• Title/Summary/Keyword: stability equations

Search Result 1,348, Processing Time 0.033 seconds

ON THE ORBITAL STABILITY OF INHOMOGENEOUS NONLINEAR SCHRÖDINGER EQUATIONS WITH SINGULAR POTENTIAL

  • Cho, Yonggeun;Lee, Misung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1601-1615
    • /
    • 2019
  • We show the existence of ground state and orbital stability of standing waves of nonlinear $Schr{\ddot{o}}dinger$ equations with singular linear potential and essentially mass-subcritical power type nonlinearity. For this purpose we establish the existence of ground state in $H^1$. We do not assume symmetry or monotonicity. We also consider local and global well-posedness of Strichartz solutions of energy-subcritical equations. We improve the range of inhomogeneous coefficient in [5, 12] slightly in 3 dimensions.

STABILITY OF PEXIDERIZED JENSEN AND JENSEN TYPE FUNCTIONAL EQUATIONS ON RESTRICTED DOMAINS

  • Choi, Chang-Kwon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.3
    • /
    • pp.801-813
    • /
    • 2019
  • In this paper, using the Baire category theorem we investigate the Hyers-Ulam stability problem of pexiderized Jensen functional equation $$2f(\frac{x+y}{2})-g(x)-h(y)=0$$ and pexiderized Jensen type functional equations $$f(x+y)+g(x-y)-2h(x)=0,\\f(x+y)-g(x-y)-2h(y)=0$$ on a set of Lebesgue measure zero. As a consequence, we obtain asymptotic behaviors of the functional equations.

ON THE HYERS-ULAM SOLUTION AND STABILITY PROBLEM FOR GENERAL SET-VALUED EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS

  • Dongwen, Zhang;John Michael, Rassias;Yongjin, Li
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.571-592
    • /
    • 2022
  • By established a Banach space with the Hausdorff distance, we introduce the alternative fixed-point theorem to explore the existence and uniqueness of a fixed subset of Y and investigate the stability of set-valued Euler-Lagrange functional equations in this space. Some properties of the Hausdorff distance are furthermore explored by a short and simple way.

The dynamic stability of a nonhomogeneous orthotropic elastic truncated conical shell under a time dependent external pressure

  • Sofiyev, A.H.;Aksogan, O.
    • Structural Engineering and Mechanics
    • /
    • v.13 no.3
    • /
    • pp.329-343
    • /
    • 2002
  • In this research, the dynamic stability of an orthotropic elastic conical shell, with elasticity moduli and density varying in the thickness direction, subject to a uniform external pressure which is a power function of time, has been studied. After giving the fundamental relations, the dynamic stability and compatibility equations of a nonhomogeneous elastic orthotropic conical shell, subject to a uniform external pressure, have been derived. Applying Galerkin's method, these equations have been transformed to a pair of time dependent differential equations with variable coefficients. These differential equations are solved using the method given by Sachenkov and Baktieva (1978). Thus, general formulas have been obtained for the dynamic and static critical external pressures and the pertinent wave numbers, critical time, critical pressure impulse and dynamic factor. Finally, carrying out some computations, the effects of the nonhomogeneity, the loading speed, the variation of the semi-vertex angle and the power of time in the external pressure expression on the critical parameters have been studied.

Stability Assessment of a Bi8h Speed Train via Optimal Design (고속전철 현가장치의 민감도해석을 통한 최적설계)

  • 탁태오;윤순형
    • Proceedings of the KSR Conference
    • /
    • 1999.11a
    • /
    • pp.542-549
    • /
    • 1999
  • The purpose of this study is to investigate stability of a high speed train and to propose optimal design using sensitivity analysis of suspension design parameters. A form of equations of motion in tangent track and curve track is obtained based on each creep force. Tangent track and curve track equations include lateral, rolling and yawing motions of wheel sets, bogies, and carbodies. Three track cases have been chosen to stability assesment of a high speed train analysis. Sensitivity equations are set up by directly differentiating the equations of motion. This study def'.led Stability performance index of a high speed train in tangent track and curve track. The relative magnitude of the effect of suspension parameters on the critical speed is computed, and by adjusting these parameters, the increase of the critical speed is achieved.

  • PDF

SOLUTIONS AND STABILITY OF TRIGONOMETRIC FUNCTIONAL EQUATIONS ON AN AMENABLE GROUP WITH AN INVOLUTIVE AUTOMORPHISM

  • Ajebbar, Omar;Elqorachi, Elhoucien
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.55-82
    • /
    • 2019
  • Given ${\sigma}:G{\rightarrow}G$ an involutive automorphism of a semigroup G, we study the solutions and stability of the following functional equations $$f(x{\sigma}(y))=f(x)g(y)+g(x)f(y),\;x,y{\in}G,\\f(x{\sigma}(y))=f(x)f(y)-g(x)g(y),\;x,y{\in}G$$ and $$f(x{\sigma}(y))=f(x)g(y)-g(x)f(y),\;x,y{\in}G$$, from the theory of trigonometric functional equations. (1) We determine the solutions when G is a semigroup generated by its squares. (2) We obtain the stability results for these equations, when G is an amenable group.

STABILITY IN THE α-NORM FOR SOME STOCHASTIC PARTIAL FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS

  • Diop, Mamadou Abdoul;Ezzinbi, Khalil;Lo, Modou
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.149-167
    • /
    • 2019
  • In this work, we study the existence, uniqueness and stability in the ${\alpha}$-norm of solutions for some stochastic partial functional integrodifferential equations. We suppose that the linear part has an analytic resolvent operator in the sense given in Grimmer [8] and the nonlinear part satisfies a $H{\ddot{o}}lder$ type condition with respect to the ${\alpha}$-norm associated to the linear part. Firstly, we study the existence of the mild solutions. Secondly, we study the exponential stability in pth moment (p > 2). Our results are illustrated by an example. This work extends many previous results on stochastic partial functional differential equations.

On the Hyers-Ulam Stability of Polynomial Equations in Dislocated Quasi-metric Spaces

  • Liu, Yishi;Li, Yongjin
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.767-779
    • /
    • 2020
  • This paper primarily discusses and proves the Hyers-Ulam stability of three types of polynomial equations: xn+a1x+a0 = 0, anxn+⋯+a1x+a0 = 0, and the infinite series equation: ${\sum\limits_{i=0}^{\infty}}\;a_ix^i=0$, in dislocated quasi-metric spaces under certain conditions by constructing contraction mappings and using fixed-point methods. We present an example to illustrate that the Hyers-Ulam stability of polynomial equations in dislocated quasi-metric spaces do not work when the constant term is not equal to zero.