Browse > Article

Molecular Cloning and Characterization of Trehalose Biosynthesis Genes from Hyperthermophilic Archaebacterium Metallosphaera hakonesis  

Seo, Ju-Seok (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
An, Ju-Hee (Department of Food and Nutrition, Seowon University)
Baik, Moo-Yeol (Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, Kyung Hee University)
Park, Cheon-Seok (Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, Kyung Hee University)
Cheong, Jong-Joo (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Moon, Tae-Wha (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Park, Kwan-Hwa (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Choi, Yang-Do (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University)
Kim, Chung-Ho (Department of Food and Nutrition, Seowon University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 123-129 More about this Journal
Abstract
The trehalose $({\alpha}-D-glucopyranosyl-[1,1]-{\alpha}-D-glucopyranose)$ biosynthesis genes MhMTS and MhMTH, encoding a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively, have been cloned from the hyperthermophilic archaebacterium Metallosphaera hakonesis. The ORF of MhMTS is 2,142 bp long, and encodes 713 amino acid residues constituting a 83.8 kDa protein. MhMTH is 1,677 bp long, and encodes 558 amino acid residues constituting a 63.7 kDa protein. The deduced amino acid sequences of MhMTS and MhMTH contain four regions highly conserved for MTSs and three for MTHs that are known to constitute substrate-binding sites of starch-hydrolyzing enzymes. Recombinant proteins obtained by expressing the MhMTS and MhMTH genes in E. coli catalyzed a sequential reaction converting maltooligosaccharides to produce trehalose. Optimum pH of the MhMTS/MhMTH enzyme reaction was around 5.0 and optimum temperature was around 70 C. Trehalose-producing activity of the MhMTS/ MhMTH was notably stable, retaining 80% of the activity after preincubation of the enzyme mixture at $70^{\circ}C$ for 48 h, but was gradually abolished by incubating at above $85^{\circ}C$. Addition of thermostable $4-{\alpha}-glucanotransferase$ increased the yield of trehalose production from maltopentaose by 10%. The substrate specificity of the MhMTS/MhMTH-catalyzed reaction was extended to soluble starch, the most abundant maltodextrin in nature.
Keywords
Trehalose; maltooligosyltrehalose synthase; maltooligosyltrehalose trehalohydrolase; Metallosphaera hakonesis; hyperthermophilic archaebacterium; $4-{\alpha}-glucanotransferase$;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Elbein, A. 1974. The metabolism of $\alpha$,$\alpha$-trehalose. Adv. Carbohydr. Chem. Biochem. 30: 227-256   DOI   ScienceOn
2 Eleutherio, E. C. A., P. S. Araujo, and A. D. Panek. 1993. Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30: 591-596   DOI   ScienceOn
3 Itkor, P., N. Tsukagoshi, and S. Udaka. 1990. Nucleotide sequence of the raw-starch-digesting amylase gene from Bacillus sp. B1018 and its strong homology to the cytodextrin glucanotransferase genes. Biochem. Biophys. Res. Commun. 166: 630-636   DOI   ScienceOn
4 Jespersen, H. M., E. A. MacGregor, M. R. Sierks, and B. Svensson. 1991. Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem. J. 280: 51-55   DOI
5 Kim, Y. H., T. K. Kwon, S. Park, H. S. Seo, J.-J. Cheong, C. H. Kim, J.-K. Kim, J. S. Lee, and Y. D. Choi. 2000. Trehalose synthesis by sequential reactions of recombinant maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase from Brevibacterium helvolum. Appl. Environ. Microbiol. 66: 4620-4624   DOI   ScienceOn
6 Lernia, Di I., A. Morana, A. Ottombrino, S. Fusco, M. Rossi, and M. De Rosa. 1998. Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2: 409-416   DOI   ScienceOn
7 Mukai, K., A. Tabuchi, T. Nakada, T. Shibuya, H. Chaen, S. Fukuda, M. Kurimoto, and Y. Tsujisaka. 1997. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch 1: 26-30
8 Nakada, T., S. Ikegami, H. Chaen, M. Kubota, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and characterization of thermostable maltooligosyl trehalose synthase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotech. Biochem. 60: 263-266   DOI   ScienceOn
