• Title/Summary/Keyword: starch characterization

Search Result 181, Processing Time 0.033 seconds

Production and Characterization of Fibrinolytic Enzyme: Optimal Condition for Production of the Enzyme from Bacillus sp. KP-6408 Isolated from Chungkook-jang (새로운 혈전용해 효소의 생성 및 특성: 청국장에서 분리한 Bacillus sp. KP-6408로부터 효소 생성의 최적조건)

  • 박인식;길지은;김기남
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.51-56
    • /
    • 1998
  • A bacteium, KP-6408, capable of hydrolyzing fibrin was isolated from Chungkook-jang, which was possibly identified as a strain of Bacillus sp. The effects of culture condition and medium composition on the enzyme production were investigated. Among nitrogen sources tested, yeast extract was the most effective for the enzyme production, and the level of the concentration for the optimal enzyme production was 0.2%(w/v). For carbon sources, glucose was the best for the enzyme production with the level of 2.0%(w/v). The enzyme was maximally produced by cultivating the enzyme production with the level of 2.0%(w/v). The enzyme was maximally produced by cultivating the organism at the liquid medium of the initial pH 8.0 and temperature of 4$0^{\circ}C$. In Chungkook-jang fermentation, the enzyme was maximally produced when incubated at 35$^{\circ}C$ for 24 hrs using soybean as a solid medium. The addition of various rice starch to the soybean in Chungkook-jang fermentation lowered the enzyme production.

  • PDF

Partial Purification and Characterization of Exoinulinase from Kluyveromyces marxianus YS-1 for Preparation of High-Fructose Syrup

  • Singh, Ram Sarup;Dhaliwal, Rajesh;Puri, Munish
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.733-738
    • /
    • 2007
  • An extracellular exoinulinase($2,1-\beta-D$ fructan fructanohydrolase, EC 3.2.1.7), which catalyzes the hydrolysis of inulin into fructose and glucose, was purified 23.5-fold by ethanol precipitation, followed by Sephadex G-100 gel permeation from a cell-free extract of Kluyveromyces marxianus YS-1. The partially purified enzyme exhibited considerable activity between pH 5 to 6, with an optimum pH of 5.5, while it remained stable(100%) for 3 h at the optimum temperature of $50^{\circ}C$. $Mn^{2+}\;and\;Ca^{2+}$ produced a 2A-fold and 1.2-fold enhancement in enzyme activity, whereas $Hg^{2+}\;and\;Ag^{2+}$ completely inhibited the inulinase. A preparation of the partially purified enzyme effectively hydrolyzed inulin, sucrose, and raffinose, yet no activity was found with starch, lactose, and maltose. The enzyme preparation was then successfully used to hydrolyze pure inulin and raw inulin from Asparagus racemosus for the preparation of a high-fructose syrup. In a batch system, the exoinulinase hydrolyzed 84.8% of the pure inulin and 86.7% of the raw Asparagus racemosus inulin, where fructose represented 43.6mg/ml and 41.3mg/ml, respectively.

Genetic Diversity and Characterization of DPE1 Gene in Rice Germplasm

  • Aueangporn Somsri;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.220-220
    • /
    • 2022
  • Disproportionating Enzyme 1 (DPE1) is an a-1,4-D-glucanotransferase that cleavages the a-1,4-glucosidic bonds and transfers glucosyl groups. In rice endosperm, it participates in starch synthesis by transferring maltooligosyl groups from amylose and amylopectin to amylopectin. Here, we investigated the haplotype variations and evolutionary indices (e.g., genetic diversity and population structure) for the DPE1 gene in 374 rice accessions representing seven subgroups (wild, indica, temperate japonica, tropical japonica, aus, aromatic, and admixture). Variant calling analysis of DPE1 coding regions leads to the identification of six functional haplotypes representing/occupying 8 nonsynonymous SNPs. Nucleotide diversity analysis revealed the highest pi-value in wild group (0.0556) compared to other cultivated groups, of which temperate japonica showed the most reduction of genetic diversity value (0.003). A significant positive Tajima's D value (1.6330) of admixture highlights sudden population contraction under balancing selection, while temperate japonica with the lowest Tajima's D value (-1.3523) showed a selection signature of DPE1 domestication which might be the cause of excess of rare alleles. Moreover, these two subpopulations exhibits a greater differentiation (FST=0.0148), indicating a higher genetic diversity. Our findings on functional DPE1 haplotypes will be useful in future breeding programs, and the evolutionary indices can also be applicable in functional studies of the DPE1 gene.

