Browse > Article

Characterization of Achlya bisexualis $\beta$-Amylase Expression in an Amylolytic Industrial Strain of Saccharomyces cerevisiae  

Lee, Ok-Hee (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
Lim, Mi-Hyeon (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
Kim, Ji-Hye (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
Ryu, Eun-Hye (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
Ko, Hyun-Mi (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
Chin, Jong-Eon (Department of Cosmetology, Dongkang College University)
Bai, Suk (Department of Biological Sciences, College of Natural Sciences, Chonnam National University)
Publication Information
Korean Journal of Microbiology / v.44, no.3, 2008 , pp. 264-269 More about this Journal
Abstract
To develop an amylolytic industrial yeast strain producing $\beta$-amylase, the BAMY gene encoding Achlya bisexualis $\beta$-amylase was constitutively expressed under the control of the alcohol dehydrogenase gene promoter (ADC1p) in an industrial strain of Saccharomyces cerevisiae. Yeast transformation was carried out by an integration system containing $\delta$-sequences as the recombination site. The integrative cassette devoid of bacterial DNA sequences was constructed that contains the BAMY gene and $\delta$-sequences. Industrial S. cerevisiae transformed with this integrative cassette secreted 45 kDa $\beta$-amylase into the culture medium. The $\beta$-amylase activity of the transformant was approximately 18.5-times higher than that of A. bisexualis. The multi-integrated BAMY genes in the transform ant were stable after 100 generations of growth in nonselective medium. Hydrolysis of soluble starch and various starches with the enzyme released maltose but not glucose or oligosaccharides.
Keywords
Achlya bisexualis$\beta$-amylase; industrial Saccharomyces cerevisiae;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Choi, E.Y., J.N. Park, H.O. Kim, D.J. Shin, Y.H. Chun, S.Y. Im, S.B. Chun, and S. Bai. 2002. Construction of an industrial polyploid strain of Saccharomyces cerevisiae containing Saprolegnia ferax $\beta$-amylase gene and secreting $\beta$-amylase. Biotechnol. Lett. 24, 1785-1790   DOI   ScienceOn
2 Eksteen, J.M., P. Van Renseburg, R.R. Cordero Otero, and I.S. Pretorius. 2003. Starch fermentation by recombinant Saccharomyces cerevisiae strains expressing the $\alpha$-amylase and glucoamylase genes from Lipomyces kononenkoae and Saccharomycopsis fibuligera. Biotechnol. Bioeng. 84, 639-646   DOI   ScienceOn
3 Janse, B.J.H. and I.S. Pretorius. 1995. One-step enzymatic hydrolysis of starch using a recombinant strain of Saccharomyces cerevisiae producing $\alpha$-amylase, glucoamylase and pullulanase. Appl. Microbiol. Biotechnol. 42, 876-883
4 Kim, H.O., J.N. Park, D.J. Shin, H.B. Lee, S.B. Chun, and S. Bai. 2001. A gene encoding Achlya bisexualis $\beta$-amylase and its expression in Saccharomyces cerevisiae. Biotechnol. Lett. 23, 1101-1107   DOI   ScienceOn
5 Marin, D., A. Jimenez, and M.F. Lobato. 2001. Construction of an efficient amylolytic industrial yeast strain containing DNA exclusively derived from yeast. FEMS Microbiol. Lett. 201, 249-253   DOI   PUBMED
6 Sambrook, J. and D.W. Russell. 2001. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, N.Y., USA
7 Steyn, A.J.C. and I.S. Pretorius. 1991. Co-expression of a Saccharomyces diastaticus glucoamylase-encoding gene and a Bacillus amyloliquefaciens $\alpha$-amylase-encoding gene in Saccharomyces cerevisiae. Gene 100, 85-93   DOI   ScienceOn
8 Kim, H.O., J.N. Park, H.J. Shon, D.J. Shin, C. Choi, S.Y. Im, H.B. Lee, S.B. Chun, and S. Bai. 2000. Cloning and expression in Saccharomyces cerevisiae of a $\beta$-amylase gene from the oomycete Saprolegnia ferax. Biotechnol. Lett. 22, 1493-1498   DOI   ScienceOn
