Browse > Article

Phenotypic Characterization of Methylotrophic N2-Fixing Bacteria Isolated from Rice (Oryza sativa L.)  

Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University)
Park, Myoung-Su (Department of Agricultural Chemistry, Chungbuk National University)
Lee, Hyoung-Seok (Department of Agricultural Chemistry, Chungbuk National University)
Kim, Chung-Woo (Department of Agricultural Chemistry, Chungbuk National University)
Lee, Kyu-Hoi (Department of Agricultural Chemistry, Chungbuk National University)
Seshadri, Sundaram (Department of Agricultural Chemistry, Chungbuk National University)
Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.37, no.1, 2004 , pp. 46-53 More about this Journal
Abstract
In this study, we compared the levels of methylotrophic bacterial community diversity in the leaf, stem, grain, root and rhizosphere soil sainples of four rice cultivars collected from three regions of Korea. Thirty five pigmented and five non-pigmented isolates showing characteristic growth on methanul were obtained. When phylotypes were defined by performing numerical analysis of 42 characteristics, four distinct clusters were formed. While two clusters, I and IV diverged on the basis of nitrate and nitrite reduction, other two clusters, comprising only pink pigmented colonies, diverged on the basis of cellulase activity. Out of the two reference strains used in the analysis, Methyhbacterium extorquens AM1 diverged from all the clusters and M. fujisawaense KACC 10744 grouped under cluster III. All the isolates were positive for urease, oxidase, catalase and pectinase activity and negative for indole production, MR and VP test, $H_2S$ production, starch, and casein hydrolysis. No clusters were found to possess thermotolerant isolates, as no growth of the isolates was observed at $45^{\circ}C$. Two strains in cluster I were found to possess gelatin hydrolysis and methane utilizing properties respectively. Most of the isolates in all the four clusters utilized monosaccliarides, disaccharide and polyols as carbon source. Six isolates showed considerable nitrogenase activity ranging from 86.2 to $809.9nmol\;C_2H_4\;h^{-1}\;mg^{-1}$ protein.
Keywords
Acetylene reduction activity; Cellulase; Methylotrophic bacteria; Nitrate; Nitrite reduction; Oryza sativa L.;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Corpe, W. A., and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. Microb. Ecol. 62:243-248   DOI   ScienceOn
2 Dijkhuizen, L., P. R. Levering, and G. E. de Vries. 1992. The physiology and biochemistry of aerobic methanol utilizing Gram-negative and Gram positive bacteria. p. 149-181. In J. C. Murrell and H. Dalton (ed.) Methane and methanol oxidizers. PlenumPress, NewYork, USA
3 Dileepkumar, B. S., and H. C. Dube. 1992. Seed bacterization with fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil Biol. Biochem. 24:539-542   DOI   ScienceOn
4 Holland, M. A. 1997. Occams razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol. 115:865-868   DOI
5 Holt, J. G, N. R. Kreig, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's manual of determinative bacteriology. Williams and Wilkins, Baltimore, USA
6 Koenig R. L., R. O. Morris, and J. C. Polacco. 2002. tRNA is the source of low level trans Zeatin production in Methylobacterium spp.J.Bacteriol. 184:1832-1842   DOI   ScienceOn
7 Kovach, W. L. 1993. MultiVariate Statistics Package (MVSP), version 2.1. Kovach Computing Services, Pentraeth, Wales, UK
8 Madhaiyan, M., M. Senthilkumar, S. Seshadri, S. P. Sundaram, and T. Sa. 2004. Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. (Communicated Bot. Bull. Aca. Sin.)
9 Nemecek Marshall, M., R. C. MacDonald, J. J. Franzen, C. L. Wojciechowski, and R. Fall. 1995. Methanol emission from leaves: enzymatic detection of gas phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108:1359-1368   DOI
10 Patt, T. E., G. C. Cole, J. Bland, and R. S. Hanson. 1974. Isolation of bacteria that grow on methane and organic compounds as sole source of carbon and energy. J. Bacteriol. 120:955-964
11 Pirttila, A. M., H. Laukkanen, H. Pospiech, R. Myllyia, and A. Hohtola. 2000. Detection of intracellular bacteria in the buds of scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl. Environ. Microb. 66:3073-3077   DOI   ScienceOn
12 Sy A., E. Girud, P. Jourand, N. Garcia, A. Willems, P. De Lajudie, Y. Prin, M. Neyra, M. Gills, B. M. Catherine, and B. Dreyful. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix atmospheric nitrogen in symbiosis with legumes. J. Bacteriol. 183:214-220   DOI   ScienceOn
13 Whittenbury, R., S. L. Davies, and J. F. Wilkinson. 1970. Enrichment, isolation and some properties of methane utilizing bacteria. J. Gen. Microbiol. 61:205-218   DOI
