Phenotypic Characterization of Methylotrophic N2-Fixing Bacteria Isolated from Rice (Oryza sativa L.)

벼(oryza sativa L.)에서 분리한 Methylotrophic N2-Fixing Bacteria의 형태학적 특성

  • Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Park, Myoung-Su (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Hyoung-Seok (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Chung-Woo (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Kyu-Hoi (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Seshadri, Sundaram (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • Received : 2003.12.22
  • Accepted : 2004.02.06
  • Published : 2004.02.29

Abstract

In this study, we compared the levels of methylotrophic bacterial community diversity in the leaf, stem, grain, root and rhizosphere soil sainples of four rice cultivars collected from three regions of Korea. Thirty five pigmented and five non-pigmented isolates showing characteristic growth on methanul were obtained. When phylotypes were defined by performing numerical analysis of 42 characteristics, four distinct clusters were formed. While two clusters, I and IV diverged on the basis of nitrate and nitrite reduction, other two clusters, comprising only pink pigmented colonies, diverged on the basis of cellulase activity. Out of the two reference strains used in the analysis, Methyhbacterium extorquens AM1 diverged from all the clusters and M. fujisawaense KACC 10744 grouped under cluster III. All the isolates were positive for urease, oxidase, catalase and pectinase activity and negative for indole production, MR and VP test, $H_2S$ production, starch, and casein hydrolysis. No clusters were found to possess thermotolerant isolates, as no growth of the isolates was observed at $45^{\circ}C$. Two strains in cluster I were found to possess gelatin hydrolysis and methane utilizing properties respectively. Most of the isolates in all the four clusters utilized monosaccliarides, disaccharide and polyols as carbon source. Six isolates showed considerable nitrogenase activity ranging from 86.2 to $809.9nmol\;C_2H_4\;h^{-1}\;mg^{-1}$ protein.

벼(Oryza sativa L.)에 서식하고 있는 메탄올 자화세균(methylotrophic bacteria)의 군집구조를 분석하기 위하여, 국내 3지역(청원, 익산, 밀양)의 경작지 논에서 재배되고 있는 4품종(일미, 동진, 남평, 오대) 벼의 잎, 줄기, 이삭, 뿌리 및 근권토양을 수집하였다. Methanol이 유일한 탄소원으로 첨가된 선택배지를 이용하여, 분홍색 색소체를 갖는 35균주와 무색소체의 5균주를 선별하였으며, 선별균주들의 형태학적, 생리 생화학적 특성을 조사하여 4개의 군집으로 구분하였다. 군집 I 및 IV 는 각각 nitrate와 nitrite reduction 특성에 의해 구별되었으며, pink pigment colony를 형성하는 또 다른 두 개의 군집들은 cellulase 생성유무에 의하여 구분되었다. 표준균주인 Methylobacterium extorquens AM1은 분리균주들과는 다른 군집으로 구분되었으며, M. fujisawaense KACC10744는 III 군집에 속하는 것으로 분석되었다. 분리된 모든 균주들은 urease, oxidase, catalase, pectinase 활성시험에서 양성반응을 나타냈으며, indole, MR-VP, $H_2S$, starch, casein 시험에서는 음성반응을 나타내었다. 또한, 모든 분리 균주들의 열 내성은 없었으며, $45^{\circ}C$ 이상에서는 성장하지 못하였다. 군집 I에서 두개의 분리균주가 각각 gelatin 가수분해와 methane 이용능을 나타내었으며, 대부분의 균주들은 탄소원으로 monosaccharides, disaccharide, polyols를 이용하여 성장하였다. 분리 및 선별되어진 균주들 중 6 균주만이 $86.2-809.9nmol\;C_2H_4\;h^{-1}\;mg^{-1}$ protein 범위의 질소고정능을 나타내었다.