9 Kim, H.O., J.N. Park, D.J. Shin, H.B. Lee, S.B. Chun, and S. Bai. 2001. A gene encoding $\beta$-amylase from Saprolegnia parasitica and its expression in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 11, 529-533   과학기술학회마을
10 Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage $T_4$. Nature (London) 227, 680-685   DOI   ScienceOn
11 Kim, K., C.S. Park, and J.R. Mattoon. 1988. High-efficiency, onestep utilization by transformed Saccharomyces cells which secrete both yeast glucoamylase and mouse $\alpha$-amylase. Appl. Environ. Microbiol. 54, 966-971   PUBMED
12 Monroe, J.D., M.D. Salminen, and J. Preiss. 1991. Nucleotide sequence of a cDNA clone encoding a $\beta$-amylase from Arabidopsis thaliana. Plant Physiol. 97, 1599-1601   DOI   ScienceOn
13 Kang, N.Y., J.N. Park, J.E. Chin, H.B. Lee, S.Y. Im, and S. Bai. 2003. Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis $\alpha$-amylase gene. Biotechnol. Lett. 25, 1847-1851   DOI   ScienceOn
14 Cho, K.M., Y.J. Yoo, and H.S. Kang. 1999. $\delta$-Integration of endo/exo-glucanase and $\beta$-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microbiol. Technol. 25, 23-30   DOI   ScienceOn
15 Kang, H.A. and J.W.B. Hershey. 1994. Effect of initiation factor elF-5A depletion on protein synthesis and proliferation of Saccharomyces cerevisiae. J. Biol. Chem. 269, 3934-3940
16 Gietz, D., A. St. Jean, R.A. Woods, and R.H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20, 1425   DOI   ScienceOn
17 Zhu, H., F. Qu, and L.H. Zhu. 1993. Isolation of genomic DNAs from plant, fungi and bacteria using benzyl chloride. Nucleic Acids Res. 21, 5279-5280   DOI
18 Jeong, T.H., H.O. Kim, J.N. Park, H.J. Lee, D.J. Shin, H.B. Lee, S.B. Chun, and S. Bai. 2001. Cloning and sequencing of the $\beta$-amylase gene from Paenibacillus sp. and its expression in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 11, 65-71
19 Ness, F., F. Lavallee, D. Dubourdieu, M. Aigle, and L. Dulau. 1993. Identification of yeast strains using the polymerase chain reaction. J. Sci. Food Agric. 62, 89-94   DOI   ScienceOn
20 Ghang, D.M., L. Yu, M.H. Lim, H.M. Ko, S.Y. Im, H.B. Lee, and S. Bai. 2007. Efficient one-step starch utilization by industrial strains of Saccharomyces cerevisiae expressing the glucoamylase and $\alpha$-amylase genes from Debaryomyces occidentalis. Biotechnol. Lett. 29, 1203-1208   DOI
21 Lee, F.W.F. and N.A. Da Silva. 1997. Improved efficiency and stability of multiple cloned gene insertions at the $\delta$ sequences of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48, 339-345   DOI
22 Nanmori, T., M. Nagai, Y. Shimizu, R. Shinke, and B. Mikami. 1993. Cloning of the $\beta$-amylase gene from Bacillus cereus and characteristics of the primary structure of the enzyme. Appl. Environ. Microbiol. 59, 623-627   PUBMED
23 Wang, X., Z. Wang, and N.A. Da Silva. 1996. G418 selection and stability of cloned genes integrated at chromosomal $\delta$ sequences of Saccharomyces cerevisiae. Biotechnol. Bioeng. 49, 45-51   DOI
24 Dohmen, R.J., A.W.M. Strasser, U.M. Dahlemsand, and C.P. Hollenberg. 1990. Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene 95, 111-121   DOI   ScienceOn
25 Nieto, A., J.A. Prieto, and P. Sanz. 1999. Stable high-copy number integration of Aspergillus orizae $\alpha$-amylase cDNA in an industrial baker's yeast strain. Biotechnol. Prog. 15, 459-466   DOI   ScienceOn
26 Park, J.N., K.H. Lee, H.M. Ko, K.H. Seo, J.E. Chin, H.B. Lee, and S. Bai. 2004. Expression of ethionine resistance conferring gene in an industrial strains of Saccharomyces cerevisiae. Kor. J. Microbiol. Biotechnol. 32, 356-361