Molecular Cloning and Characterization of Trehalose Biosynthesis Genes from Hyperthermophilic Archaebacterium Metallosphaera hakonesis

  • Seo, Ju-Seok (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • An, Ju-Hee (Department of Food and Nutrition, Seowon University) ;
  • Baik, Moo-Yeol (Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, Kyung Hee University) ;
  • Park, Cheon-Seok (Department of Food Science and Biotechnology, Graduate School of Biotechnology and Institute of Life Science & Resources, Kyung Hee University) ;
  • Cheong, Jong-Joo (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Moon, Tae-Wha (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Park, Kwan-Hwa (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Choi, Yang-Do (Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University) ;
  • Kim, Chung-Ho (Department of Food and Nutrition, Seowon University)
  • Published : 2007.01.31

Abstract

The trehalose $({\alpha}-D-glucopyranosyl-[1,1]-{\alpha}-D-glucopyranose)$ biosynthesis genes MhMTS and MhMTH, encoding a maltooligosyltrehalose synthase (MhMTS) and a maltooligosyltrehalose trehalohydrolase (MhMTH), respectively, have been cloned from the hyperthermophilic archaebacterium Metallosphaera hakonesis. The ORF of MhMTS is 2,142 bp long, and encodes 713 amino acid residues constituting a 83.8 kDa protein. MhMTH is 1,677 bp long, and encodes 558 amino acid residues constituting a 63.7 kDa protein. The deduced amino acid sequences of MhMTS and MhMTH contain four regions highly conserved for MTSs and three for MTHs that are known to constitute substrate-binding sites of starch-hydrolyzing enzymes. Recombinant proteins obtained by expressing the MhMTS and MhMTH genes in E. coli catalyzed a sequential reaction converting maltooligosaccharides to produce trehalose. Optimum pH of the MhMTS/MhMTH enzyme reaction was around 5.0 and optimum temperature was around 70 C. Trehalose-producing activity of the MhMTS/ MhMTH was notably stable, retaining 80% of the activity after preincubation of the enzyme mixture at $70^{\circ}C$ for 48 h, but was gradually abolished by incubating at above $85^{\circ}C$. Addition of thermostable $4-{\alpha}-glucanotransferase$ increased the yield of trehalose production from maltopentaose by 10%. The substrate specificity of the MhMTS/MhMTH-catalyzed reaction was extended to soluble starch, the most abundant maltodextrin in nature.