Keywords

References

  1. Andro, T., J. P. Chambost, A. Kotoujansky, J. Cattaneo, Y. Bertheau, F. Barras, F. Van Gijsegem, and A. Coleno. 1984. Mutants of Erwinia chrysanthmi defective in secretion of pectinase and cellulase. J. Bacteriol, 160:1199-1203
  2. Anthony, C. 1991. Assimilation of carbon in methylotrophs. p. 79-109. In. I. Goldberg and J. S. Rokem (ed.) Biology of methylotrophs. Butterworth Heinemann, Stoneham, MA, USA
  3. Bedtnar, E. J., and J. Olivares. 1979. Nitrogen fixation (acetylene reduction) by free living Rhizobium meliloti. Curr. Microbiol. 2:11-13 https://doi.org/10.1007/BF02601725
  4. Chanprame, S., J. J. Todd, and J. M. Widholm. 1996. Prevention of pink-pigmented Methylotrophic bacteria (Methylobacteirum mesophilicum) contamination of plant tissue cultures. Plant Cell Rep. 16:222-225 https://doi.org/10.1007/BF01890872
  5. Corpe, W. A. 1985. A method for detecting methylotrophic bacteria on solid surfaces. J. Microbiol. Meth. 3:215-221 https://doi.org/10.1016/0167-7012(85)90049-1
  6. Corpe, W. A., and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. Microb. Ecol. 62:243-248 https://doi.org/10.1111/j.1574-6968.1989.tb03698.x
  7. Counce, P. A., T. C. Keisling, and A. J. Mitchell. 2000. A uniform, objective, and adaptive system for expressing rice development. Crop Sci. 40:436-443 https://doi.org/10.2135/cropsci2000.402436x
  8. Dijkhuizen, L., P. R. Levering, and G. E. de Vries. 1992. The physiology and biochemistry of aerobic methanol utilizing Gram-negative and Gram positive bacteria. p. 149-181. In J. C. Murrell and H. Dalton (ed.) Methane and methanol oxidizers. PlenumPress, NewYork, USA
  9. Dileepkumar, B. S., and H. C. Dube. 1992. Seed bacterization with fluorescent Pseudomonas for enhanced plant growth, yield and disease control. Soil Biol. Biochem. 24:539-542 https://doi.org/10.1016/0038-0717(92)90078-C
  10. Elbeltagy, A., K. Nishioka, H. Suzuki, T. Sato, Y.I. Sato, H. Morisaki, H. Mitsui, and K. Minamisawa. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46:617-629 https://doi.org/10.1080/00380768.2000.10409127
  11. Freyermuth, S. K., R. L. G. Long, and S. Mathur. 1996. Metabolic aspects of plant interaction with commensal methylotrophs. p. 277-284. In M. E. Lidstrom, and F. R. Tabita (ed.) Microbial growth on Cl compounds. Kluwer Academic Publishers, The Netherlands
  12. Green, P. N., and I. J. Bousifield. 1982. A taxonomic study of some Gram negative facultatively methylotrophic bacteria. J. Gen. Microbiol. 128:623-628
  13. Hanson, R. S. 1992. Methane and methanol utilizers. p. 1-22. In J. C. Murrell and H. Dalton (ed.). Methane and methanol oxidizers. Plenum Press, New York, USA
  14. Heumann, W. 1962. Die methodic der kreuzung sternbillsener bacteria. Biol. Zenatrabl. 81:341-354
  15. Holland, M. A. 1997. Occams razor applied to hormonology. Are cytokinins produced by plants? Plant Physiol. 115:865-868 https://doi.org/10.1104/pp.115.3.865
  16. Holland, M. A., and J. C. Polacco. 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol. 98:942-948 https://doi.org/10.1104/pp.98.3.942
  17. Holland, M. A., and J. C. Polacco. 1994. PPFMs and other contaminants: Is there more to plant physiology than just plant? Ann. Rev. Plant Phys. 45:197-209 https://doi.org/10.1146/annurev.pp.45.060194.001213
  18. Holt, J. G, N. R. Kreig, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's manual of determinative bacteriology. Williams and Wilkins, Baltimore, USA
  19. Hossain, M., and K. S. Fischer. 1995. Rice research for food security and sustainable agricultural development in Asia: Achievements and future challenges. GeoJournal 35:286-295 https://doi.org/10.1007/BF00989136
  20. Ivanova, E. G., N. V. Doronina, and Y. A. Trotsenko. 2001. Aerobic methylobacteria are capable of synthesizing auxins. J. Microbiol. 70:392-397 https://doi.org/10.1023/A:1010469708107
  21. Jaftha, J. B., B. W. Strijdom, and P. L. Stey. 2002. Characterization of pigmented methylotrophic bacteria with nodulate Lotonois bainesii. Syst. Appl. Microbiol. 25:440-449 https://doi.org/10.1078/0723-2020-00124