14 Plazinski, J., and G. B. Rolfe. 1985. Analysis of proteolytic activity of Rhizobium and Azospirillum strains isolated from Trifolium repens. J. Plant Physiol. 120:181-187   DOI
15 Anthony, C. 1991. Assimilation of carbon in methylotrophs. p. 79-109. In. I. Goldberg and J. S. Rokem (ed.) Biology of methylotrophs. Butterworth Heinemann, Stoneham, MA, USA
16 Holland, M. A., and J. C. Polacco. 1994. PPFMs and other contaminants: Is there more to plant physiology than just plant? Ann. Rev. Plant Phys. 45:197-209   DOI   ScienceOn
17 Oppong, D., V. M. King, X. Zhou, and J. A. Bowen. 2000. Cultural and biochemical diversity of pink pigmented bacteria isolated from paper mill slimes. J. Ind. Microbiol. Biotechnol. 25:74-80   DOI   ScienceOn
18 Counce, P. A., T. C. Keisling, and A. J. Mitchell. 2000. A uniform, objective, and adaptive system for expressing rice development. Crop Sci. 40:436-443   DOI   ScienceOn
19 Elbeltagy, A., K. Nishioka, H. Suzuki, T. Sato, Y.I. Sato, H. Morisaki, H. Mitsui, and K. Minamisawa. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46:617-629   DOI
20 Green, P. N., and I. J. Bousifield. 1982. A taxonomic study of some Gram negative facultatively methylotrophic bacteria. J. Gen. Microbiol. 128:623-628
21 Zabetakis, I. 1997. Enhancement of flavour biosynthesis from strawberry (Fragaria $\chi$ ananassa) callus cultures by Methylobacterium species. Plant Cell Tiss. Org. 50:179-183   DOI   ScienceOn
22 Roger, P. A., and J. K. Ladha. 1992. Biological $N_2 fixation in wetland rice fields: Estimation and contribution to nitrogen balance. Plant Soil 141:41-55   DOI
23 Chanprame, S., J. J. Todd, and J. M. Widholm. 1996. Prevention of pink-pigmented Methylotrophic bacteria (Methylobacteirum mesophilicum) contamination of plant tissue cultures. Plant Cell Rep. 16:222-225   DOI   ScienceOn
24 Hossain, M., and K. S. Fischer. 1995. Rice research for food security and sustainable agricultural development in Asia: Achievements and future challenges. GeoJournal 35:286-295   DOI   ScienceOn
25 Lidstrom, M. E. 1991. The aerobic methylotrophic bacteria, p. 431-445. In A. Balows et al. (ed.) The Prokaryotes. Springer Verlag, New York, USA
26 Patt, T. E., G. C. Cole, and R. S. Hanson. 1976. Methylobacterium, a new genus of facultatively methylotrophic bacteria, Int. J. Syst. Bacteriol. 26:226-229   DOI
27 Shepelyakovskaya, A. O., N. V. Doronina, A. G. Laman, F. A. Brovko, and Y. A. Trotsenko. 1999. New data on the ability of aerobic methylotrophic bacteria to synthesize cytokinins. Dokl. Akad. Nauk. 368:555-557
28 Urakami, T., and K. Komagata. 1984. Protomonas, a new genus of facultatively methylotrophic bacteria, Int. J. Syst. Bacteriol. 34:188-201   DOI
29 Freyermuth, S. K., R. L. G. Long, and S. Mathur. 1996. Metabolic aspects of plant interaction with commensal methylotrophs. p. 277-284. In M. E. Lidstrom, and F. R. Tabita (ed.) Microbial growth on Cl compounds. Kluwer Academic Publishers, The Netherlands
30 Hanson, R. S. 1992. Methane and methanol utilizers. p. 1-22. In J. C. Murrell and H. Dalton (ed.). Methane and methanol oxidizers. Plenum Press, New York, USA
31 Yang, F. L., and L. P. Lin. 1998. Cytostructure, lipopolysaccharides, and cell proteins analysis from Rhizobium fredii, Bot. Bull. Acad. Sinica 39:261-267
32 Corpe, W. A. 1985. A method for detecting methylotrophic bacteria on solid surfaces. J. Microbiol. Meth. 3:215-221   DOI   ScienceOn
33 Lidstrom, M. E., and L. Chistoserdova. 2002. Plants in the pink: cytokinin production by Methylobacterium. J. Bacteriol. 184:1818   DOI   ScienceOn
34 Heumann, W. 1962. Die methodic der kreuzung sternbillsener bacteria. Biol. Zenatrabl. 81:341-354
35 Holland, M. A., and J. C. Polacco. 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol. 98:942-948   DOI   ScienceOn
36 Andro, T., J. P. Chambost, A. Kotoujansky, J. Cattaneo, Y. Bertheau, F. Barras, F. Van Gijsegem, and A. Coleno. 1984. Mutants of Erwinia chrysanthmi defective in secretion of pectinase and cellulase. J. Bacteriol, 160:1199-1203
37 Jaftha, J. B., B. W. Strijdom, and P. L. Stey. 2002. Characterization of pigmented methylotrophic bacteria with nodulate Lotonois bainesii. Syst. Appl. Microbiol. 25:440-449   DOI   ScienceOn
38 Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:265-275
39 Ivanova, E. G., N. V. Doronina, and Y. A. Trotsenko. 2001. Aerobic methylobacteria are capable of synthesizing auxins. J. Microbiol. 70:392-397   DOI   ScienceOn
40 Whittenbury, R., and H. Dalton. 1981. The methylotrophic bacteria, p. 894-902. In M. P. Starr et al. (ed.) The Prokaryotes. Springer-Verlag, KG, Berlin, Germany
41 Bedtnar, E. J., and J. Olivares. 1979. Nitrogen fixation (acetylene reduction) by free living Rhizobium meliloti. Curr. Microbiol. 2:11-13   DOI