DOI QR코드

DOI QR Code

Studies on Isolation and Characterization of Anaerobic Bacteria from Gut of Holstein Cows and Korean Male Spotted Deer

꽃사슴과 Holstein 젖소의 장내 혐기성 박테리아의 분리 및 특성

  • 박소현 (한경대학교 낙농과학과) ;
  • 이기영 (한경대학교 생물정보통신전문대학원) ;
  • 안종호 (한경대학교 낙농과학과) ;
  • 장문백 (중앙대학교 동물자원과학과) ;
  • 김창현 (한경대학교 동물생명자원학과)
  • Published : 2006.02.28

Abstract

The purpose of this study was to isolate cellulolytic and hemicellulolytic anaerobic bacteria inhabiting from gut of ruminants and investigate their hydrolytic enzyme activities. Extracellular CMCase activities of H-strains isolated from the rumen of a Holstein dairy cow were higher than those of D- and DC- strains from the rumen and large intestine of Korean spotted deer. Most isolated bacteria utilized more efficiently Dehority's artificial medium containing starch, glucose and cellobiose (DAS) than those in Dehority's artificial medium containing cellulose only (DAC). The results of biochemical reactions and sugar fermentation indicated that the isolated bacteria belong to one of bacterial strains of Peptostreptococcus spp., Bifidobacterium spp., Prevotela ruminicola/buccae, Clostridium beijer/butyricum and Streptococcus intermedis which are not highly cellulolytic. Activities of Avicelase, xylanase, β-D-glucosidase, α-L-arabinofuranosidase and β-xylosidase of the isolated anaerobic bacteria in DAS were higher than those in DAC. In conclusion, the results indicated the higher enzyme activities of the isolated strains cultured in DAS medium were mainly caused by their specific carbohydrate utilization for enzyme production and growth rate. The highly cellulolytic bacteria were not isolated in the present experiment. Thus further research is required to investigate characteristics of gut bacteria from Korean spotted deer.

본 연구는 꽃사슴과 Holstein 젖소의 반추위와 대장에 서식하는 미생물중 섬유소 분해력이 강한 혐기성 박테리아를 순수 분리하여 분리된 미생물들을 동정하고 이들 미생물들의 효소 특성을 구명하고자 수행되었다. 배지의 종류에 관계없이 젖소에서 분리된 박테리아가 꽃사슴에서 분리된 미생물에 비하여 섬유소 분해효소 활력이 우수하였고 탄소 공급원의 종류에 의해 섬유소 분해 효소의 활력에 영향을 미쳤으며 특히, cellulose 단독 공급시 보다 starch, glucose와 cellobiose를 복합한 탄소 공급원을 제공시 일반적으로 높은 효소의 활력을 나타내었다. API kit를 이용한 생화학 및 당발효 시험 결과 알려진 강력한 섬유소 분해 박테리아는 동정되지 않았고 대부분의 박테리아가 Peptostreptococcus spp., Bifidobacterium spp., Prevotela ruminicola/buccae, Clostridium beijer/butyricum 및 Streptococcus intemedis로 동정되었다. 분리된 균들의 다당류 및 단당류를 분해할 수 있는 가수분해 효소인 Avicelase, xylanase, β-D-glucosidase, α-L-arabino- furanosidase 및 β-xylosidase의 효소활력은 이용하는 배지조성 특히 탄소 공급원의 종류에 의하여 효소의 활력에 영향을 미치며 가수분해 효소의 종류에 따라 각 분리된 균주들마다의 다른 분포를 나타내었다. 결론적으로 분리된 혐기성 박테리아들이 공급되는 탄수화물 기질의 종류에 따라 효소의 활력에 변화를 일으켰고 이것은 기질에 따른 박테리아의 효소생산 특이성과 성장률의 변화에서 기인하였기 때문이다.