  • PDF

Studies on Isolation and Characterization of Anaerobic Bacteria from Gut of Holstein Cows and Korean Male Spotted Deer (꽃사슴과 Holstein 젖소의 장내 혐기성 박테리아의 분리 및 특성)

  • 박소현;이기영;안종호;장문백;김창현
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.77-90
    • /
    • 2006
  • The purpose of this study was to isolate cellulolytic and hemicellulolytic anaerobic bacteria inhabiting from gut of ruminants and investigate their hydrolytic enzyme activities. Extracellular CMCase activities of H-strains isolated from the rumen of a Holstein dairy cow were higher than those of D- and DC- strains from the rumen and large intestine of Korean spotted deer. Most isolated bacteria utilized more efficiently Dehority's artificial medium containing starch, glucose and cellobiose (DAS) than those in Dehority's artificial medium containing cellulose only (DAC). The results of biochemical reactions and sugar fermentation indicated that the isolated bacteria belong to one of bacterial strains of Peptostreptococcus spp., Bifidobacterium spp., Prevotela ruminicola/buccae, Clostridium beijer/butyricum and Streptococcus intermedis which are not highly cellulolytic. Activities of Avicelase, xylanase, β-D-glucosidase, α-L-arabinofuranosidase and β-xylosidase of the isolated anaerobic bacteria in DAS were higher than those in DAC. In conclusion, the results indicated the higher enzyme activities of the isolated strains cultured in DAS medium were mainly caused by their specific carbohydrate utilization for enzyme production and growth rate. The highly cellulolytic bacteria were not isolated in the present experiment. Thus further research is required to investigate characteristics of gut bacteria from Korean spotted deer.

Characterization of $\alpha$-amylase, Total Alkaline Pretense, Trypsin and Triacylglycerol-lipase Activity of the Euryhaline Rotifer Brachionus rotundiformis (해수산 rotifer, Brachionus rotundiformis의 $\alpha$-amylase, total alkaline Protease, trypsin 및 triacylglycerol-lipase 활성 특성)

  • Kwon O-Nam;Park Heum-Gi
    • Journal of Aquaculture
    • /
    • v.18 no.4
    • /
    • pp.245-251
    • /
    • 2005
  • This study was investigated the condition of their maximum activity to assay the enzymes of rotifer, Brachionus rotundiformis의 $\alpha$-amylase, total alkaline Protease, trypsin and TG-lipase activities of rotifer were higher and more sensitive in phosphate-NaOH buffer than Tris-HCl buffer. $\alpha$-amylase, trypsin and TG-lipase activities were appeared the maximum at pH 8.0, and total alkaline protease activity showed the maximum activity at pH 7.0. $\alpha$-amylase activity showed the highest activity at $40^{\circ}C$, and total alkaline protease and trypsin activities were assayed the highest at $55{\~}60^{\circ}C$. However, TG-lipase activity was appeared the highest at $25{\~}30^{\circ}C$. The optimum substrate concentration of enzyme activity of a-amylase, total alkaline protease, rypsin and TG-lipase were $3.5\%$ starch, $\0.6%$ azo-casein, $87.5{\mu}M$ BApNA and 81.2 mM olive oil, respectively. The optimum reaction time of enzyme activity of $\alpha$-amylase, total alkaline protease, trypsin and TG-lipase were increased up to 40, 60, 30 and 25 min., respectively. The data obtained in this study could be used for the digestive enzyme research of rotifer, B. rotundiformis.

