and W. Wang, Effective Dynamics of Stochastic Partial Differential Equations,

Elsevier Insights, Elsevier, Amsterdam, 2014.
[10] P. E. Kloeden, J. A. Langa, and J. Real, Pullback V -attractors of the 3-dimensional

globally modified Navier-Stokes equations, Commun. Pure Appl. Anal. 6 (2007), no. 4,

937–955. https://doi.org/10.3934/cpaa.2007.6.937
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[13] L. F. Liu, T. Caraballo, and P. Maŕın-Rubio, Stability results for 2D Navier-Stokes
equations with unbounded delay, J. Differential Equations 265 (2018), no. 11, 5685–

5708. https://doi.org/10.1016/j.jde.2018.07.008
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