Keywords

References

  1. Ahn, S. H., S. H. Jeong, J. M. Kim, Y. O. Kim, S. J. Lee, and I. S. Kong. 2005. Molecular cloning and characterization of alkaliphilic phospholipase B (VFP58) from Vibrio fluvialis. J. Microbiol. Biotechnol. 15: 354-361
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Choi, J. J., J. W. Park, H. Shim, S. Lee, M. Kwon, J.-S. Yang, H. Hwang and S.-T. Kwon. 2006. Cloning, expression, and characterization of a hyperalkaline phosphatase from the thermophilic bacterium Thermus sp. T351. J. Microbiol. Biotechnol. 16: 272-279
  4. Elbein, A. 1974. The metabolism of $\alpha$,$\alpha$-trehalose. Adv. Carbohydr. Chem. Biochem. 30: 227-256 https://doi.org/10.1016/S0065-2318(08)60266-8
  5. Eastmond, P. J. and I. J. Graham. 2003. Trehalose metabolism: A regulatory role for trehalose-6-phosphate. Curr. Opin. Plant Biol. 6: 231-235 https://doi.org/10.1016/S1369-5266(03)00037-2
  6. Eleutherio, E. C. A., P. S. Araujo, and A. D. Panek. 1993. Protective role of trehalose during heat stress in Saccharomyces cerevisiae. Cryobiology 30: 591-596 https://doi.org/10.1006/cryo.1993.1061
  7. Feese, M. D., Y. Kato, T. Tamada, M. Kato, T. Komeda, Y. Miura, M. Hirose, K. Hondo, K. Kobayashi, and R. Kuroki. 2000. Crystal structure of glycosyltrehalose trehalohydrolase from the hyperthermophilic archaeum Sulfolobus solfataricus. J. Mol. Biol. 301: 451-464 https://doi.org/10.1006/jmbi.2000.3977
  8. Giaever, H. M., O. B. Styrvoid, I. Kaasen, and A. R. Strom. 1988. Biochemical and genetic characterization of osmoregulatory trehalose synthesis in Escherichia coli. J. Bacteriol. 170: 2841-2849 https://doi.org/10.1128/jb.170.6.2841-2849.1988
  9. Itkor, P., N. Tsukagoshi, and S. Udaka. 1990. Nucleotide sequence of the raw-starch-digesting amylase gene from Bacillus sp. B1018 and its strong homology to the cytodextrin glucanotransferase genes. Biochem. Biophys. Res. Commun. 166: 630-636 https://doi.org/10.1016/0006-291X(90)90855-H
  10. Jespersen, H. M., E. A. MacGregor, B. Henrissat, M. R. Sierks, and B. Svensson. 1993. Starch- and glycogendebranching and branching enzymes: Prediction of structural features of the catalytic ($\beta/\alpha$)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Protein Chem. 12: 791-805 https://doi.org/10.1007/BF01024938
  11. Jespersen, H. M., E. A. MacGregor, M. R. Sierks, and B. Svensson. 1991. Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem. J. 280: 51-55 https://doi.org/10.1042/bj2800051
  12. Kim, J. H. 2000. Construction of bifunctional fusion enzyme between maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase of Sulfolobus acidocaldarius and overexpression in E. coli. Agric. Chem. Biotechnol. 43: 240-245
  13. Kim, K. Y. and C. H. Kim. 2004. Expression of Thermotoga maritima 4-$\alpha$-glucanotransferase gene in E. coli and characterization of the recombinant enzyme. Agric. Chem. Biotechnol. 47: 133-136
  14. Kim, Y. H., T. K. Kwon, S. Park, H. S. Seo, J.-J. Cheong, C. H. Kim, J.-K. Kim, J. S. Lee, and Y. D. Choi. 2000. Trehalose synthesis by sequential reactions of recombinant maltooligosyltrehalose synthase and maltooligosyltrehalose trehalohydrolase from Brevibacterium helvolum. Appl. Environ. Microbiol. 66: 4620-4624 https://doi.org/10.1128/AEM.66.11.4620-4624.2000
  15. Kobayash, K., M. Kato, Y. Miura, M. Kettoku, T. Komeda, and A. Iwamatsu. 1996. Gene cloning and expression of new trehalose-producing enzyme from the hyperthermophilic archaeum Sulfolobus solfataricus KM1. Biosci. Biotech. Biochem. 60: 1882-1885 https://doi.org/10.1271/bbb.60.1882
  16. Lama, L., B. Nicolaus, A. Trincone, P. Morzillo, M. De Rosa, and A. Gambacorta. 1990. Starch conversion with immobilized thermophilic archaebacterium Sulfolobus solfataricus. Biotechnol. Lett. 12: 431-432 https://doi.org/10.1007/BF01024398
  17. Lernia, Di I., A. Morana, A. Ottombrino, S. Fusco, M. Rossi, and M. De Rosa. 1998. Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2: 409-416 https://doi.org/10.1007/s007920050086
  18. Maruta, K., H. Mitsuzumi, T. Nakada, M. Kubota, H. Chaen, S. Fukuda, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta 1291: 177-181 https://doi.org/10.1016/S0304-4165(96)00082-7
  19. Maruta, K., K. Hattori, T. Nakada, M. Kubota, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of trehalose biosynthesis genes from Arthrobacter sp. Q36. Biochim. Biophys. Acta 1289: 10-13 https://doi.org/10.1016/0304-4165(95)00139-5
  20. Maruta, K., K. Hattori, T. Nakada, M. Kubota, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of trehalose biosynthesis genes from Rhizobium sp. M-11. Biosci. Biotech. Biochem. 60: 717-720 https://doi.org/10.1271/bbb.60.717
  21. Mukai, K., A. Tabuchi, T. Nakada, T. Shibuya, H. Chaen, S. Fukuda, M. Kurimoto, and Y. Tsujisaka. 1997. Production of trehalose from starch by thermostable enzymes from Sulfolobus acidocaldarius. Starch 1: 26-30
  22. Nakada, T., S. Ikegami, H. Chaen, M. Kubota, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and characterization of thermostable maltooligosyl trehalose synthase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotech. Biochem. 60: 263-266 https://doi.org/10.1271/bbb.60.263
  23. Nakada, T., S. Ikegami, H. Chaen, M. Kubota, S. Fukuda, T. Sugimoto, M. Kurimoto, and Y. Tsujisaka. 1996. Purification and characterization of thermostable maltooligosyl trehalose trehalohydrolase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius. Biosci. Biotech. Biochem. 60: 267-270 https://doi.org/10.1271/bbb.60.267
  24. Paik, S.-K., H.-S. Yun, H.-Y. Sohn, and I. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13: 85-89
  25. Park, J.-E., K.-H. Lee, and D. Jahng. 2002. Effect of trehalose on bioluminescence and viability of freeze-dried bacterial cells. J. Microbiol. Biotechnol. 12: 349-353
  26. Sambrook, J., E. F. Fritch, and F. Maniatis. 1989. Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  27. Seo, H. S., Y. J. Koo, J. Y. Lim, J. T. Song, C. H. Kim, J. K. Kim, J. S. Lee, and Y. D. Choi. 2000. Characterization of a bifunctional enzyme fusion of trehalose-6-phosphate synthetase and trehalose-6-phosphate phosphatase of Escherichia coli. Appl. Environ. Microbiol. 66: 2484-2490 https://doi.org/10.1128/AEM.66.6.2484-2490.2000
  28. Streeter, J. G. and A. Bhagwat. 1999. Biosynthesis of trehalose from maltooligosaccharides in Rhizobia. Can. J. Microbiol. 45: 716-721 https://doi.org/10.1139/cjm-45-8-716
  29. Tachibana, Y., S. Fujiwara, M. Takagi, and T. Imanaka. 1997. Cloning and expression of 4-$\alpha$-glucanotransferase gene from the hyperthermophilic archaeon Pyrococcus sp. KOD1, and characterization of the enzyme. J. Ferment. Bioeng. 83: 540-548 https://doi.org/10.1016/S0922-338X(97)81134-8
  30. Van Laere, A. 1989. Trehalose, reserve and/or stress metabolite? FEMS Microbiol. Rev. 63: 201-210 https://doi.org/10.1016/0168-6445(89)90031-4