Keywords

References

  1. Bryant, M. P. and Burkey, L. A. 1953. Cultural methods and some characteristics of some of the more numberous groups of bacteria in the bovine rumen. J. Dairy Sci. 36:205 https://doi.org/10.3168/jds.S0022-0302(53)91482-9
  2. Bryant, M. P., Small, N., Bouman, C. and Robinson, I. M. 1958. Studies on the composition of the ruminal flora and fauna of young calves. J. Dairy Sci., 41:1747 https://doi.org/10.3168/jds.S0022-0302(58)91160-3
  3. Dehority, B. A. 1963. Isolation and characterization of several cellulolytic bacteria from in vitro rumen fermentations. J. Dairy Sci. 46:217 https://doi.org/10.3168/jds.S0022-0302(63)89009-8
  4. Dehority, B. A. 2003. Rumen Microbiology. Nottingham University Press. Nottingham, U.K
  5. Denigan, M. E., Huber, J. T., Alhadhrami, G. and al-Dehneh, A. 1992. Influence of feeding varying levels of Amaferm on performance of lactating dairy cows. J. Dairy Sci. 75:1616 https://doi.org/10.3168/jds.S0022-0302(92)77918-1
  6. Duvla-Iflah, Y., Maisonneuve, S. and Ouriet, M. F. 1998. Effect of fermented milk intake on plasmid transfer and on the persistence of transconjugants in the digestive tract of gnotobiotic mice. Antonie Van Leeuwenhoek. 73(1):95 https://doi.org/10.1023/A:1000603828184
  7. Gomez-Alarcon, R. A., Huber, J. T., Higginbotham, G. E., Wiersma, F., Ammon, D. and Taylor, B. 1991. Influence of feeding Aspergillus oryzae fermentation extract on the milk yields, eating patterns, and body temperatures of lactating cows. J. Anim. Sci. 69(4):1733
  8. Greve, L. C., Labavitch, J. M. and Hungate, R. E. 1984. $\alpha$-L-Arabinofuranosidase from Ruminococcus albus 8: purification and possible role in hydrolysis of alfalfa cell wall. Appl. Environ. Microbiol. 47:1135
  9. Henke, S. E., Demarais, S. and Pfister, J. A. 1988. Digestive capacity and diets of white-tailed deer and exotic ruminants. J. Wildl. Manage. 52:595-598 https://doi.org/10.2307/3800913
  10. Hiltner, P. and Dehority, B. A. 1983. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl. Environ. Microbiol. 46:642
  11. Hobson, P. N. 1988. The Rumen Microbial Ecosystem. Elservier Science Publishers L TD. Essex, UK
  12. Holdeman, L. V., Cato, E. P. and Moore, W. E. C. 1977. Anaerobe Laboratory Manual, 4th ed., Virginia Poly tech. Inst. and State Univ. Blacksburg. Virginia. USA
  13. Hungate, R. E. 1966. The Rumen and Its Microbes. Academic Press. Inc., New York. USA
  14. Jayne-Williams, D. J. 1979. The bacterial flora of the rumen of healty and bloating calves. J. Appl. Bacteriol. 47:271 https://doi.org/10.1111/j.1365-2672.1979.tb01754.x
  15. Kohchi, C. and Tohe, A. 1986. Cloning of Candida pelliculosa beta-glucosidase gene and its expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 203(1):89 https://doi.org/10.1007/BF00330388
  16. Lee, S. S., Ha, J. K. and Cheng, K. -J. 2000. Influence of an anaerobic fungal culture administration on in vivo ruminal fermentation and nutrient digestion. Anim. Feed Sci. Technol. 88:201 https://doi.org/10.1016/S0377-8401(00)00216-9
  17. Leedle, J. A. Z. and Hespell, R. B. 1980. Differential carbohydrate media and anaerobic replica plating techniques in delineating carbohydrate-utilizing subgroups in rumen bacterial populations. Appl. Environ. Microbiol. 39:709
  18. Martin, S. A. and Nisbet, D. J. 1990. Effect of direct-fed microbials on rumen microbial fermentation. J. Dairy Sci. 75(6):1736 https://doi.org/10.3168/jds.S0022-0302(92)77932-6
  19. Mould, F. L., 0rskov, E. R. and Mann, S. O. 1983. Associative effects of mixed feeds. I. Effects of type and level of supplementation and the influence of the rumen fluid pH on cellulolysis in vivo and dry matter digestion of various roughages. Anim. Feed Sci. Technol. 10:15 https://doi.org/10.1016/0377-8401(83)90003-2
  20. Newbold, C. J., Wallace, R. J., Chen. X. B. and McIntosh, F. M. 1995. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep. J. Anim. Sci. 73(6):1811
  21. Paster, B., Russell, J. B. and Yang, C. M. 1993. Phylogeny of ammonia-producing rumen bacteria Peptostreptococcus anaerobius, Clostridium sticklandii and Clostridium aminophilum. Int. J. Syst. Bacteriol. 43:107 https://doi.org/10.1099/00207713-43-1-107
  22. SAS User's Guide : Statistics, Version 8. Edition. 1996. SAS Inst., Inc., Cary. NC. USA
  23. Slyter, L. L. 1976. Influence of acidosis on rumen function. J. Animal Sci. 43:910
  24. Stack, R. J. and Hungate, R. E. 1984. Effect of 3-phenylpropanoic acid on capsule and cellulases of Ruminococcus albus 8. Appl. Environ. Microbiol., 48:218
  25. Willams, A. G. and Withers, S. E. 1982. The effect of the carbohydrate growth substrate on the glycosidase activity of hemicellulose degrading rumen bacterial isolates. J. Appl. Bacteriol. 52:389 https://doi.org/10.1111/j.1365-2672.1982.tb05069.x
  26. Wood, T. M. and Wilson, C. A. 1984. Some properties of the endo-(1,4)-$\beta$-D-glucanase synthesised by the anaerobic cellulolytic rumen bacterium Ruminococcus albus. Can. J. Microbiol. 30:316 https://doi.org/10.1139/m84-047
  27. 김창현. 1995. 반추위 섬유소 분해 박테리아의 분리.동정 및 특성규명에 관한 연구. 서울대학교 석사학위논문
  28. 문상호, 김명화, 이상무, 전병태. 2002. 꽃사슴에 있어서 육림부산물 발효사료의 체내이용성에 관한 연구. 한국초지학회지. 22:169 https://doi.org/10.5333/KGFS.2002.22.3.169
  29. 전병태, 문상호, 이상무, 권영재. 2002. 육림부산물 말효사료 급여 꽃사슴에 있어서 채식기호성. 소화율 및 채식행동에 관한 연구. 한국초지학회지 22:177 https://doi.org/10.5333/KGFS.2002.22.2.077