Purification and Characterization of Cyclodextrin Glycosyltransferase from Bacillus firmus (Bacillus firmus Cyclodextrin Glycosyltransferase의 정제 및 특성)

  • Sohn, Cheon-Bae;Kim, Seong-Ai;Park, Young-A;Kim, Myung-Hee;Moon, Sook-Kyung;Jang, Sun-Ae;Lee, Myung-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.2
    • /
    • pp.351-357
    • /
    • 1997
  • The cyclodextrin glycosyltransferase(EC 3.2.1.19) from Bacillus firmus was purified by precipitating with ammonium sulfate followed by, DEAE-Sephadex A-50 column chromatography and Sephadex G-100 column chromatography. In this way, we were able to obtain the single band protein on SDS-PAGE with a yield of 12%, whose purity was 49 fold. The purified CGTase was identified as a protein having molecular weight of approximately 80,000 dalton and isoelectric point of 9.6. The optimum pH and temperature for the enzyme activity were 8.0 and $65^{\circ}C$, respectively. The enzyme was stable at between pH 5.5 and 9.0 and up to $50^{\circ}C$. After 24hr of enzyme reaction using soluble starch as substrate, the ratio of ${\alpha}-$, ${\beta}-$ and ${\gamma}-cyclodextrin$ production was 0.01 : 2.90 : 1.00, respectively. And this CGTase pro-duced mainly ${\beta}-$ and ${\gamma}-cyclodextrin$.

  • PDF

Phenotypic Characterization of Methylotrophic N2-Fixing Bacteria Isolated from Rice (Oryza sativa L.) (벼(oryza sativa L.)에서 분리한 Methylotrophic N2-Fixing Bacteria의 형태학적 특성)

  • Madhaiyan, Munusamy;Park, Myoung-Su;Lee, Hyoung-Seok;Kim, Chung-Woo;Lee, Kyu-Hoi;Seshadri, Sundaram;Sa, Tong-Min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.1
    • /
    • pp.46-53
    • /
    • 2004
  • In this study, we compared the levels of methylotrophic bacterial community diversity in the leaf, stem, grain, root and rhizosphere soil sainples of four rice cultivars collected from three regions of Korea. Thirty five pigmented and five non-pigmented isolates showing characteristic growth on methanul were obtained. When phylotypes were defined by performing numerical analysis of 42 characteristics, four distinct clusters were formed. While two clusters, I and IV diverged on the basis of nitrate and nitrite reduction, other two clusters, comprising only pink pigmented colonies, diverged on the basis of cellulase activity. Out of the two reference strains used in the analysis, Methyhbacterium extorquens AM1 diverged from all the clusters and M. fujisawaense KACC 10744 grouped under cluster III. All the isolates were positive for urease, oxidase, catalase and pectinase activity and negative for indole production, MR and VP test, $H_2S$ production, starch, and casein hydrolysis. No clusters were found to possess thermotolerant isolates, as no growth of the isolates was observed at $45^{\circ}C$. Two strains in cluster I were found to possess gelatin hydrolysis and methane utilizing properties respectively. Most of the isolates in all the four clusters utilized monosaccliarides, disaccharide and polyols as carbon source. Six isolates showed considerable nitrogenase activity ranging from 86.2 to $809.9nmol\;C_2H_4\;h^{-1}\;mg^{-1}$ protein.

Molecular Cloning and Characterization of Trehalose Biosynthesis Genes from Hyperthermophilic Archaebacterium Metallosphaera hakonesis