9 Paik, S.-K., H.-S. Yun, H.-Y. Sohn, and I. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13: 85-89
10 Seo, H. S., Y. J. Koo, J. Y. Lim, J. T. Song, C. H. Kim, J. K. Kim, J. S. Lee, and Y. D. Choi. 2000. Characterization of a bifunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Escherichia coli. Appl. Environ. Microbiol. 66: 2484-2490   DOI   ScienceOn
11 Van Laere, A. 1989. Trehalose, reserve and/or stress metabolite? FEMS Microbiol. Rev. 63: 201-210   DOI
12 Maruta, K., K. Hattori, T. Nakada, M. Kubota, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci. Biotech. Biochem. 60: 717-720   DOI   ScienceOn
13 Eastmond, P. J. and I. J. Graham. 2003. Trehalose metabolism: A regulatory role for trehalose-6-phosphate. Curr. Opin. Plant Biol. 6: 231-235   DOI   ScienceOn
14 Kim, J. H. 2000. Construction of bifunctional fusion enzyme between maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase of Sulfolobus acidocaldarius and overexpression in E. coli. Agric. Chem. Biotechnol. 43: 240-245
15 Kobayash, K., M. Kato, Y. Miura, M. Kettoku, T. Komeda, and A. Iwamatsu. 1996. Gene cloning and expression of new trehalose-producing enzyme from the hyperthermophilic archaeum Sulfolobus solfataricus KM1. Biosci. Biotech. Biochem. 60: 1882-1885   DOI   ScienceOn
16 Jespersen, H. M., E. A. MacGregor, B. Henrissat, M. R. Sierks, and B. Svensson. 1993. Starch- and glycogendebranching and branching enzymes: Prediction of structural features of the catalytic ($\beta/\alpha$)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Protein Chem. 12: 791-805   DOI   ScienceOn
17 Sambrook, J., E. F. Fritch, and F. Maniatis. 1989. Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
18 Ahn, S. H., S. H. Jeong, J. M. Kim, Y. O. Kim, S. J. Lee, and I. S. Kong. 2005. Molecular cloning and characterization of alkaliphilic phospholipase B (VFP58) from Vibrio fluvialis. J. Microbiol. Biotechnol. 15: 354-361   과학기술학회마을
19 Giaever, H. M., O. B. Styrvoid, I. Kaasen, and A. R. Strom. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170: 2841-2849   DOI
20 Maruta, K., K. Hattori, T. Nakada, M. Kubota, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim. Biophys. Acta 1289: 10-13   DOI   ScienceOn
21 Streeter, J. G. and A. Bhagwat. 1999. Biosynthesis of trehalose from maltooligosaccharides in Rhizobia. Can. J. Microbiol. 45: 716-721   DOI   ScienceOn
22 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
23 Nakada, T., S. Ikegami, H. Chaen, M. Kubota, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and characterization of thermostable maltooligosyl trehalose trehalohydrolase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotech. Biochem. 60: 267-270   DOI   ScienceOn
24 Maruta, K., H. Mitsuzumi, T. Nakada, M. Kubota, H. Chaen, S. Fukuda, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta 1291: 177-181   DOI   ScienceOn
25 Tachibana, Y., S. Fujiwara, M. Takagi, and T. Imanaka. 1997. Cloning and expression of 4-$\alpha$-glucanotransferase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme. J. Ferment. Bioeng. 83: 540-548   DOI   ScienceOn
26 Choi, J. J., J. W. Park, H. Shim, S. Lee, M. Kwon, J.-S. Yang, H. Hwang and S.-T. Kwon. 2006. Cloning, expression, and characterization of a hyperalkaline phosphatase from the thermophilic bacterium Thermus sp. T351. J. Microbiol. Biotechnol. 16: 272-279   과학기술학회마을
27 Feese, M. D., Y. Kato, T. Tamada, M. Kato, T. Komeda, Y. Miura, M. Hirose, K. Hondo, K. Kobayashi, and R. Kuroki. 2000. Crystal structure of glycosyltrehalose trehalohydrolase from the hyperthermophilic archaeum Sulfolobus solfataricus. J. Mol. Biol. 301: 451-464   DOI   ScienceOn
28 Kim, K. Y. and C. H. Kim. 2004. Expression of Thermotoga maritima 4-$\alpha$-glucanotransferase gene in E. coli and characterization of the recombinant enzyme. Agric. Chem. Biotechnol. 47: 133-136
29 Park, J.-E., K.-H. Lee, and D. Jahng. 2002. Effect of trehalose on bioluminescence and viability of freeze-dried bacterial cells. J. Microbiol. Biotechnol. 12: 349-353
30 Lama, L., B. Nicolaus, A. Trincone, P. Morzillo, M. De Rosa, and A. Gambacorta. 1990. Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus. Biotechnol. Lett. 12: 431-432   DOI