  22. Koenig R. L., R. O. Morris, and J. C. Polacco. 2002. tRNA is the source of low level trans Zeatin production in Methylobacterium spp.J.Bacteriol. 184:1832-1842 https://doi.org/10.1128/JB.184.7.1832-1842.2002
  23. Kovach, W. L. 1993. MultiVariate Statistics Package (MVSP), version 2.1. Kovach Computing Services, Pentraeth, Wales, UK
  24. Lidstrom, M. E. 1991. The aerobic methylotrophic bacteria, p. 431-445. In A. Balows et al. (ed.) The Prokaryotes. Springer Verlag, New York, USA
  25. Lidstrom, M. E., and L. Chistoserdova. 2002. Plants in the pink: cytokinin production by Methylobacterium. J. Bacteriol. 184:1818 https://doi.org/10.1128/JB.184.7.1818.2002
  26. Lowry, O. H., N. J. Rosebrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:265-275
  27. Madhaiyan, M., M. Senthilkumar, S. Seshadri, S. P. Sundaram, and T. Sa. 2004. Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. (Communicated Bot. Bull. Aca. Sin.)
  28. Nemecek Marshall, M., R. C. MacDonald, J. J. Franzen, C. L. Wojciechowski, and R. Fall. 1995. Methanol emission from leaves: enzymatic detection of gas phase methanol and relation of methanol fluxes to stomatal conductance and leaf development. Plant Physiol. 108:1359-1368 https://doi.org/10.1104/pp.108.4.1359
  29. Oppong, D., V. M. King, X. Zhou, and J. A. Bowen. 2000. Cultural and biochemical diversity of pink pigmented bacteria isolated from paper mill slimes. J. Ind. Microbiol. Biotechnol. 25:74-80 https://doi.org/10.1038/sj.jim.7000036
  30. Patt, T. E., G. C. Cole, and R. S. Hanson. 1976. Methylobacterium, a new genus of facultatively methylotrophic bacteria, Int. J. Syst. Bacteriol. 26:226-229 https://doi.org/10.1099/00207713-26-2-226
  31. Patt, T. E., G. C. Cole, J. Bland, and R. S. Hanson. 1974. Isolation of bacteria that grow on methane and organic compounds as sole source of carbon and energy. J. Bacteriol. 120:955-964
  32. Pirttila, A. M., H. Laukkanen, H. Pospiech, R. Myllyia, and A. Hohtola. 2000. Detection of intracellular bacteria in the buds of scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl. Environ. Microb. 66:3073-3077 https://doi.org/10.1128/AEM.66.7.3073-3077.2000
  33. Plazinski, J., and G. B. Rolfe. 1985. Analysis of proteolytic activity of Rhizobium and Azospirillum strains isolated from Trifolium repens. J. Plant Physiol. 120:181-187 https://doi.org/10.1016/S0176-1617(85)80021-3
  34. Roger, P. A., and J. K. Ladha. 1992. Biological $N_2 fixation in wetland rice fields: Estimation and contribution to nitrogen balance. Plant Soil 141:41-55 https://doi.org/10.1007/BF00011309
  35. Shepelyakovskaya, A. O., N. V. Doronina, A. G. Laman, F. A. Brovko, and Y. A. Trotsenko. 1999. New data on the ability of aerobic methylotrophic bacteria to synthesize cytokinins. Dokl. Akad. Nauk. 368:555-557
  36. Sy A., E. Girud, P. Jourand, N. Garcia, A. Willems, P. De Lajudie, Y. Prin, M. Neyra, M. Gills, B. M. Catherine, and B. Dreyful. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix atmospheric nitrogen in symbiosis with legumes. J. Bacteriol. 183:214-220 https://doi.org/10.1128/JB.183.1.214-220.2001
  37. Urakami, T., and K. Komagata. 1984. Protomonas, a new genus of facultatively methylotrophic bacteria, Int. J. Syst. Bacteriol. 34:188-201 https://doi.org/10.1099/00207713-34-2-188
  38. Whittenbury, R., and H. Dalton. 1981. The methylotrophic bacteria, p. 894-902. In M. P. Starr et al. (ed.) The Prokaryotes. Springer-Verlag, KG, Berlin, Germany
  39. Whittenbury, R., S. L. Davies, and J. F. Wilkinson. 1970. Enrichment, isolation and some properties of methane utilizing bacteria. J. Gen. Microbiol. 61:205-218 https://doi.org/10.1099/00221287-61-2-205
  40. Yang, F. L., and L. P. Lin. 1998. Cytostructure, lipopolysaccharides, and cell proteins analysis from Rhizobium fredii, Bot. Bull. Acad. Sinica 39:261-267
  41. Zabetakis, I. 1997. Enhancement of flavour biosynthesis from strawberry (Fragaria $\chi$ ananassa) callus cultures by Methylobacterium species. Plant Cell Tiss. Org. 50:179-183 https://doi.org/10.1023/A:1005968913237