  • Seo, Ju-Seok;An, Ju-Hee;Baik, Moo-Yeol;Park, Cheon-Seok;Cheong, Jong-Joo;Moon, Tae-Wha;Park, Kwan-Hwa;Choi, Yang-Do;Kim, Chung-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.123-129
    • /
    • 2007
  • The trehalose $({\alpha}-D-glucopyranosyl-[1,1]-{\alpha}-D-glucopyranose)$ biosynthesis genes MhMTS and MhMTH, encoding a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively, have been cloned from the hyperthermophilic archaebacterium Metallosphaera hakonesis. The ORF of MhMTS is 2,142 bp long, and encodes 713 amino acid residues constituting a 83.8 kDa protein. MhMTH is 1,677 bp long, and encodes 558 amino acid residues constituting a 63.7 kDa protein. The deduced amino acid sequences of MhMTS and MhMTH contain four regions highly conserved for MTSs and three for MTHs that are known to constitute substrate-binding sites of starch-hydrolyzing enzymes. Recombinant proteins obtained by expressing the MhMTS and MhMTH genes in E. coli catalyzed a sequential reaction converting maltooligosaccharides to produce trehalose. Optimum pH of the MhMTS/MhMTH enzyme reaction was around 5.0 and optimum temperature was around 70 C. Trehalose-producing activity of the MhMTS/ MhMTH was notably stable, retaining 80% of the activity after preincubation of the enzyme mixture at $70^{\circ}C$ for 48 h, but was gradually abolished by incubating at above $85^{\circ}C$. Addition of thermostable $4-{\alpha}-glucanotransferase$ increased the yield of trehalose production from maltopentaose by 10%. The substrate specificity of the MhMTS/MhMTH-catalyzed reaction was extended to soluble starch, the most abundant maltodextrin in nature.

Characterization of alkaline cellulase from Bacillus subtilis 4-1 isolated from Korean traditional soybean paste (전통 장류에서 분리된 알칼리성 Cellulase 생성 Bacillus subtilis 4-1 균주의 효소학적 특성)

  • Baek, Seong Yeol;Lee, You Jung;Yun, Hye Ju;Park, Hye Young;Yeo, Soo-Hwan
    • Food Science and Preservation
    • /
    • v.21 no.3
    • /
    • pp.442-450
    • /
    • 2014
  • In this study, we isolated a cellulase-producing bacterium isolated from traditional Korean fermented soybean paste and investigated the effect of culture conditions on the production of cellulase. This bacterium, which was identified as Bacillus subtilis 4-1 through 16S rRNA gene sequence analysis, showed the highest cellulase activity when the cells were grown at $45^{\circ}C$ for 24 hours in the CMC medium supplemented with 1.0% of soluble starch and 0.1% yeast extract. The initial optimum pH of the medium was observed in the range of 5.0~9.0. The optimal pH and temperature for the production of cellulase from B. subtilis 4-1 were pH 9.0 and $60^{\circ}C$ respectively. In addition, the enzyme showed significant activity in the temperature range of $20{\sim}90^{\circ}C$, which indicates that B. subtilis 4-1 cellulase is an alkaline-resistance and thermo-stable enzyme. This enzyme showed higher activity with CMC as the substrate for endo-type cellulase than avicel or pNPG as the exo-type substrates for exo-type cellulase and ${\beta}$-glucosidase. These results suggest that the cellulase produced from B. subtilis 4-1 is a complex enzyme rather than a mono-enzyme.

Characterization of Achlya bisexualis $\beta$-Amylase Expression in an Amylolytic Industrial Strain of Saccharomyces cerevisiae (전분 분해성 산업용 Saccharomyces cerevisiae에서 Achlya bisexualis $\beta$-Amylase의 발현 특성 규명)

  • Lee, Ok-Hee;Lim, Mi-Hyeon;Kim, Ji-Hye;Ryu, Eun-Hye;Ko, Hyun-Mi;Chin, Jong-Eon;Bai, Suk
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.264-269
    • /
    • 2008
  • To develop an amylolytic industrial yeast strain producing $\beta$-amylase, the BAMY gene encoding Achlya bisexualis $\beta$-amylase was constitutively expressed under the control of the alcohol dehydrogenase gene promoter (ADC1p) in an industrial strain of Saccharomyces cerevisiae. Yeast transformation was carried out by an integration system containing $\delta$-sequences as the recombination site. The integrative cassette devoid of bacterial DNA sequences was constructed that contains the BAMY gene and $\delta$-sequences. Industrial S. cerevisiae transformed with this integrative cassette secreted 45 kDa $\beta$-amylase into the culture medium. The $\beta$-amylase activity of the transformant was approximately 18.5-times higher than that of A. bisexualis. The multi-integrated BAMY genes in the transform ant were stable after 100 generations of growth in nonselective medium. Hydrolysis of soluble starch and various starches with the enzyme released maltose but not glucose or oligosaccharides.